
Investigating the Interplay between Developers and
Automation

Omar Elazhary
University of Victoria
omazhary@uvic.ca

Abstract—Continuous practices are a staple of the modern
software development workflow. Automation, in particular, is
widely adopted due to its benefits related to quality and produc-
tivity. However, automation, similarly to all other aspects of the
software development workflow, interacts with humans (in this
case developers). While some work has investigated the impact of
automation on developers, it is not clear to what extent context
and process influence that impact. We present our ADEPT theory
of developers and automation, in an attempt to bridge this gap
and identify the possible ways context, process, and other factors
may influence how developers perceive, interpret, and interact
with automation.

Index Terms—Software engineering, automation, continuous
software development, continuous integration, software engineer-
ing theory.

I. INTRODUCTION

Continuous practices are a staple of modern software devel-
opment [1]. The most commonly adopted continuous practice
is automating some tasks of the development workflow. These
tasks typically include building an application, testing it,
releasing it, and possibly deploying it to a client’s system.
Given the benefits to productivity and quality such automation
brings [2], [3], it is no wonder such tools have seen widespread
adoption.

However, automation in general has had an uneasy rela-
tionship with humans [4]–[7]. One phenomenon related to
automation is that of misuse, or as it is later called compla-
cency, which denotes the over-reliance on the results produced
by automation. The opposite extreme to that phenomenon is
disuse which describes a lack of trust in the results produced
by automation. Finally, there is automation abuse, which
captures automation that is configured in such a way that it
hinders the process it is meant to improve.

In the software engineering domain, particularly in the
context of continuous practices, such phenomena also occur in
addition to new phenomena specific to software engineering.
For instance, software developers can be impacted by auto-
mated build results, which affects their next commit [8]. Or
the negative impact adopting automated build tools has on a
project’s developer-base [9].

Unfortunately, the interplay between humans and automated
tools has been under-explored in software engineering. We
hope to explore this area and map out the various phenomena
that relate to the interactions between software developers and
the automation they use in their workflows.

II. BACKGROUND AND RELATED WORK

Most of the literature regarding automation in the context
of continuous practices is centered around two major areas of
research: optimizing the automation workflow, and detecting
problems with automation configurations. Optimization efforts
typically center around selectively or incrementally [10] ex-
ecuting tests or builds, or exploring how to shorten build
durations [11]. Detecting problems with configurations, on
the other hand, focuses on documenting different incorrect
configuration methods [12], [13], or designing tools that detect
such incorrect configurations [14].

More recently, however, there has been some work on
the human aspects of continuous practices. As mentioned in
section I, some studies investigated the relationship between
failing builds and developer sentiment over time [8]. Souza
and Silva observe that failing builds relate to negative commit
messages when trying to fix the error. And negative commit
messages are more likely to produce failing builds. Another
example of automation having an impact on human behavior
is the work done by Gupta et al. [9], where they observe that
a project’s ability to retain and attract developers decreases
upon adopting Travis CI, a popular continuous integration tool.
However, it is not clear why these phenomena occur.

III. PREVIOUS STUDIES

To map out the different relationships between developers
and automation, we started by examining open source projects
and how automation was used within that context. We ex-
amined the contribution guidelines for several open source
projects to examine how newcomers were being instructed
to use and interpret the automation that was attached to the
project repositories [15]. Surprisingly, we found that none of
the projects discussed their attached automation tools beyond
them being used for testing purposes.

We then decided to investigate continuous practices in an
industrial context, and how they might impact development
workflow. To that end, we conducted two studies; the first
explored the impact of continuous practices on non-functional
requirements [16], and the second focused on the perceived
benefits and costs of continuous practices [17]. In the for-
mer study, we found that the automation brought about by
continuous practices had facilitated dealing with particular
non-functional requirements (such as configurability) with
developers reprioritizing how they deal with these require-
ments. In the second study, we observed that the benefits

ar
X

iv
:2

10
3.

07
20

1v
1 

 [
cs

.S
E

] 
 1

2 
M

ar
 2

02
1



Fig. 1. Visual Representation of the ADEPT Theory (Boxes are constructs, Edges are relationships)

and costs brought about by continuous practices (including
automation) are a result of the practices, as opposed to
the overarching practice set. For instance, automation was
perceived to increase development cycle velocity, but–without
tests–it had no impact on quality. The association of costs
and benefits with their finer-grained practices (as opposed
to the overarching methodology of continuous integration)
helped us better map the relationship between developers and
automation. The mapping, in turn, led to our most recent
study.

IV. PROPOSED SOLUTION AND RESULTS

To gain a better understanding of how developers interact
with automation in their specific contexts, we decided to
develop a theory. We considered this a step towards a more
theory-oriented software engineering research field as argued
by Stol and Fitzgerald [18]. To the best of our knowledge at
the time, there was no theory explaining the different ways
developers interacted with automation.

Based on our previous studies [15], [17], we attempted
to create an explanatory theory to better represent the phe-
nomena we were observing and to provide a starting point
to generate hypotheses about human-centric phenomena re-
lated to automation [19]. The ADEPT theory (Automation,
Documentation, Project Environment, Process, Team Mem-
ber) maps the relationships we observed and sets the scene
for further investigation. A representation of ADEPT can be
seen in Figure 1.

Team member refers to people who interact with automa-
tion, be they developers, program managers, testers, or others.
Automation is abstracted to include automated tools that
team members interact with throughout their development pro-
cess. Process encapsulates the various practices and activities
that constitute their development workflow. Documentation
represents the artifacts with which developers communicate
knowledge about their process, tools, and code.

The edges between the constructs represent relationships we
observed during our previous studies [17]. Two relationships
stand out in particular; automation adds to documentation, and
the bidirectional relationship between automation and process.
We found that automation serves to document tacit build
knowledge in form of configuration and build scripts. We also
found that the desire to implement a particular process impacts

the choice of automation used. We also hypothesize that the
reverse is also true in that the desire to use a particular tool
can force developers to implement a different process.

The theory captures context as available through both the
project environment and the process within which developers
operate. In fact, it illustrates that these relationships may only
produce the results discussed by literature under a constant
context, which is not the case. We also found that the
relationship between developers and automation is impacted
by documentation. In many cases, developers would resort
to a tool’s documentation to either run an automated build
manually, or interpret a tool’s results.

Furthermore, our theory allows for the formation of com-
pound relationships. For instance, while a developer can use
documentation to interpret the results of automation, that
behavior is shaped by the process within which they operate.
Without the process priming that particular behavior, develop-
ers could interpret automation results differently.

V. FUTURE WORK

While our previous studies provided us with an under-
standing of possible relationships between developers and
automation, we need to operationalize the concepts our theory
proposes. And we still do not know if these relationships
apply in different contexts. We make the argument that context
is important, and the results should always be interpreted
within it, however, operationalizing the context is not as
straightforward as it seems.

Currently, we plan to investigate how best to operationalize
these concepts, and test the relationships we posit in our
theory. We plan to investigate if the relationships can be used
to interpret previous results in both industry and open source
contexts to contrast these differences. The main objective is to
determine to what extent our theory describes the relationship
between automation and developers, and whether it can be
improved.

Similarly to our previous studies, we plan to use a mixed-
methods approach to data collection. We plan to conduct
online surveys that help us capture context and human-centric
aspects of the relationships we observed. Additionally, we plan
to mine repository development logs to both triangulate the
survey results, and objectively observe development metrics
and relate them to automation properties.



REFERENCES

[1] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol. 123, pp.
176–189, 2017.

[2] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in github,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 805–816.

[3] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,” in
2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2016, pp. 426–437.

[4] R. Parasuraman, R. Molloy, and I. L. Singh, “Performance consequences
of automation-induced’complacency’,” The International Journal of
Aviation Psychology, vol. 3, no. 1, pp. 1–23, 1993.

[5] R. Parasuraman and D. H. Manzey, “Complacency and bias in human
use of automation: An attentional integration,” Human factors, vol. 52,
no. 3, pp. 381–410, 2010.

[6] I. L. Singh, R. Molloy, and R. Parasuraman, “Automation-induced”
complacency”: Development of the complacency-potential rating scale,”
The International Journal of Aviation Psychology, vol. 3, no. 2, pp.
111–122, 1993.

[7] R. Parasuraman and V. Riley, “Humans and automation: Use, misuse,
disuse, abuse,” Human factors, vol. 39, no. 2, pp. 230–253, 1997.

[8] R. Souza and B. Silva, “Sentiment analysis of travis ci builds,” in
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 459–462.

[9] Y. Gupta, Y. Khan, K. Gallaba, and S. McIntosh, “The impact of the
adoption of continuous integration on developer attraction and retention,”
in 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 491–494.

[10] G. Maudoux and K. Mens, “Bringing incremental builds to continuous
integration,” in Proc. 10th Seminar Series Advanced Techniques & Tools
for Software Evolution, 2017.

[11] T. A. Ghaleb, D. A. Da Costa, and Y. Zou, “An empirical study of
the long duration of continuous integration builds,” Empirical Software
Engineering, vol. 24, no. 4, pp. 2102–2139, 2019.

[12] K. Gallaba and S. McIntosh, “Use and misuse of continuous integration
features: An empirical study of projects that (mis) use travis ci,” IEEE
Transactions on Software Engineering, 2018.

[13] F. Zampetti, C. Vassallo, S. Panichella, G. Canfora, H. Gall, and
M. Di Penta, “An empirical characterization of bad practices in con-
tinuous integration,” Empirical Software Engineering, vol. 25, no. 2,
pp. 1095–1135, 2020.

[14] C. Vassallo, S. Proksch, H. C. Gall, and M. Di Penta, “Automated
reporting of anti-patterns and decay in continuous integration,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 105–115.

[15] O. Elazhary, M.-A. Storey, N. Ernst, and A. Zaidman, “Do as i do, not as
i say: Do contribution guidelines match the github contribution process?”
in 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2019, pp. 286–290.

[16] C. Werner, Z. S. Li, D. Lowlind, O. Elazhary, N. A. Ernst, and
D. Damian, “Continuously managing nfrs: Opportunities and challenges
in practice,” IEEE Transactions on Software Engineering, 2021.

[17] O. Elazhary, C. Werner, Z. S. Li, D. Lowlind, N. A. Ernst, and M.-A.
Storey, “Uncovering the benefits and challenges of continuous integra-
tion practices,” IEEE Transactions on Software Engineering, 2021.

[18] K.-J. Stol and B. Fitzgerald, “Theory-oriented software engineering,”
Science of Computer Programming, vol. 101, pp. 79–98, 2015.

[19] O. Elazhary, M.-A. Storey, N. A. Ernst, and E. Paradis, “Adept: A
socio-technical theory of continuous integration,” in 43rd International
Conference on Software Engineering. IEEE, 2021.


	I Introduction
	II Background and Related Work
	III Previous Studies
	IV Proposed Solution and Results
	V Future Work
	References

