
Anomaly Detection in Scratch Assignments
Nina Körber

University of Passau
Passau, Germany

Abstract—For teachers, automated tool support for debugging
and assessing their students’ programming assignments is a great
help in their everyday business. For block-based programming
languages which are commonly used to introduce younger learn-
ers to programming, testing frameworks and other software
analysis tools exist, but require manual work such as writing
test suites or formal specifications. However, most of the teachers
using languages like SCRATCH are not trained for or experienced
in this kind of task. Linters do not require manual work but are
limited to generic bugs and therefore miss potential task-specific
bugs in student solutions. In prior work, we proposed the use of
anomaly detection to find project-specific bugs in sets of student
programming assignments automatically, without any additional
manual labour required from the teachers’ side. Evaluation on
student solutions for typical programming assignments showed
that anomaly detection is a reliable way to locate bugs in a data
set of student programs. In this paper, we enhance our initial
approach by lowering the abstraction level. The results suggest
that the lower abstraction level can focus anomaly detection on
the relevant parts of the programs.

Index Terms—Anomaly Detection, Scratch, Block-Based Pro-
gramming, Program Analysis, Teaching

I. INTRODUCTION AND MOTIVATION

Teachers often assess the progress of their students’ program-
ming and computational thinking skills with tasks the students
have to solve practically by coding. In this process, one of
the tasks of the teacher is to assess and evaluate the programs
produced to provide feedback or grade the students. In practice,
this task is challenging, as there are many ways to solve a
programming assignment and an unlimited variety of potential
bugs, making it especially hard if a teacher is inexperienced [8].
For text-based programming languages, there are many ways
in which teachers can utilize software analysis tools to help
with this process, for example by running tests, using a linter
or writing specifications to check against.

However, there is an increasing demand to teach program-
ming to elementary students, and the typical way to introduce
young learners is to use block-based programming languages
such as SCRATCH [6]. For these languages, there rarely exist
tools that help teachers with assessing their students’ code. The
few tools that exist are either limited because they statically
check for a predefined set of bug patterns [2] or require the
elementary school teachers to be trained in writing formal
specifications [9] or test suites [10], which can be hard even
for experienced programmers.

To address this problem, anomaly detection can help teachers
assess and evaluate student assignments [3]. Anomaly detection
is a static software analysis technique that has been successful
at finding bugs in large projects using text-based programming

languages [12]. The idea is to learn common coding patterns,
rare deviations of which, anomalies, potentially hint at bugs
in the code. Regular student solutions at elementary schools
usually do not have a sufficient size to learn patterns from a
single solution. However, there usually is one task for a whole
class, resulting in a set of student solutions that consist of
high-level code constructs. We use this set of student solutions
to learn common student coding patterns and to find anomalies.

In prior work, we adapted and extended an approach
to anomaly detection from the context of object-oriented
programming based on formal concept analysis [12] to the
context of SCRATCH. We mined and evaluated anomalies of
six data sets consisting of different SCRATCH solutions created
by students [3]. To further explore the potential of anomaly
detection in SCRATCH, in this paper we propose actor specific
anomaly detection, which groups scripts by the actor (sprite
or background) they belong to. Our results show that both the
original and the actor specific approach are reliable ways to
find generic as well as project-specific bugs in student code,
without any manual work from teachers. We also found that
the actor specific approach can focus anomaly detection on the
relevant parts of the student solutions and its effects are worth
further exploration.

II. ANOMALY DETECTION IN SCRATCH: APPROACH

Several approaches for anomaly detection for text-based
programming languages have been proposed in the literature [1],
[4], [5], [7], [11], [12]. The common idea is that correct code is
the rule rather than the exception—common behaviour likely is
correct behaviour and rare deviations of it likely are wrong. Our
approach is based on the JAVA anomaly detector JADET [12],
which mines coding patterns related to JAVA objects. Therefore,
the usage of every JAVA object is analyzed. For every JAVA
class, common patterns of method calls on instances of this
class are mined. If there are rare deviations of these patterns,
i.e., an object is not used the way objects of its class usually
are, the unusual behaviour is marked and reported. Pattern
mining relies on graph models of JAVA objects, but the actual
algorithm used for mining patterns and their anomalies from
these models is independent of the programming language
underlying the graph models. This allows us to reuse these
algorithms without major adaptations. The main difference of
our approach is that we mine patterns and violations from graph
models of SCRATCH scripts. We implemented the extraction of
these in the LITTERBOX analysis framework for SCRATCH [2].

Figure 1 presents the four essential phases of anomaly
detection in SCRATCH [3].

ar
X

iv
:2

10
3.

08
26

1v
1 

 [
cs

.S
E

] 
 1

5 
M

ar
 2

02
1



2

Buggy Script Script Model Temporal Properties

“Unicorn”
Sprite

“Unicorn”
Sprites

?
Initial Approach

Actor Specific

Other
Sprites

Violation Pattern Dataset

Fig. 1: Anomaly detection in SCRATCH is able to find project-specific bugs. In this example the move steps block is missing
and instead a go to position block is used in the script on the left in order to move the sprite when the space key is pressed.

1) Script Model Generation: Every script in the data set is
converted into a script model where nodes are control locations
in the script that can be reached by executing the blocks on
the transitions, starting from the initial location l0.

2) Temporal Properties: Every script model is translated
into its temporal properties, i.e., pairs of blocks that occur one
after the other in the control flow of a script.

3) Pattern Mining: Patterns are sets of temporal properties
that occur in at least k scripts, where k ∈ N is a minimum
support threshold. Patterns are mined from the temporal
properties of all scripts in the student solutions for the task
via frequent itemset mining.

4) Anomaly Mining: A script violates a pattern if the pattern
is not a subset of the temporal properties of the script. A
violation will only be reported as anomaly if there are many
scripts that adhere to, support, the violated pattern compared to
scripts that violate the pattern in the exact same way the script
at hand does, i.e., the confidence of the violation is high.

III. INITIAL RESULTS

We evaluated our approach on six data sets of student
solutions for SCRATCH assignments (799 solutions in total),
one of them being an open task where students were free to
implement what they wanted to [3]. All of these solutions were
created from students aged 8-13 during programming sessions
with qualified teachers. We found that anomalies can be found,
and that buggy solutions more likely have more anomalies
reported. We classified the top ten anomalies for every data set
into the categories defective, smelly and non-defective. In total,
we classified 60 anomalies, 46 of which hinted at defective
code, 4 at smelly code and 10 at non-defective work. While
this is an encouraging result, teachers might benefit if we could
better separate non-defective from defective anomalies.

IV. ACTOR SPECIFIC ANOMALY DETECTION

A. Motivation and Differences to the Initial Approach

One of the reasons for the success of JADET is the distinction
between the classes objects belong to; anomalies are class
specific [12]. Our initial approach for anomaly detection in
SCRATCH abstracts away from the actor (sprite or background)
of a script; the anomalies are actor agnostic (AA). However,
actors in SCRATCH are the block-based equivalent to classes in
JAVA, so it might be beneficial to keep the information about
actors. To explore these potential benefits, we implemented an
anomaly detection variant we call actor specific (AS) anomaly

detection: We group scripts by the purpose of their actors for
pattern and anomaly mining. For open tasks, grouping the
actors by purpose is a non-trivial task that requires matching
the scripts inside the actors. For tasks with tighter constraints,
we assume that matching actors by their names approximates
the similarity of their purposes sufficiently.

B. Pilot Study

We mined AS anomalies on one of the tightly specified
tasks of our original data set, the cat task. The AA approach
found 91 violations and reported 30 of them in our initial
experiments [3]. Using the same parameters, the AS approach
found 54 violations and reported 20 of them, as the others
were below the confidence threshold configured.

For all reported anomalies including the ones reported in both
approaches, the confidence values changed. The confidence
value of a violation depends on the number of scripts that
support a pattern or violate it in the same way the violation at
hand does. Consequently, the exclusion of scripts that belong
to other actors changes the confidence values and therefore the
ranking of the anomalies. The lower number of AS violations
found indicates that the approach successfully avoided non-
defective anomalies. To investigate whether this is actually the
case, as part of our experiments we manually inspected the
30+20 anomalies. Out of these, 12 were identical in both sets.

Of the 30 AA anomalies, 8 hint at scripts that are located
in irrelevant actors that were supposed to be left empty or
that were added by the students. In general, we noticed that
these anomalies rarely influence the correctness of a solution;
it mostly depends on the implementation quality of the relevant
actors, i.e., those that are supposed to be programmed. While
these anomalies may be of interest because they hint at creative
solutions, they do not help debugging problems. As a clear
improvement for the application in debugging, the AS approach
yields only anomalies that hint at code in relevant actors.
Furthermore, this effect serves as an explanation for the reduced
number of AS anomalies found.

V. SUMMARY

Anomaly detection in SCRATCH is a useful approach to help
teachers with assessing their students’ code. This research field
is still young and a first step to improve the initial approach by
mining AS anomalies yielded promising results that are worth
investigating in further experiments.



3

REFERENCES

[1] T. Eisenbarth, R. Koschke, and G. Vogel, “Static object trace extraction
for programs with pointers,” Journal of Systems and Software, vol. 77,
no. 3, pp. 263–284, 2005.

[2] C. Frädrich, F. Obermüller, N. Körber, U. Heuer, and G. Fraser, “Common
Bugs in Scratch Programs,” in Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education, ser.
ITiCSE ’20. ACM, 2020.

[3] N. Körber, K. Geldreich, A. Stahlbauer, and G. Fraser, “Finding
Anomalies in Scratch Assignments,” in International Conference on
Software Engineering: Software Engineering Education and Training
Track (ICSE-SEET), 2021, preprint: https://arxiv.org/abs/2102.07446.

[4] Z. Li and Y. Zhou, “PR-Miner: automatically extracting implicit
programming rules and detecting violations in large software code,”
ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp. 306–315,
2005.

[5] B. Livshits and T. Zimmermann, “Dynamine: finding common error
patterns by mining software revision histories,” ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 5, pp. 296–305, 2005.

[6] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch Programming Language and Environment,” ACM Transactions
on Computing Education (TOCE), vol. 10, p. 16, 11 2010.

[7] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen, “Graph-based mining of multiple object usage patterns,”
in Proceedings of the 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT symposium on the
Foundations of Software Engineering, 2009, pp. 383–392.

[8] S. Sentance and A. Csizmadia, “Computing in the curriculum: Challenges
and strategies from a teacher’s perspective,” Education and Information
Technologies, vol. 22, no. 2, pp. 469–495, 2017.

[9] A. Stahlbauer, C. Frädrich, and G. Fraser, “Verified from Scratch: Program
Analysis for Learners’ Programs,” in ASE. IEEE, 2020.

[10] A. Stahlbauer, M. Kreis, and G. Fraser, “Testing scratch programs
automatically,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 165–175.

[11] A. Wasylkowski and A. Zeller, “Mining temporal specifications from
object usage,” Automated Software Engineering, vol. 18, no. 3-4, pp.
263–292, 2011.

[12] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting Object Usage
Anomalies,” in Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering. ACM, 2007, pp. 35–44.

https://arxiv.org/abs/2102.07446

	I Introduction and Motivation
	II Anomaly Detection in Scratch: Approach
	II-1 Script Model Generation
	II-2 Temporal Properties
	II-3 Pattern Mining
	II-4 Anomaly Mining


	III Initial Results
	IV Actor Specific Anomaly Detection
	IV-A Motivation and Differences to the Initial Approach
	IV-B Pilot Study

	V Summary
	References

