
GAssert: A Fully Automated Tool
to Improve Assertion Oracles

Valerio Terragni∗, Gunel Jahangirova†, Paolo Tonella† and Mauro Pezzè†‡
∗University of Auckland, Auckland, New Zealand

†Università della Svizzera italiana, Lugano, Switzerland
‡Schaffhausen Institute of Technology, Schaffhausen, Switzerland

v.terragni@auckland.ac.nz {gunel.jahangirova, paolo.tonella, mauro.pezze}@usi.ch

This is the author’s version of the work. The definitive version appeared at ICSE 2021

Abstract—This demo presents the implementation and usage
details of GASSERT, the first tool to automatically improve
assertion oracles. Assertion oracles are executable boolean ex-
pressions placed inside the program that should pass (return
true) for all correct executions and fail (return false) for all
incorrect executions. Because designing perfect assertion oracles
is difficult, assertions are prone to both false positives (the
assertion fails but should pass) and false negatives (the assertion
passes but should fail). Given a Java method containing an
assertion oracle to improve, GASSERT returns an improved
assertion with fewer false positives and false negatives than
the initial assertion. Internally, GASSERT implements a novel
co-evolutionary algorithm that explores the space of possible
assertions guided by two fitness functions that reward assertions
with fewer false positives, fewer false negatives, and smaller size.

Index Terms—oracle improvement, program assertions, the
oracle problem, evolutionary algorithm, genetic programming,
automated test generation, mutation analysis

I. INTRODUCTION

Assertion oracles (also called program assertions) are exe-
cutable boolean expressions placed inside the program that
predicate on the values of variables at specific program points.
A perfect assertion oracle passes (returns true) for all correct ex-
ecutions and fails (returns false) for all incorrect executions [1].
For most non-trivial programs, designing perfect oracles is
difficult, and thus assertion oracles often fail to distinguish
between correct and incorrect executions [2], that is, they are
prone to both false positives and false negatives. A false
positive is a correct program state in which the assertion fails
(but should pass). A false negative is an incorrect program state
in which the assertion passes (but should fail). False positives
and false negatives are jointly called oracle deficiencies [2].

Improving the quality of assertion oracles by removing
their deficiencies is an important problem and would bring
several benefits, primarily the reduced false alarm rate and
increased fault detection capability of test suites. Notably,
automated test case generators [3], [4] will benefit the most
from improved assertion oracles. This is because high quality
assertion oracles avoid the need to automatically define a
test oracle for each generated test case. Indeed, the oracle
problem [1] is a major obstacle in test automation, limiting the
effectiveness of automatically generated test suites [3], [4].

Recently, Jahangirova et al. proposed the OASIS [2] ap-
proach to automatically generate test cases and mutations that
expose the oracle deficiencies of a given assertion oracle. The
OASIS’s output is intended to help developers improve the
oracles. However, even with the oracle deficiencies provided
by OASIS, manually improving assertion oracles remains
difficult [5]. In fact, the authors of OASIS report that for only
67% of the given assertions humans successfully removed all
oracle deficiencies reported by OASIS [5].

GASSERT [6] (Genetic ASSERTion improvement) is the
first technique to automatically improve assertion oracles. The
envisioned users of GASSERT are JAVA developers who wish
to improve the quality of their assertion oracles. Given an
assertion oracle α and its oracle deficiencies provided by
OASIS, GASSERT explores the space of possible assertions
to return a new assertion α′ with zero false positives and the
smallest number of false negatives. GASSERT favors assertions
with zero false positives, as false alarms trigger an expensive
debugging process.

Internally, GASSERT implements a novel co-evolutionary
algorithm that evolves two populations of assertions in parallel
with three competing objectives: (i) minimizing the number of
false positives, (ii) minimizing the number of false negatives,
(iii) minimizing the size of the assertion. The first popula-
tion rewards solutions with fewer false positives, the second
population those with fewer false negatives, considering the
remaining objectives only in tie cases. On a regular basis, the
two populations exchange their best individuals (population
migration) to supply the other population with good genetic
material useful to improve the secondary objective.

We evaluated the ability of GASSERT to improve an initial
set of DAIKON [7] generated assertions on 34 methods from 7
JAVA code bases [6]. The improved assertions have zero false
positives and reduce the false negatives by 40% (on average)
with respect to the initial DAIKON assertions. When evaluated
with unseen tests and mutants, the assertions generated by
GASSERT increase the mutation score by 34% (on average).

This paper extends our recent ESEC/FSE paper [6] by
giving details about the design, implementation and usage of
GASSERT, which can be found at:

https://github.com/valerio-terragni/gassert

ar
X

iv
:2

10
3.

02
90

1v
1

 [
cs

.S
E

]
 4

 M
ar

 2
02

1

https://github.com/valerio-terragni/gassert

𝛂’
improved	
assertion

instrumented
program

Oracle	
Validator

+

Test	Generator

S+
Oracle	
Assessor
OASIS

correct	
statessource	code

method	name	
assertion	point

S-

Mutation	Analysis
Major

add	new	correct	states (FP	for	α’)

add	new	incorrect	states	(FN	for	α’)incorrect	
states

input
𝛂

initial	
assertion

output

input

𝛂’
improved	
assertion

PIT

Instrumentor

report

false	
positives

mutation	
score

𝛂
initial	

assertion

time	
budgets

1 instrumentation	----- 2 initialization	of	the	program	states------------- 3 oracle	improvement	--- 4 validation

Figure 1. Logical workflow of GASSERT

II. GASSERT

GASSERT is a command-line tool, which has five inputs:
(i) the source code of a JAVA class, (ii) the name of the method
under analysis, (iii) an initial assertion oracle α, (iv) the point
in the method were α is placed (assertion point), and (v) a
global and an internal time budget for the oracle improvement.
The output of GASSERT is an improved assertion oracle α′.
Figure 1 shows the logical workflow of GASSERT, which is
composed of four phases:

¶ instrumentation, GASSERT instruments the method un-
der analysis to capture program states at runtime.

· initialization of the program states, GASSERT produces
an initial set of correct and incorrect states (S+ and S -) by
executing an initial test suite on the instrumented version of
the original method and on its faulty variants (mutations).

¸ oracle improvement, this phase alternatively executes
GASSERT and OASIS until a time budget expires or OASIS
does not find oracle deficiencies for the improved oracle α′.

¹ validation, GASSERT evaluates the initial and improved
assertions (α and α′) on a validation set of tests and mutations.

Figure 2 shows a running example of GASSERT applied to
method floor of class FastMath of The Apache Commons Math

library. The method implements a fast algorithm for the floor
computation, which takes as input a real number x, and outputs
the greatest integer less than or equal to x (result).

Figure 2 (a) shows the instrumented version of the method
and the initial assertion α : (y == result) && (x > result)

(line 16). Although α properly behaves in many correct and
incorrect states, it has both false positives and false negatives.

Figure 2 (b) shows an example of a false positive program
state for α, together with the EVOSUITE test case that produces
it. For this correct state, x is not greater than result, and thus
α returns false (but should return true).

Figure 2 (c) shows an example of a false negative program
state for α, together with the EVOSUITE test case and MAJOR
mutation that produce it. For this incorrect state, the values of
y and result are wrong (they should be 0), but α does not fail
(it returns true instead of false).

Running GASSERT provides an improved assertion α′:
(y == result) && (x >= result) && (x < (result+1)), which
intuitively captures the behavior of a floor function, and it does
not suffer from the oracle deficiencies of Figure 2 (b) and (c).
The following subsections describe the four phases in detail.

A. Instrumentation

The Instrumentor component of GASSERT inserts additional
method calls in the method under analysis to collect program
states at runtime. We implemented it by relying on the source
code manipulator JAVAPARSER (v. 3.6.26)1.

The instrumentor analyzes the source code of the method
under analysis to collect the method parameters (including the
object receiver) MP, and all the local variables LV that are
visible at the assertion point. For the example in Figure 2,
MP = {x} and LV = {y, result}. It then instruments two
method calls. The first one is placed at the beginning of the
method passing MP as an argument (line 3 in Figure 2).
The second one is located right before the assertion point
passing both MP and LV as arguments (line 15 in Figure 2).
By considering the parameter values at the beginning of the
method, GASSERT is able to generate assertions that predicate
on method preconditions. GASSERT distinguishes the variables
in MP at the two execution points by adding the prefix “old_”
to the variable names at the first execution point.

B. Initialization of the Program States

GASSERT needs test cases and mutations to initialize the
repositories of correct and incorrect states (S+ and S -). Such
repositories are progressively filled with the correct and incor-
rect states returned by OASIS. The rationale for initializing the
repositories, instead of immediately relying on states returned
by OASIS, is to minimize the number of iterations. In this way,
we avoid using OASIS to detect obvious oracle deficiencies,
and rather let OASIS focus on hard-to-find ones.

To enable full automation, GASSERT obtains the initial
test cases and mutations from EVOSUITE [4] (v. 1.0.6)2 and
MAJOR (v. 1.3.4)3, respectively. EVOSUITE is a search-based
test case generator for JAVA driven by various coverage criteria.
In our experiments we used the branch coverage criterion.
MAJOR generates source-code mutants of a JAVA class by
seeding artificial faults. Notably, developers and testers can
also provide additional manually-written test cases and faulty
versions of the method under analysis, which likely yield to
assertion oracles of higher quality. Figure 2 (b) and (c) show
examples of test cases and mutations generated at phase ·.

1http://javaparser.org/
2https://www.evosuite.org/
3https://mutation-testing.org/

http://javaparser.org/
https://www.evosuite.org/
https://mutation-testing.org/

1 public class FastMath{
2				public static double floor(final double x) {
3									ch.usi.gassert.visitor.GAVisitor.getInstance()

.enterMethod("floor",	"old_x",	x);
4									//	[..]	omitted	code	for	brevity
5	 long y = (long) x;
6	 if (x < 0 && y != x) {
7													y--;
8									}
9		 final double result;
10 if (y == 0) {
11 result = x * y;
12 } else {
13 result = y;
14 }
15						ch.usi.gassert.visitor.GAVisitor.getInstance()

.assertionPoint("floor",	"x",	x,	"y",	y,	"result",	result);
16 assert ((y == result) && (x > result));
17						return result }	}

@Test(timeout	=	4000)
public	void	test2	()	throws	Throwable {
double	double0	=	FastMath.floor(0.33);

}

@Test(timeout	=	4000)
public	void	test1	()	throws	Throwable {
double	double0	=	FastMath.floor(5.0);

}

{		"versionId":	"original",
"testId":	"test1",
"methodName":	"floor",
"identifier2value":	{

"old_x":	5.0,
"x":	5.0,
"y":	5,
"result":	5.0,	

}		}

if (x < 1 && y != x) { (line	6)	
Major

False	Positive

{ "versionId":	"mutants/18/",
"testId":	"test1",
"methodName":	"floor",
"identifier2value":	{

"old_x":	0.33,
"x":	0.33,
"y":	-1,
"result":	-1.0,	

}		}

False	Negative

(b)

(c)(a)

program	state

program	state

Figure 2. Instrumented version of the method floor (a), examples of a false positive (b) and a false negative (c) for the assertion at line 17.

GASSERT initializes S+ by executing the test cases on the
instrumented method, and S - by executing the test cases on
the instrumented mutations. Invoking the instrumented code
constructs the program states and saves them on disk as JSON
files. Saving the states is crucial to quickly calculate how many
false positives and false negatives a candidate assertion has,
without requiring expensive program re-executions. Indeed, our
evolutionary algorithm might explore millions of candidate
assertions before converging to an optimized solution.

GASSERT generates assertion oracles as Boolean expres-
sions that predicate on variables and functions of Boolean or
numerical types (see Table I). As such, a program state s is
a set of Boolean or numerical variables {v1, · · · , vk}. Each
variable vi has a type, an identifier, and a value. For each
variable vi passed as arguments to the instrumented method
calls, GASSERT constructs a program state s as follows:

If vi is of primitive type (Boolean or numerical), GASSERT
simply adds its runtime value to s (rounding floats with a
fixed precision) using the variable name as identifier. If vi is
non-primitive (objects in JAVA), GASSERT needs to convert
vi into primitive values. GASSERT achieves this with a
hybrid state serialization that combines the object serialization
and observer abstraction approaches [6]. Object serialization
captures the values of primitive-type object fields that are
recursively reachable from vi. Observers abstraction captures
the return values of observer methods invoked with vi as the
object receiver. Observer methods are side-effect free methods
that are declared in vi’s class and return primitive values.

GASSERT automatically finds the observer methods of
vi’s class with an efficient (but conservative) byte-code static
analyzer. The analyzer marks a method as side-effect free if it
cannot directly or indirectly execute putfield or putstatic
bytecode instructions. GASSERT relies on JAVA REFLECTION
to get at runtime the values of primitive fields and the return
values of the observer methods invocations. Figure 2 (b) and (c)
show the JSON files of the program states obtained when
executing the corresponding test cases.

Table I
FUNCTIONS CONSIDERED BY GASSERT

operand output functions
type type

〈 number, number 〉 number +, *, -, /, % (modulo)
〈 number, number 〉 boolean ==, <, >, ≤, ≥, 6=
〈 boolean, boolean 〉 boolean AND, OR, XOR, EXOR, → (implies), == (equiv.)
〈 boolean 〉 boolean NOT

C. Oracle Improvement

The oracle improvement process takes in input an initial
assertion α and two time budgets (an internal one for the
co-evolutionary algorithm and a global one for the whole
process), and outputs an improved assertion α′. The initial
assertion can be specified by the user or automatically gener-
ated by our scripts using the invariant generator DAIKON (v.
5.7.2) [7]. The default configuration is an internal time budget
of 30 minutes and a global one of 90 minutes.

The oracle improvement process is composed of three steps:
I. GASSERT executes the co-evolutionary algorithm and
terminates when it finds an assertion α′ with zero oracle
deficiencies with respect to the current correct and incorrect
states (S+ and S -) or the internal time budget expires. In the
latter case, GASSERT returns the assertion α′ that among all
the explored assertions with zero false positives has the lowest
number of false negatives.
II. OASIS searches for oracle deficiencies of α′. If it finds
them, it adds the resulting program states to S+ and S -.
III. GASSERT takes in input α′ and repeats step I.

Such an iterative process terminates when OASIS does not
find oracle deficiencies for α′ or the global time budget expires.

The co-evolutionary algorithm evolves two populations of
assertions in parallel. One population uses the number of false
positives as the fitness score, while the other uses the number
of false negatives. The remaining objectives are used only in
tie cases. The two populations periodically exchange their best
individuals to help optimize the secondary objectives.

GASSERT evolves each population following the GP ap-
proach: (i) selection: selecting pairs of assertions (parents)
by means of fitness functions that reward fitter solutions;
(ii) crossover: creating new (and possibly fitter) offspring by
combining portions of the parent assertions; and, (iii) mutation:
mutating the offspring (with a certain probability). GASSERT
adopts a tree-like representation of assertions and uses the stan-
dard tree-based mutation and crossover operators. Moreover,
we propose novel selection and crossover operators that are
specific to the oracle improvement problem [6].

We now exemplify how our algorithm could obtain α′ :
(y == result) && (x >= result) && (x < (result+1)) in the
example of Figure 2. Let us assume that the algorithm selects
two parents αp1 : (y == result) && (x > result) and αp2 :
(x < (result+1)). If crossover produced (y == result) && (x

> result) && (x < (result+1)) and mutation changed > to >=,
GASSERT would obtain the improved assertion α′.

OASIS [2] detects false positives of an assertion α by
creating a new branch with the negated boolean expression
of α. It then uses search-based test generation [4] to produce
test cases that cover the branch and consequently make the
assertion fail. For instance, given the assertion at line 17 in
Figure 2 (a), OASIS would obtain the test case in Figure 2 (b)
by replacing the assertion with the artificial branch if((y !=

result) || (x <= result)){} and then driving search-based
test generation towards covering this branch.

OASIS detects false negatives by combining test case
generation and mutation testing. It injects faults into the
program and generates test cases for the faulty version such
that at least one of the variables used in the assertion changes
its value, while the outcome of the assertion does not change.

D. Validation

To evaluate if the improved assertions generalize well with
unseen correct and incorrect states, we generated new test
cases and mutations using RANDOOP [3] (v. 4.2.0)4 and PIT
(v. 1.4.0)5, respectively. Because they are different tools from
the ones that provide test cases and mutations to the oracle
improvement process (EVOSUITE, MAJOR and OASIS), they
are expected to provide different test cases and mutations.

The validation phase counts the number of validation tests
that fail with the improved assertion inserted at the assertion
point. If it is zero, we use PIT to run the validation tests
and report the mutation score. If it is greater than zero, we
cannot run PIT because we need a green test suite. In such
case, if the evaluated assertion has the form assert(α1 && α2

&& α3), GASSERT considers each of the smaller assertions
assert(α1), assert(α2) and assert(α3) removing those that
have false positives. Then, it concatenates the remaining
smaller conditions with && and it performs mutation testing
with PIT for this reduced assertion. It then repeats this process
for the initial assertion. The user of GASSERT can compare the
HTML reports of PIT to better understand the fault detection
capability of the initial and improved assertion oracles.

4https://randoop.github.io/randoop/
5https://pitest.org/

III. EVALUATION

We evaluated GASSERT on 34 methods from 7 different
Java code bases [6]. The validation phase shows that improved
assertions have always zero false positives and achieve, on
average, 34% increase in mutation score with respect to initial
DAIKON assertions.

In addition, we compared GASSERT to two baselines RAN-
DOM and INV-BASED. RANDOM is a variant of GASSERT
with no guidance by the fitness functions. The results show
that GASSERT-generated assertions outperform the RANDOM-
generated ones for 50% of the subjects. INV-BASED executes
DAIKON on the initial test suite and obtains an invariant. It
then augments the initial test suite with the test cases generated
by OASIS that reveal false positives, and re-executes DAIKON.
This process repeats until the global time budget expires.
GASSERT outperforms INV-BASED for 63% of the subjects.

We also compared GASSERT with a set of human-improved
assertions collected from 102 developers [5]. Our results show
that the mutation score achieved by GASSERT is always equal
to the average mutation score achieved by the humans. More-
over, 10% of the human-improved assertions achieve a lower
mutation score than the assertions improved by GASSERT.

IV. CONCLUSION

While there are many techniques to automatically generate
program assertions (e.g., program invariants [7]), automatically
improving assertion oracles by removing false positives and
false negatives is an unexplored problem. GASSERT is the first
technique of its kind, opening a new research area.

Techniques like GASSERT might encourage developers to
use assertion oracles more often, resulting in better software
quality in the long run. We highlight three promising future
research directions: (i) leverage the feedback of OASIS not
only after GASSERT has produced the final assertion, but also
during the evolution, (ii) increase the expressiveness of the
assertions (e.g., with universal quantifiers), and (iii) make the
improved assertions easier to read and understand for humans.

REFERENCES

[1] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE Transactions on Software
Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[2] G. Jahangirova, D. Clark, M. Harman, and P. Tonella, “Test Oracle Assess-
ment and Improvement,” in Proceedings of the International Symposium
on Software Testing and Analysis, ser. ISSTA ’16. ACM, 2016, pp.
247–258.

[3] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proceedings of the International Conference
on Software Engineering, ser. ICSE ’07. ACM, 2007, pp. 75–84.

[4] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transactions
on Software Engineering, vol. 39, no. 2, pp. 276–291, 2013.

[5] G. Jahangirova, D. Clark, M. Harman, and P. Tonella, “An empirical valida-
tion of oracle improvement,” IEEE Transactions on Software Engineering,
2019.

[6] V. Terragni, G. Jahangirova, P. Tonella, and M. Pezzè, “Evolutionary
improvement of assertion oracles,” in Proceedings of the Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE ’20. ACM, 2020,
pp. 1178–1189.

[7] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,” in
Proceedings of the International Conference on Software Engineering, ser.
ICSE ’99. ACM, 1999, pp. 213–224.

https://randoop.github.io/randoop/
https://pitest.org/

	I Introduction
	II GAssert
	II-A Instrumentation
	II-B Initialization of the Program States
	II-C Oracle Improvement
	II-D Validation

	III Evaluation
	IV Conclusion
	References

