
ar
X

iv
:2

10
4.

05
47

5v
1 

 [
cs

.S
E

] 
 1

2 
A

pr
 2

02
1

Unburdening onboarding in Software Product Lines

Raul Medeiros

University of the Basque Country (UPV/EHU)

San Sebastián, Spain

raul.medeiros@ehu.eus

Abstract—The number of studies focusing on onboarding in
software organizations has increased significantly during the
last years. However, current literature overlooks onboarding in
Software Product Lines (SPLs). SPLs have been proven effective
in managing the increasing variability of industry software and
enabling systematic reuse of a product family. Despite these
benefits, SPLs are complex and exhibit particular characteristics
that distinguish them from traditional software. Due to these
peculiarities, SPLs require a tailor-made onboarding process.
Assistance tools might help. In this dissertation, we propose
assistance tools (i.e., tools built on top of the software project that
help learners understand and develop knowledge) as a means for
helping newcomers during onboarding in SPLs.

Keywords—Software Product Lines, Onboarding, Recom-
mender Systems, Concept Maps

I. INTRODUCTION

Today’s world is highly interconnected. In such a situation,

professionals often move from one company to another, espe-

cially inside the software industry [1]. High mobility implies

new hired developers, who must be introduced into the com-

pany’s culture, processes, technologies, etc., by means of the

fastest and most effective possible approach. In the literature,

this introduction process is known as onboarding [2]–[5]. Yet,

incorporating into a new software development team is not

a trivial task, and it has been studied that newcomers (i.e.,

people incorporating to the company) face several barriers

during onboarding [3], namely:

• technical barriers, newcomers often encounter them-

selves without knowing how to set up their development

environment or lack the skills to manage the program-

ming languages used in the organization. This problem

is accompanied by the lack of prior knowledge of the

domain where development takes place.

• process barriers, software projects usually lack a formal

procedure for introducing newcomers.

• interpersonal barriers, which refer to the absence of

communication and socializing skills in the newcomer.

These barriers arise more fragrantly when newcomers are

incorporated into a diverse team, where different people

with different interpersonal skills gather.

• personal barriers include issues related to personality,

lack of management skills, or behavior problems.

One of the used approaches to alleviate these barriers

consists in considering onboarding as a mentor-newcomer

journey (aka mentoring), where the senior developer (i.e., the

mentor) assists the newcomer (i.e., the mentee) in her/his in-

corporation, both transferring technical skills and knowledge,

and providing moral support [1]. However, senior developers’

time is a valued resource and spending it teaching newcomers

reduces significantly their productivity. Therefore, most of the

companies expect newcomers to explore and understand the

software by themselves [6].

Onboarding barriers exacerbate in Software Product Lines

(SPL), which are both complex organizationally and software

wise. The main goal of SPLs is to support the reuse of

a whole family of software products in a systematic way

[7]. Specifically, SPLs aim at automating software derivation

(i.e., products of the SPL) out of a set of reusable assets

(i.e., the SPL platform). Ideally, software derivation is lim-

ited to indicating the set of features to be exhibited by the

desired products (so-called “product configuration”). Features

are user-visible characteristics of a software system. In this

scenario, products are obtained through a fully “Configurable

Product Family” where product customization does not exist

[8]. However, reaching a “Configurable Product Family” is

estimated to last around ten years [9]. In this transition, not

only traditional onboarding occurs, but also developers are

transferred from Application Engineering (AE) to Domain

Engineering (DE) (aka crossboarding) [10]. From now on,

we refer to these developers transitioning from AE to DE as

crosscomers.

SPLs pose unique challenges to crosscomers, setting the

large volume of a SPL aside, crosscomers must adapt them-

selves to variability and developing software for reuse. First,

feature models gather together multiple concepts that are un-

known for the crosscomer, leading to an increase in complexity

and making them difficult to comprehend or even maintain

[11]. Moreover, the code should account for reuse. Often, this

is achieved by enclosing variants within #ifdef and #endif

directives, and associated with features. As a result, code

comprehensibility is diminished [12], [13]. In summary, the

main barriers a crosscomer face when incorporating to the

domain engineering team are the sheer volume, understanding

variability and internalizing development for reuse [14].

This thesis focuses on the above-mentioned barriers. To this

end, we resort to assistance tools, which are tools that can

help learners understand and develop knowledge (e.g., sense-

making scaffolds [15]). In this context, we pose our research

hypothesis as follows: Assistance tools help crosscomers

during crossboarding in SPL organizations, simplifying

and enhancing the process of incorporating to a domain

engineering team.

To evaluate the hypothesis, we ask the following research

http://arxiv.org/abs/2104.05475v1


questions:

• RQ1: How can sense-making scaffolds construct domain

knowledge on top of crosscomers’ background? Study-1

• RQ2: What is an appropriate journey for crosscomers to

understand variability? Study-2

II. RELATED WORK

To the best of our knowledge, there is no prior work that

addresses onboarding or crossboarding in SPLs. However,

easing and speeding up onboarding has been the subject of

distinct approaches: setting a gamification system [16]; tools

for assisted coding [17]; visualization of data and conceptual

representations [17]; recommendation assistants [18]–[21];

setting a web portal [22]. Specifically, Malheiros et al. [20] and

Cubranic et al. [18] present two tools that support newcomers

by recommending the most appropriate source code files for

their development tasks. Wang and Sarma [21] focus on bug

fixing recommendations, and they provide newcomers a term-

based search feature with which newcomers can find bugs on a

specific topic. Dominic et al. The Isopleth tool [17], the closest

approach to this thesis, is a web-based platform that helps

newcomers make sense of complex web software projects.

III. EXPECTED CONTRIBUTIONS AND EVALUATION PLANS

This thesis follows a Design Science Research (DSR) ap-

proach. DSR is the scientific study and creation of artifacts

as they are developed and used by people with the goal of

solving practical problems of general interest [23]. Therefore,

the contributions of this thesis have an artifact associated with

it. Next, we delve into the proposed studies:

A. Study-1: Domain knowledge construction

Problem. When crosscomers are incorporated into the do-

main engineering team, they have to deal with both variability

and development for reuse. At this point, it is of critical

importance that crosscomers understand the concepts and ter-

minology used by the practicioners and how the SPL products

are built [24]. However, directly exploring the SPL documen-

tation (e.g. the feature model) or code to acquire domain

knowledge is not feasible for crosscomers due to the sheer

volume and variability of the SPL [25] [11]. Approach. In this

study, we focus on helping crosscomers understand the set of

concepts and terminology of the domain of the SPL platform.

To this end, we propose the use of sensemaking scaffolds for

presenting such data [15] and specifically concept maps as

the realization of such scaffolds. A concept map is a diagram

that depicts suggested relationships between concepts [26].

Concept mapping is reckoned to be a means for meaningful

learning insofar as it serves as a kind of scaffold to help

to organize knowledge [27]. Particularly, SPL concept maps

gather domain concepts extracted from all available artifacts of

the SPL. In our approach, features drive the extraction process.

For each feature, its related concepts are extracted from SPL

artifacts using NLP techniques such as keyword extraction

[28]. Then, each concept receives a relevance. Finally, an

expert selects the most representative concepts of the SPL

and creates relationships between them completing the concept

map. Evaluation plan. We want to evaluate the effect of

concept maps in the acquisition of domain knowledge. This

will be carried out with a controlled experiment, with one of

our industrial partners, following the experiment design and

reporting guidelines proposed by Wohlin et al. [29]. To this

end, the evaluation will compare the domain knowledge of

crosscomers using concept maps with the domain knowledge

of those using other kinds of domain representations (e.g.

feature models or entity-relationship diagrams), after having

performed the given tasks.

B. Study-2: Crossboarding journey

Problem. During crossboarding, crosscomers must move

from development with reuse to development for reuse. This

means that they have to deal with variability. In SPLs, vari-

ability is characterized in terms of functional abstractions

that serve for communicating, reasoning and distinguishing

among individual products (i.e. features) [30]. Preprocessors

are often the means to implement the features, and has

been studied that they hinder program comprehension [12],

[13]. Understanding features can be a hard work and it is

being reported that onboarding plans that are not structured

to newcomers’ knowledge, lead to newcomers’ frustration

[31]. This can also occur in crossboarding and, therefore,

crosscomers need to be assigned with features that resemble

to their prior knowledge as application engineers. Approach.

In crossboarding, the crosscomer profile can be characterized

in terms of the codebase they have been in charge of (i.e.

the code they evolved during their time in AE). We refer to

this codebase as “the Background Feature”. Akin to program

comprehension theory, we propose to construct crosscomers’

journeys (i.e. the order in which they should understand

features) based on the similarity between the features and

crosscomers’ “Background Feature” [32]. To define these

journeys, we resort to Recommender Systems (RSs) based on

feature similarity. Using Topic Modeling, the RS will create

a similarity matrix, which can be represented as a weighted

graph. Using this similarity graph, the recommender system

will propose the easiest onboarding journey (i.e., a subgraph)

based on similarity degrees. Evaluation plan. We plan to

evaluate the recommended crossboarding journeys through a

case study in one of our industrial partners or in WacLine our

academic SPL1. The case study will follow Runeson et al. [33]

guidelines and will try to identify the acceptation and benefits

of the crossboarding journeys in a real SPL crossboarding

setting with at least four crosscomers.

ACKNOWLEDGMENTS

This work is supported by Spanish Ministry of Science

and Innovation (RTI2018-099818-B-I00) and the Ministry of

Education (MCIU-AEI TIN2017-90644-REDT (TASOVA)).

R. Medeiros enjoys a doctoral grant from the Ministry of

Science and Innovation.

1https://onekin.github.io/WacLine/



REFERENCES

[1] G. G. Sharma and K. Stol, “Exploring onboarding success,
organizational fit, and turnover intention of software profes-
sionals,” J. Syst. Softw., vol. 159, 2020. [Online]. Available:
https://doi.org/10.1016/j.jss.2019.110442

[2] I. Steinmacher, M. A. G. Silva, M. A. Gerosa, and D. F. Redmiles,
“A systematic literature review on the barriers faced by newcomers to
open source software projects,” Inf. Softw. Technol., vol. 59, pp. 67–85,
2015. [Online]. Available: https://doi.org/10.1016/j.infsof.2014.11.001

[3] S. Balali, I. Steinmacher, U. Annamalai, A. Sarma, and M. A. Gerosa,
“Newcomers’ barriers. . . is that all? an analysis of mentors’ and
newcomers’ barriers in OSS projects,” Comput. Support. Cooperative

Work., vol. 27, no. 3-6, pp. 679–714, 2018. [Online]. Available:
https://doi.org/10.1007/s10606-018-9310-8

[4] A. Rastogi, S. Thummalapenta, T. Zimmermann, N. Nagappan, and
J. Czerwonka, “Ramp-up journey of new hires: Do strategic practices
of software companies influence productivity?” in Proceedings of the

10th Innovations in Software Engineering Conference, ISEC 2017,

Jaipur, India, February 5-7, 2017. ACM, 2017, pp. 107–111. [Online].
Available: http://dl.acm.org/citation.cfm?id=3021471

[5] T. N. Bauer and B. Erdogan, “Organizational socialization: The effective
onboarding of new employees.” Washington, DC, US, pp. 51–64, 2011.

[6] G. Viviani and G. C. Murphy, “Reflections on onboarding
practices in mid-sized companies,” in Proceedings of the 12th

International Workshop on Cooperative and Human Aspects of

Software Engineering, CHASE@ICSE 2019, Montréal, QC, Canada,

27 May 2019. IEEE / ACM, 2019, pp. 83–84. [Online]. Available:
https://doi.org/10.1109/CHASE.2019.00027

[7] P. Clements and L. M. Northrop, Software product lines - practices and

patterns, ser. SEI series in software engineering. Addison-Wesley, 2002.

[8] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in software
product families: a case study,” J. Syst. Softw., vol. 74, no. 2, pp. 173–
194, 2005. [Online]. Available: https://doi.org/10.1016/j.jss.2003.11.012

[9] R. Kolb, I. John, J. Knodel, D. Muthig, U. Haury, and G. Meier,
“Experiences with product line development of embedded systems at
testo AG,” in Software Product Lines, 10th International Conference,

SPLC 2006, Baltimore, Maryland, USA, August 21-24, 2006,

Proceedings. IEEE Computer Society, 2006, pp. 172–181. [Online].
Available: https://doi.org/10.1109/SPLINE.2006.1691589

[10] S. Deelstra, M. Sinnema, and J. Bosch, “Experiences in software product
families: Problems and issues during product derivation,” in Software

Product Lines, Third International Conference, SPLC 2004, Boston, MA,

USA, August 30-September 2, 2004, Proceedings, ser. Lecture Notes in
Computer Science, R. L. Nord, Ed., vol. 3154. Springer, 2004, pp. 165–
182. [Online]. Available: https://doi.org/10.1007/978-3-540-28630-1 10

[11] R. Capilla, J. Bosch, and K.-C. Kang, Systems and Software Variability

Management: Concepts, Tools and Experiences. Springer Publishing
Company, Incorporated, 2013.

[12] M. D. Ernst, G. J. Badros, and D. Notkin, “An empirical
analysis of C preprocessor use,” IEEE Trans. Software Eng.,
vol. 28, no. 12, pp. 1146–1170, 2002. [Online]. Available:
https://doi.org/10.1109/TSE.2002.1158288

[13] J. Melo, F. B. Narcizo, D. W. Hansen, C. Brabrand, and
A. Wasowski, “Variability through the eyes of the programmer,”
in Proceedings of the 25th International Conference on Program

Comprehension, ICPC 2017, Buenos Aires, Argentina, May 22-23,

2017. IEEE Computer Society, 2017, pp. 34–44. [Online]. Available:
https://doi.org/10.1109/ICPC.2017.34

[14] M. Acher, R. E. Lopez-Herrejon, and R. Rabiser, “Teaching software
product lines: A snapshot of current practices and challenges,” ACM

Transactions on Computer Education, vol. 18, no. 1, pp. 2:1–2:31,
2017. [Online]. Available: https://doi.org/10.1145/3088440

[15] C. Quintana, B. J. Reiser, E. A. Davis, J. Krajcik, E. Fretz, R. G. Duncan,
E. Kyza, D. Edelson, and E. Soloway, “A scaffolding design framework
for software to support science inquiry,” The journal of the learning

sciences, vol. 13, no. 3, pp. 337–386, 2004.

[16] L. Heimburger, L. Buchweitz, R. Gouveia, and O. Korn, “Gamifying
onboarding: How to increase both engagement and integration of new
employees,” in Advances in Social and Occupational Ergonomics.
Cham: Springer International Publishing, 2020, pp. 3–14.

[17] J. Hibschman, D. Gergle, E. O’Rourke, and H. Zhang, “Isopleth:
Supporting sensemaking of professional web applications to create
readily available learning experiences,” ACM Trans. Comput. Hum.

Interact., vol. 26, no. 3, pp. 16:1–16:42, 2019. [Online]. Available:
https://doi.org/10.1145/3310274

[18] D. Cubranic and G. C. Murphy, “Hipikat: Recommending pertinent
software development artifacts,” in Proceedings of the 25th International

Conference on Software Engineering, May 3-10, 2003, Portland, Oregon,

USA. IEEE Computer Society, 2003, pp. 408–418. [Online]. Available:
https://doi.org/10.1109/ICSE.2003.1201219

[19] S. Panichella, “Supporting newcomers in software development
projects,” in 2015 IEEE International Conference on Software

Maintenance and Evolution, ICSME 2015, Bremen, Germany, September

29 - October 1, 2015. IEEE Computer Society, 2015, pp. 586–589.
[Online]. Available: https://doi.org/10.1109/ICSM.2015.7332519

[20] Y. Malheiros, A. Moraes, C. Trindade, and S. Meira, “A source code
recommender system to support newcomers,” in 36th Annual IEEE

Computer Software and Applications Conference, COMPSAC 2012,

Izmir, Turkey, July 16-20, 2012. IEEE Computer Society, 2012, pp.
19–24. [Online]. Available: https://doi.org/10.1109/COMPSAC.2012.11

[21] J. Wang and A. Sarma, “Which bug should I fix: helping new
developers onboard a new project,” in Proceedings of the 4th

International Workshop on Cooperative and Human Aspects of

Software Engineering, CHASE 2011, Waikiki, Honolulu, HI, USA,

May 21, 2011. ACM, 2011, pp. 76–79. [Online]. Available:
https://doi.org/10.1145/1984642.1984661

[22] I. Steinmacher, T. U. Conte, C. Treude, and M. A. Gerosa,
“Overcoming open source project entry barriers with a portal for
newcomers,” in Proceedings of the 38th International Conference

on Software Engineering, ICSE 2016, Austin, TX, USA, May

14-22, 2016. ACM, 2016, pp. 273–284. [Online]. Available:
https://doi.org/10.1145/2884781.2884806

[23] P. Johannesson and E. Perjons, An Introduction to

Design Science. Springer, 2014. [Online]. Available:
https://doi.org/10.1007/978-3-319-10632-8

[24] S. Apel, D. S. Batory, C. Kästner, and G. Saake, Feature-Oriented

Software Product Lines - Concepts and Implementation. Springer,
2013. [Online]. Available: https://doi.org/10.1007/978-3-642-37521-7

[25] M. Acher, R. E. Lopez-Herrejon, and R. Rabiser, “Teaching software
product lines: a snapshot of current practices and challenges (journal-
first abstract),” in Proceeedings of the 22nd International Systems

and Software Product Line Conference - Volume 1, SPLC 2018,

Gothenburg, Sweden, September 10-14, 2018. ACM, 2018, p. 249.
[Online]. Available: https://doi.org/10.1145/3233027.3236393

[26] J. D. Novak and A. J. Cañas, “The theory underlying concept maps
and how to construct them,” Florida Institute for Human and Machine

Cognition, vol. 1, no. 1, pp. 1–31, 2006.
[27] J. C. Nesbit and O. O. Adesope, “Learning with concept and knowledge

maps: A meta-analysis,” Review of educational research, vol. 76, no. 3,
pp. 413–448, 2006.

[28] W. D. Abilhoa and L. N. de Castro, “A keyword extraction
method from twitter messages represented as graphs,” Appl.

Math. Comput., vol. 240, pp. 308–325, 2014. [Online]. Available:
https://doi.org/10.1016/j.amc.2014.04.090

[29] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell,
Experimentation in Software Engineering. Springer, 2012. [Online].
Available: https://doi.org/10.1007/978-3-642-29044-2

[30] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva,
M. Becker, M. Chechik, and K. Czarnecki, “What is a feature?:
a qualitative study of features in industrial software product lines,”
in Proceedings of the 19th International Conference on Software

Product Line, SPLC 2015, Nashville, TN, USA, July 20-24, 2015,
D. C. Schmidt, Ed. ACM, 2015, pp. 16–25. [Online]. Available:
https://doi.org/10.1145/2791060.2791108

[31] A. Begel and B. Simon, “Struggles of new college graduates in their
first software development job,” in Proceedings of the 39th SIGCSE

Technical Symposium on Computer Science Education, SIGCSE 2008,

Portland, OR, USA, March 12-15, 2008. ACM, 2008, pp. 226–230.
[Online]. Available: https://doi.org/10.1145/1352135.1352218

[32] F. Détienne, Software design cognitive aspects, ser.
Practitioner series. Springer, 2001. [Online]. Available:
http://www.springer.com/computer/swe/book/978-1-85233-253-2

[33] P. Runeson, M. Höst, A. Rainer, and B. Regnell,
Case Study Research in Software Engineering - Guide-

lines and Examples. Wiley, 2012. [Online]. Available:
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118104358.html

https://doi.org/10.1016/j.jss.2019.110442
https://doi.org/10.1016/j.infsof.2014.11.001
https://doi.org/10.1007/s10606-018-9310-8
http://dl.acm.org/citation.cfm?id=3021471
https://doi.org/10.1109/CHASE.2019.00027
https://doi.org/10.1016/j.jss.2003.11.012
https://doi.org/10.1109/SPLINE.2006.1691589
https://doi.org/10.1007/978-3-540-28630-1_10
https://doi.org/10.1109/TSE.2002.1158288
https://doi.org/10.1109/ICPC.2017.34
https://doi.org/10.1145/3088440
https://doi.org/10.1145/3310274
https://doi.org/10.1109/ICSE.2003.1201219
https://doi.org/10.1109/ICSM.2015.7332519
https://doi.org/10.1109/COMPSAC.2012.11
https://doi.org/10.1145/1984642.1984661
https://doi.org/10.1145/2884781.2884806
https://doi.org/10.1007/978-3-319-10632-8
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1145/3233027.3236393
https://doi.org/10.1016/j.amc.2014.04.090
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1145/2791060.2791108
https://doi.org/10.1145/1352135.1352218
http://www.springer.com/computer/swe/book/978-1-85233-253-2
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118104358.html

	I Introduction
	II Related Work
	III Expected contributions and evaluation plans
	III-A Study-1: Domain knowledge construction
	III-B Study-2: Crossboarding journey

	References

