
System Component-Level Self-Adaptations
for Security via Bayesian Games

Mingyue Zhang
Key Lab of High Confidence Software Technologies (MoE), Peking University, Beijing, China

mingyuezhang@pku.edu.cn

Abstract—Security attacks present unique challenges to self-
adaptive system design due to the adversarial nature of the
environment. However, modeling the system as a single player,
as done in prior works in security domain, is insufficient for
the system under partial compromise and for the design of fine-
grained defensive strategies where the rest of the system with
autonomy can cooperate to mitigate the impact of attacks. To
deal with such issues, we propose a new self-adaptive framework
incorporating Bayesian game and model the defender (i.e., the
system) at the granularity of components in system architecture.
The system architecture model is translated into a Bayesian multi-
player game, where each component is modeled as an independent
player while security attacks are encoded as variant types for the
components. The defensive strategy for the system is dynamically
computed by solving the pure equilibrium to achieve the best
possible system utility, improving the resiliency of the system
against security attacks.

Index Terms—Self-adaptation; Bayesian game; Security

I. INTRODUCTION

A self-adaptive system is designed to be capable of mod-
ifying its structure and behavior at run time in response to
changes in its environment and the system itself [1], [2].
Achieving security in presence of uncertainty is particularly
challenging due to the adversarial nature of the environ-
ment [3], [4]. Various game-theory approaches have been
explored in the security domain for modeling interactions
between the system and attackers as a game between a
group of players (i.e., system and multiple attackers, each
as one player) and computing Nash equilibrium strategies for
the system to minimize the impact of possible attacks [5]–
[8]. These methods can be used to (1) model adversarial
behaviors by malicious attackers [7], [9], and (2) design
reliable defense for the system by using underlying incentive
mechanisms to balance perceived risks in a mathematically
grounded manner [6], [10]. Prior works in security relying on
game theory approaches [5]–[8] have treated the system as
an independent player (i.e., defender). Abstracting the entire
system (i.e., monolithic modeling) applies to the design of
defense strategies at the system level. However, a potential
attacker or several attackers usually attack the system by
exploiting the vulnerabilities spread over different parts of the
system. Such monolithic modeling is insufficient for capturing
the situations where only a part of the system is compromised
while other parts of the system, with their autonomy and
capability, can mitigate the impact of the on-going attacks and
compensate for security losses.

In this work, we argue that compared to a coarse one-player
abstraction of the complex system, modeling the defender
under security attacks at the granularity of components is
more expressive compared to monolithic modeling, in that
it allows the design of fine-grained defensive strategies for
the system under partial compromise. Our approach to the
component modeling approach is a trade-off between the level
of details and level of abstraction to appropriately portray
aforementioned attack situations. Furthermore, we advocate
focusing on the system modeling by encoding the on-going
attacks on the component as component behavior deviations,
as an alternative way instead of modeling attackers themselves
as separate players.

To this end, we pioneer a new self-adaptive framework that
leverages Bayesian games at the granularity of components
at the system architecture level. Specifically, each essential
component will be separately modeled as a player. Under
attacks, one or more components with vulnerabilities might
be exploited with probability by the attackers to deliberately
perform harmful actions (i.e., turning into a malicious type).
The various security attacks these components might be sub-
ject to are encoded as different types for players, the way of
expressing uncertainty from the Bayesian approach. The rest
of the components could form a coalition to fight against those
potentially uncooperative components. The architecture model
of the system and the security attacks on components are
translated into a Bayesian game structure. Then, the adaptive
defensive strategy for the system is dynamically computed
by solving a pure equilibrium, to achieve the best possible
system utility under all assignments of the components to their
possible types (i.e., in the presence of security attacks).

II. BAYESIAN GAME EXTENDED MAPE-K LOOP

We propose a new self-adaptive framework incorporating
Bayesian Game. Adaptation behaviors build on the Nash
equilibrium from unexpected attacks and are achieved by
elaborating the widely adopted mechanism of the MAPE-
K (Monitoring, Analysis, Planning, Execution, Knowledge)
loop [11]–[13], shown in Figure 1. Concretely, Knowledge
Base stores the necessary information for the sake of self-
adaptation, including (1) the component and connector model
of the managed subsystem and its action space for each
component, (2) system objectives usually defined as the quality
attributes quantified by the utility, and (3) component vulnera-
bilities with potential behavior deviations that can be exploited

ar
X

iv
:2

10
3.

08
67

3v
1

 [
cs

.A
I]

 1
2

M
ar

 2
02

1

by the potential attacks. Monitor gathers and synthesizes the
on-going attacks information through sensors and saves infor-
mation in the Knowledge Base. Analyzer performs analysis
and further checks whether certain components are attacked
with probabilities; potential deviated malicious actions are
identified; the rewards for the attack are estimated, based on
the knowledge about component vulnerabilities and system
objectives. Planner generates one or a set of adaptation actions
by automatically solving the Bayesian Game transformed
with the input of potential attacks from the Analyzer and
architectural model of the managed subsystem along with the
system objectives from the Knowledge Base. Then, adaptations
from equilibrium are enacted by Executor on the managed
subsystem through actuators.

Environment Dynamics

Knowledge Base

Self-Adaptive Systems

Managed Subsystem

Managing Subsystem

Monitor Executor

Analyzor Planner

compromise
probability

Sensors Actuators

Bayesian
Game

&	&�PRGHO

YXOQDUDELOLWLHV

REMHFWLYHV

Fig. 1. Self-Adaptive Framework.

III. BAYESIAN GAME VIA MODEL TRANSFORMATION

We define the system under attacks, and transform the
system architecture with on-going attacks into a component-
based Bayesian game. Solving the game with equilibrium is
to find the adaptation strategy.
Component-based System: A system component is an inde-
pendent and replaceable part of a system that fulfills a clear
function in the context of a well-defined architecture. Com-
ponents forming architectural structures will affect different
quality attributes. A system is defined as S = 〈C,A,Q〉, where
C is a set of components; A is a set of joint actions available
to component i; Q is a set of quality attributes a system is
interested in. Each component is trying to make the right
reaction to maximize the system utility. Naturally, a system
under normal operation could be viewed as a cooperative game
dealing with how coalitions interact [14], [15].
Modeling Utility as Payoff: The payoff among those play-
ers is allocated by the utility from quality attributes. It is
straightforward for developers to design a system-level utility.
However, due to the different roles of the components and
the complex relationship between them, it is complicated
and sometimes untraceable to manually design an appropri-
ate component-level payoff function. The Shapley value, a
solution of fairly distributing both gains and costs to several
players working in coalition proportional to their marginal
contributions [16]–[18], is used to automatically decompose
the system-level utility into the component-level payoff.

Component-based Attacks: Instead of modeling an attacker
or several attackers with possible complex behaviors over
different parts of the system, we model the on-going attacks
ATT the system is enduring at the component level since the
vulnerabilities of the components as well as their potential
behavior deviations are comparatively easy to observe and
be analyzed. The security attacks on the system is formally
defined as a tuple ATT = 〈Catt, Aatt, Patt, Ratt〉, where Catt

is the set of components affected by the attacks; Aatt denotes
a set of joint actions controlled by attacks on compromised
components; Patt = {p1, ..., pm} is a set of probability
where pi is the probability of component i being successfully
compromised; Ratt is the reward for attacks.
Translation into a Bayesian game: With the definition of
the system on the component level and the definition of the
attacks, a system under security attacks is converted into a
Bayesian game B = 〈P,A,Θ, U, ρ〉, where P is a set of
players; A is a set of actions; Θ is a set of types for each
player i : θi ∈ Θi; U is a payoff function for each player
determined by the types of all players and actions they choose;
ρ is a probability distribution ρ(θ1, ..., θn) over types.

The game translation follows five steps: 1) each component
c ∈ C is separately modeled as an independent player; 2)
components potentially affected by attacks Catt ⊆ C will be
associated with two types (i.e, normal and malicious) while
the remaining components C − Catt are normal type; 3)
the probability distribution for a player i over two types is
ρ(pi, 1− pi) as defined in Patt; 4) the action space of player
i under security attacks is Ai∪Aatt; 5) the payoff for players
in normal type will be allocated with system utility by the
shapley value method, while components in malicious type
performing harmful actions will be assigned with utility the
on-going attacks obtain by achieving their own goals. The
game constructed is put into a game solver (i.e., Gambit [19]),
to find Nash equilibria, which, in essence, is the best reaction
as the adaptation response for the system to potential attacks.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new framework for
self-adaptive systems by adopting Bayesian game theory and
modeled the system under security attacks as a multi-player
game at system architecture level. Its applicability and su-
periority have been demonstrated in a security web scenario
with load balancing and a case study on an inter-domain
routing application 1. In future, we are planning to evaluate
our framework in a realistic industrial control system with
adaptive behaviors [20]–[23] by constructing the game in
an automated way and supporting Architecture Description
Interchange Language, such as acme [24].

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China under Grant No.61620106007 and
No.61751210.

1https://github.com/GeorgeDUT/GamePlusAdaptation2ICSEsrc

https://github.com/GeorgeDUT/GamePlusAdaptation2ICSEsrc

REFERENCES

[1] B. H. C. Cheng and et al., “Software engineering for self-adaptive sys-
tems: A research roadmap,” in Software Engineering for Self-Adaptive
Systems [outcome of a Dagstuhl Seminar], 2009, pp. 1–26.

[2] R. de Lemos and et al., “Software engineering for self-adaptive systems:
A second research roadmap,” in Software Engineering for Self-Adaptive
Systems II - International Seminar, Dagstuhl Castle, Germany, October
24-29, 2010 Revised Selected and Invited Papers, 2010, pp. 1–32.

[3] A. M. Elkhodary and J. Whittle, “A survey of approaches to adaptive
application security,” in 2007 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2007, Minneapolis
Minnesota, USA, May 20-26, 2007, 2007, p. 16.

[4] P. T. Devanbu and S. G. Stubblebine, “Software engineering for security:
a roadmap,” in 22nd International Conference on on Software Engineer-
ing, Future of Software Engineering Track, ICSE 2000, Limerick Ireland,
June 4-11, 2000, 2000, pp. 227–239.

[5] M. Tambe, Security and Game Theory - Algorithms, Deployed Systems,
Lessons Learned. Cambridge University Press, 2012.

[6] C. T. Do, N. H. Tran, C. S. Hong, C. A. Kamhoua, K. A. Kwiat,
E. Blasch, S. Ren, N. Pissinou, and S. S. Iyengar, “Game theory for
cyber security and privacy,” ACM Comput. Surv., vol. 50, no. 2, pp.
30:1–30:37, 2017. [Online]. Available: https://doi.org/10.1145/3057268

[7] S. Farhang and J. Grossklags, “Flipleakage: A game-theoretic
approach to protect against stealthy attackers in the presence of
information leakage,” in Decision and Game Theory for Security -
7th International Conference, GameSec 2016, New York, NY, USA,
November 2-4, 2016, Proceedings, 2016, pp. 195–214. [Online].
Available: https://doi.org/10.1007/978-3-319-47413-7 12

[8] C. Kinneer, R. Wagner, F. Fang, C. Le Goues, and D. Garlan, “Modeling
observability in adaptive systems to defend against advanced persistent
threats,” in Proceedings of the 17th ACM-IEEE International Conference
on Formal Methods and Models for System Design, MEMOCODE 2019,
La Jolla, CA, USA, October 9-11, 2019, 2019, pp. 10:1–10:11.

[9] S. Moothedath, D. Sahabandu, J. Allen, A. Clark, L. Bushnell, W. Lee,
and R. Poovendran, “A game-theoretic approach for dynamic informa-
tion flow tracking to detect multi-stage advanced persistent threats,”
IEEE Transactions on Automatic Control, 2020.

[10] J. Pawlick, E. Colbert, and Q. Zhu, “A game-theoretic taxonomy and
survey of defensive deception for cybersecurity and privacy,” ACM
Comput. Surv., vol. 52, no. 4, pp. 82:1–82:28, 2019.

[11] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003. [Online]. Available:
https://doi.org/10.1109/MC.2003.1160055

[19] R. D. McKelvey, A. M. McLennan, and T. L. Turocy, “Gambit:
Software tools for game theory, version 16.0.1,” 2018-02, http://www.
gambit-project.org.

[12] D. Weyns, M. U. Iftikhar, and J. Söderlund, “Do external feedback loops
improve the design of self-adaptive systems? a controlled experiment,”
in Proceedings of the 8th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, SEAMS 2013, San
Francisco, CA, USA, May 20-21, 2013, 2013, pp. 3–12.

[13] V. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, and S. Uchitel,
“Morph: A reference architecture for configuration and behaviour self-
adaptation,” in Proceedings of the 1st International Workshop on Control
Theory for Software Engineering. ACM, 2015, pp. 9–16.

[14] J. Cámara, G. A. Moreno, D. Garlan, and B. R. Schmerl, “Analyzing
latency-aware self-adaptation using stochastic games and simulations,”
ACM Trans. Auton. Adapt. Syst., vol. 10, no. 4, pp. 23:1–23:28, 2016.

[15] J. Cámara, D. Garlan, G. A. Moreno, and B. R. Schmerl, “Analyzing
self-adaptation via model checking of stochastic games,” in Software
Engineering for Self-Adaptive Systems III. Assurances - International
Seminar, Revised Selected and Invited Papers, ser. Lecture Notes in
Computer Science, vol. 9640. Springer, 2013, pp. 154–187.

[16] L. S. Shapley, “A value for n-person games,” In Contributions to the
Theory of Games, vol. vol. 2, 1953.

[17] M. J. Osborne and A. Rubinstein, “A course in game theory,” MIT Press
Books, vol. 1, 1994.

[18] C. Levinger, N. Hazon, and A. Azaria, “Computing the shapley value for
ride-sharing and routing games,” in Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems, 2020, pp.
1895–1897.

[20] A. P. Mathur and N. O. Tippenhauer, “SWaT: A water treatment testbed
for research and training on ICS security,” in 2016 International Work-
shop on Cyber-physical Systems for Smart Water Networks (CySWater),
April 2016, pp. 31–36.

[21] A. Maw, S. Adepu, and A. Mathur, “ICS-BlockOpS: blockchain for
operational data security in industrial control system,” Pervasive and
Mobile Computing, vol. 59, p. 101048, 2019.

[22] Y. Chen, C. M. Poskitt, J. Sun, S. Adepu, and F. Zhang, “Learning-
guided network fuzzing for testing cyber-physical system defences,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 962–973.

[23] S. Adepu, F. Brasser, L. Garcia, M. Rodler, L. Davi, A.-R. Sadeghi, and
S. Zonouz, “Control behavior integrity for distributed cyber-physical
systems,” in 2020 ACM/IEEE 11th International Conference on Cyber-
Physical Systems (ICCPS). IEEE, 2020, pp. 30–40.

[24] D. Garlan, R. T. Monroe, and D. Wile, “Acme: an architecture
description interchange language,” in Proceedings of the 1997
conference of the Centre for Advanced Studies on Collaborative
Research, November 10-13, 1997, Toronto, Ontario, Canada, 1997,
p. 7. [Online]. Available: https://dl.acm.org/citation.cfm?id=782017

https://doi.org/10.1145/3057268
https://doi.org/10.1007/978-3-319-47413-7_12
https://doi.org/10.1109/MC.2003.1160055
http://www.gambit-project.org
http://www.gambit-project.org
https://dl.acm.org/citation.cfm?id=782017

	I Introduction
	II Bayesian Game Extended MAPE-K Loop
	III Bayesian Game via Model Transformation
	IV Conclusion and Future Work
	References

