
NodeSRT: A Selective Regression Testing Tool for
Node.js Application

Yufeng Chen
University of British Columbia

Vancouver, Canada
yufengcy@student.ubc.ca

Abstract—Node.js is one of the most popular frameworks
for building web applications. As software systems mature, the
cost of running their entire regression test suite can become
significant. Selective Regression Testing (SRT) is a technique that
executes only a subset of tests the regression test suite can detect
software failures more efficiently. Previous SRT studies mainly
focused on standard desktop applications. Node.js applications
are considered hard to perform test reduction because of Node’s
asynchronous, event-driven programming model and because
JavaScript is a dynamic programming language. In this paper, we
present NodeSRT, a Selective Regression Testing framework for
Node.js applications. By performing static and dynamic analysis,
NodeSRT identifies the relationship between changed methods
and tests, then reduces the regression test suite to only tests
that are affected by the change to improve the execution time
of the regression test suite. To evaluate our selection technique,
we applied NodeSRT to two open-source projects: Uppy and
Simorgh, then compared our approach with the retest-all strategy
and current industry-standard SRT technique: Jest OnlyChange.
The results demonstrate that NodeSRT correctly selects affected
tests based on changes and is 250% faster, 450% more precise
than the Jest OnlyChange.

Index Terms—JavaScript, Selective Regression Testing, Node.js
Application, Static Analysis, Dynamic Analysis

I. INTRODUCTION

With the continuous growth of web applications, Node.js
has become one of the most popular frameworks for web
application development [1]. For critical online services, per-
forming regression testing and integration testing is important.
However, since JavaScript is a loosely typed, dynamic lan-
guage, test selection on JavaScript projects is hard. Besides,
modern web applications are usually composed of more than
one component; running unit tests only does not judge the
overall behaviour of the web application [2].

There are two phases involved in SRT. The first phase is to
select tests based on the test dependency graph and changes.
The second phase is to run selected tests. Test selection tech-
niques operate at four levels of granularity: statement, method,
file, module. The common two are method-level and file-level.
File-level granularity analysis builds a relationship between
tests and files in the system and selects tests that reflect
changed files. The method-level analysis builds a relationship
between tests and methods then selects tests that are affected
by changed methods. Since method-level selection is more
complicated than file-level selection, file-level selection runs
faster in phase one. However, file-level selection selects more

tests than needed. Therefore it is less precise than method-level
selection and runs slower in phase two [3]. Jest OnlyChange
is the current industry-standard SRT technique that operates at
file-level granularity. And it can reduce tests executed without
skipping tests that might expose failures. Plus it is the most
light-weighted approach. Although fast, this approach may
not be precise enough for some test suites. Therefore, our
research starts from a question:“Can we find a more effective
test selection technique for Node.js Applications?”

To evaluate the effectiveness of SRT techniques, Rothermel
proposed four metrics: Inclusiveness, Precision, Efficiency,
Generality [4]. Inclusiveness measures the extent to which
SRT technique chooses tests that are affected by the change.
Precision measures the ability that the SRT technique omits
tests that are not affected by the change. Efficiency measures
the time and space required. Generality measures its ability to
function in a comprehensive and practical range of situations.
We say a selection technique is safe if it achieves 100%
inclusiveness.

Our intuition for reducing the total running time is to
improve the granularity of the selection technique to improve
precision so that fewer tests are required to run when the
regression suite is executed. We also evaluated our selection
technique by performing an empirical study on two open-
source Node.js projects with different sizes and code coverage.

II. APPROACH OVERVIEW

To mitigate the challenge of performing test selection on
JavaScript programs, our tool uses a combination of static
and dynamic analysis, then performs a modification-based test
selection algorithm at method level. The modification-based
approach works by analyzing modified code entities to select
tests based on modifications. This strategy can guarantee safety
while being relatively simple. NodeSRT consists of five parts:
dynamic analysis, static analysis, change analysis, test selector,
and selected test runner.

The Static Analysis module performs static analysis on the
original codebase to generate file dependency graph on each
test by identifying and resolving require and import in
JavaScript files. The Dynamic Analysis module generates a
dynamic call graph by injecting code to the original gener-
ated AST. NodeSRT uses HTTP requests to collect runtime
information of the application. Since web applications usually
consist of different modules, code in different modules may

ar
X

iv
:2

10
4.

00
14

2v
1 

 [
cs

.S
E

] 
 3

1 
M

ar
 2

02
1



Fig. 1. NodeSRT Architecture

be running in different runtime environments, for example, the
server-side code runs in the Node.js environment. Client-side
code runs in the browser environment. The code injector in
the Dynamic Analysis module injects code that sends logging
messages to the logging server, which collects all logging
messages and generates call graph in JSON format. The run-
time information we collected includes the function name, file
name, and the number of parameters. These entities are used
to create a dynamic call graph. When the codebase becomes
large, code analysis result should be store in a database to
ensure performance [5], [6]. The Change Analysis module
compares the ASTs of the changed files, then generate a list of
changes in JSON format. Since NodeSRT uses function-level
granularity, change analysis module finds the closest function
name of each different AST node based on their ancestors. If
the function is anonymous, NodeSRT will generate a unique
name for it based on its parent function name, class name, and
file name. This approach is similar to the approach for Chianti
handling anonymous class in Java [7]. With call graph, file
dependency graph, and JSON representation of changes, The
Test Selector selects tests based on the list of changes and
the call graph. To handle changes outside functions, the test
selector selects tests that depend on the changed files based
on file dependency graph to guarantee safety. Finally, Test
Runner runs selected tests.

Our tool can also be used to select end-to-end tests since
NodeSRT uses HTTP requests record runtime information and
build dynamic call graph.

III. EMPIRICAL EVALUATION

To evaluate NodeSRT, we performed an empirical evalua-
tion on two open-source Node.js projects. We chose these two
projects because our empirical study requires systems that have
to be well-maintained and have reasonable amount of tests.
By using the method mentioned in [8], we selected Uppy and
Simorgh. Uppy has 112k lines of code, 216 unit tests, and 9
end-to-end tests, achieves 20% of code coverage. Simorgh has
698k lines of code. It includes 2801 unit tests, achieves 97%
of code coverage. The experiment ran on a 4 core x86-64 CPU
with 16 GB of RAM, AWS cloud Linux server. Due to the fact
that the internet speed and computing speed is not unchanged,

we use the percentage of tests selected and the percentage of
SRT full process running time to represent the result.

We performed test selection on a total of 588 commits
from the two subjects. For each commit, we generate a
diff patch from the previous commit to serving as input to
NodeSRT. Table I compares NodeSRT and Jest on average for
selected tests and total running time. As we can see, given file
dependency graph and call graph, the selection step for both
projects is less than 5% of total running time. Comparing to
Jest OnlyChange, NodeSRT selects much fewer tests for both
projects. NodeSRT selects 1.5 times fewer tests in Uppy, 5.3
times fewer tests in Simorgh. Although NodeSRT selects less
tests in Uppy, Jest OnlyChange runs faster than NodeSRT. This
is because Jest OnlyChange makes use of Jest’s own jest-haste-
map module and customized file system module: watchman.
Future works can be done for NodeSRT in this part. For project
with high code coverage: Simorgh, NodeSRT selected fewer
tests and is 2.7 times faster.

TABLE I
EMPIRICAL STUDY RESULT

Project
Name

Round
of
exp.

Retest
time
(s)

Select
time
(ms)

NodeSRT
test No.
(%)

Jest
test
No.
(%)

NodeSRT
running
time
(%)

Jest
run
time
(%)

Uppy 480 69.3 490 8.4 20.7 50.2 23.6
Simorgh 108 450.7 2256 2.7 17.2 8.1 30.2

IV. RELATED WORK AND CONCLUSION

There are several techniques proposed for standard desktop
applications. These techniques first classify programs into dif-
ferent entities such as functions, types, variables, and macros,
then utilize comprehensive static analysis and dynamic analy-
sis to build entity-tests relationships to reduce test suite (e.g.,
[4], [5], [6], [7], [9], [10], [11], [12]). For studies focusing on
JavaScript applications, Mutandis is a generic mutation testing
approach for JavaScript that guides the mutation generation
process [13]. It works by leveraging static and dynamic
program analysis to guide the mutation generation process a-
priori towards parts of the code that are error-prone or likely
to influence the program’s output. Tochal is a DOM-Sensitive
change impact analysis tool for JavaScript. Through dynamic
code injection and static analysis, it incorporates a ranking
algorithm for indicating the importance of each entity in the
impact set. This approach focused on frontend DOM changes
rather than the frontend backend interaction [14].

Conclusion. We present NodeSRT, a novel approach for
performing SRT on Node.js applications at method level.
Using a change-based selection technique, obtaining a function
call relationship with dynamic analysis, collecting file depen-
dency with static analysis, NodeSRT reduces regression tests
in short running time and high inclusiveness and precision.
Empirical evaluation showed that our approach outperformed
Jest OnlyChange in precision and total running time. Future
work can be done in integrating our technique with unit testing
frameworks to improve its performance further.



REFERENCES

[1] F. Schiavio, H. Sun, D. Bonetta, A. Rosà, and W. Binder, “Nodemop:
Runtime verification for node.js applications,” in Proceedings of the
Symposium on Applied Computing (SIGAPP), 2019, p. 1794–1801.

[2] M. Hirzel, “Selective regression testing for web applications created with
Google Web Toolkit,” in Proceedings of the International Conference on
Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools (PPPJ), 2014, p. 110–121.

[3] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test selec-
tion with dynamic file dependencies,” in Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), 2015, p. 211–222.

[4] G. Rothermel and M. J. Harrold, “Analyzing regression test selection
techniques,” IEEE Transactions on Software Engineering (TSE), vol. 22,
no. 8, pp. 529–551, 1996.

[5] A. Beszédes, T. Gergely, L. Schrettner, J. Jász, L. Langó, and
T. Gyimóthy, “Code coverage-based regression test selection and pri-
oritization in webkit,” in Proceedings of the International Conference
on Software Maintenance (ICSM), 2012, pp. 46–55.

[6] Yih-Farn Chen, D. S. Rosenblum, and Kiem-Phong Vo, “TESTTUBE: A
system for selective regression testing,” in Proceedings of International
Conference on Software Engineering (ICSE), 1994, pp. 211–220.

[7] Xiaoxia Ren, B. G. Ryder, M. Stoerzer, and F. Tip, “Chianti: A change
impact analysis tool for Java programs,” in Proceedings International
Conference on Software Engineering (ICSE), 2005, pp. 664–665.

[8] A. Labuschagne, L. Inozemtseva, and R. Holmes, “Measuring the cost of
regression testing in practice: A study of Java projects using continuous
integration,” in Proceedings of the Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), 2017, p. 821–830.

[9] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi, “Regression test selection for
java software,” SIGPLAN Not., vol. 36, no. 11, p. 312–326, Oct. 2001.

[10] M. J. Harrold and M. L. Souffa, “An incremental approach to unit testing
during maintenance,” in Proceedings of the Conference on Software
Maintenance (ICSM), 1988, pp. 362–367.

[11] G. Rothermel and M. J. Harrold, “A safe, efficient regression test selec-
tion technique,” ACM Transactions on Software Engineering Methodol-
ogy (TOSEM), vol. 6, no. 2, p. 173–210, Apr. 1997.

[12] A. Taha, S. M. Thebaut, and S. Liu, “An approach to software fault
localization and revalidation based on incremental data flow analysis,”
in Proceedings of the International Computer Software Applications
Conference (SAC), 1989, pp. 527–534.

[13] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Efficient JavaScript
mutation testing,” in Proceedings of the International Conference on
Software Testing, Verification and Validation (ICST), 2013, pp. 74–83.

[14] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Hybrid DOM-Sensitive
Change Impact Analysis for JavaScript,” in European Conference on
Object-Oriented Programming (ECOOP), vol. 37, 2015, pp. 321–345.


	I Introduction
	II Approach Overview
	III Empirical Evaluation
	IV Related Work and Conclusion
	References

