
Extractive Multi Product-Line Engineering
Kamil Rosiak

Technische Universität Braunschweig
Braunschweig, Germany

k.rosiak@tu-bs.de

Abstract—Cloning is a general approach to create new func-
tionality within variants as well as new system variants. It is a
fast, flexible, intuitive, and economical approach to evolve systems
in the short run. However, in the long run, the maintenance effort
increases. A common solution to this problem is the extraction of
a product line from a set of cloned variants. This process requires
a detailed analysis of variants to extract variability information.
However, clones within a variant are usually not considered in
the process, but are also a cause for unsustainable software.
This thesis proposes an extractive multi product-line engineering
approach to re-establish the sustainable development of software
variants. We propose an approach to re-engineer intra-system
and inter-system clones into reusable, configurable components
stored in an integrated platform and synthesize a matching multi-
layer feature model.

Index Terms—clone detection, variability mining, refactoring,
multi product-line

I. INTRODUCTION

With an increasing demand for custom-tailored software
systems, ad-hoc reuse strategies are often used [1]. On the
one hand, system functionality is reused within a variant,
known as intra-system cloning [2]. On the other hand, en-
tire variants are copied and adapted for new requirements,
also known as clone-and-own or inter-system cloning [3]–
[5]. While code cloning comes with practical benefits [6]–
[8], research has shown that, with a growing number of
clones, they become a significant source of faults and cause
problems during development, evolution, and maintenance,
unless special care is taken to identify and track existing
code clones and their evolution [9]–[13]. Development and
maintenance costs increase with the number of variants [14].
The extraction of a product line is a common approach to solve
this problem and a relevant industrial case [3], [15], [16]. The
state of the art of extractive software product-line adoption
and reverse-engineering deals with clones at the granularity
of entire system variants [17]–[22].

However, we argue that clones can appear at any level
of granularity. At the coarsest level of entire variants, a set
of cloned variants can be integrated into a software product
line. Clones of finer granularity within variants can also be
extracted into configurable components. Thus, they can be
considered as sub-product lines, which can again have further
sub-product lines of their own at even finer granularity levels.
Generalizing this concept, the detection and integration of
clones into configurable components at any granularity level
can be considered as the extraction of a multi product-line [23].

This thesis aims to develop an extractive multi product-line
engineering approach to consolidate intra- and inter-system

clones to reestablish sustainable development and maintenance
of variants. We propose an automatic refactoring of system
variants into an integrated platform, configured with a multi-
layer feature model to derive system variants and include
configurable components.

Extractive multi product-line engineering enables systems
to be re-engineered and transitioned from ad-hoc reuse with
clone-and-own to multi product-line engineering with an inte-
grated platform [24].

II. PROPOSED APPROACH

We propose a technique for extracting multi product-lines
from implementation artifacts containing clones at different
levels of granularity. This approach is applicable to imple-
mentation artifacts of different types, such as Java [25] or
IEC 61131-3 [26]. Figure 1 shows an overview of the proposed
multi-product line extraction approach using Java as artifact
type, which we explain in detail from left to right. First,
artifacts are parsed into a generic graph structure 1©. Artifact
adapters translate the respective types of artifacts into the
graph structure. At least one existing variant is required to
build the integrated platform 2©. An n-way clone detection ap-
proach is applied to the graph structure to identify intra-clones.
Cloned artifacts are identified and refactored into configurable
components automatically. Components are integrated variant-
wise into an integrated platform. We use a pair-wise, iter-
ative, order-invariant variability-mining technique to detect
commonalities and differences between already stored artifacts
and new variants to be integrated. The integrated platform can
be refactored and annotated with feature information. Based on
the variability and feature information stored in the integrated
platform, we generate a fully constrained multi-layer feature
model, representing the software product-line of the input
system 3©. The integrated platform allows deriving system
variants and components 4©. They can be used to evolve
system variants as well as to fix bugs across all variants. This
allows sustainable reuse of code within and between variants.
Evolved components and system variants are integrated in the
same way as described above 5©.

III. PLANNED CONTRIBUTIONS

The specific contributions of this work are the following:
Extractive Multi Product-Line Engineering: Krueger [27],
Almeida [28] as well as Frankes and Kang [29] provide an
overview of software reuse and strategies for the adoption
of software. However, traditional extractive product-line en-
gineering and clone detection approaches only focus on either

ar
X

iv
:2

10
4.

05
60

2v
1

 [
cs

.S
E

]
 1

2
A

pr
 2

02
1

System

Comp BComp A

Integrated Platform

Refactoring

Component

Feature Mod els

Input Variant Derivation

Feature Model
Synthesis

Feature Model
Synthesis

System Feature

Model

Derive

Components

class

methodDecl

method

varDecl

variable

class

methodDecl

method

class A {
 void methodB() {
 ..
 }
}

Variant B

class A {
 void methodB() {
 ..
 }
}

Variant B

class A {
 int num;
 void methodA() {
 ..
 }
}

Variant A

class A {
 int num;
 void methodA() {
 ..
 }
}

Variant A

class

methodDecl

method

varDecl

method variable
Integration

methods

Comp A Comp B

Comp B

Feature A FeatureB

Comp B

Feature A FeatureB

Comp A

Feature A FeatureB

Comp A

Feature A FeatureB

Derive

Variant

class A {
 void methodB() {
 ..
 }
}

Variant B

class A {
 void methodB() {
 ..
 }
}

Variant B

Component AComponent A
 void methodB() {
 ..
 }

 void methodB() {
 ..
 }

Component A
 void methodB() {
 ..
 }

Use

Components
Transform Transform

System

vars

variable

Config A
Feature A
Feature B

Config A
Feature A
Feature B

Config B
Feature A
Feature B

Config B
Feature A
Feature B

Config A
Feature A
Feature B

Config A
Feature A
Feature B

Config B
Feature A
Feature B

Config B
Feature A
Feature B

1

2
3

4

5

Variant A

Variant B

Integration Evolution

Synthesized Multi Layer

Feature-Model

Fig. 1. Overview of the extractive multi-product line engineering approach.

inter-system or intra-system clones. To bridge the gap and
reestablish sustainable development, we propose a conceptual
process to re-engineer every granularity level of cloned arti-
facts into a multi product-line.
Clone Detection for Any Clone Granularity: Research has
shown approaches for the detection of clones for different
types of artifacts, e.g, trees [30], [31], text [32], [33] and
tokens [34], [35], but also hybrid approachs that use a mix
of those artifacts [36]. Bellon et al. [37] showed an approach
on abstract syntax trees that can detect exact and near-miss
clones. Göde et al. [38] developed an incremental clone
detection approach based on suffix trees that can analyze
software revisions. However, independent of the technique
applied to the subject system to identify clones, most research
focuses either on the detection of intra-system or inter-system
clones [39]. We propose a clone detection approach, which
allows detecting clones at any granularity level. Moreover,
we show an automatic refactoring approach, which allows
migrating clones into configurable components.
Merging Approach: After differencing a set of artifacts,
they are post-processed, and an output is generated. Rubin
et al. [40], [41] proposed an n-way model merge approach
to merge multiple input models into one. Other research used
an iterative pair-wise merge for block-based languages [42],
[43]. However, existing n-way merging approaches require
a comparison of all variants at once, which means that the
matching must be recomputed for every new variant. State of
the art pair-wise merging with iteration is not order-invariant.
In order to achieve ideal results, the correct order between
variants needs to be known. First, we contribute a taxonomy
mining approach to determine the order in which variants
should be merged to improve the iterative pair-wise merge
approach’s quality. Second, we propose an iterative pair-wise
order-invariant model merge approach for cases where not all
variants are available upfront.
Feature Model Synthesis: Extracting variability information
from variants is a commonly used approach to generate a
software product line. Schlie et.al. [44] proposed incremental
feature model synthesis for clone-and-own software systems in
models. Their synthesis only considers feature model elements
without cross-tree constraints. We generalize this approach

based on an annotation language to allow feature model
synthesis on any artifact type and extend it to consider cross-
tree constraints.

IV. EVALUATION PLAN

For the evaluation, we derived the following main research
questions:

RQ1: Is our approach for re-engineering of clones
of any granularity into a multi product-line correct,
scalable, and useful?
RQ2: Is our iterative pair-wise order-invariant model
merge approach correct and scalable?
RQ3: Is our synthesized constrained feature model
correct and useful?

Lack of case studies with existing ground truth often limits
the evaluation of clone and variability analysis approaches. To
close the gap, we plan to develop a seed-based synthetic clone
data set generator that simulates cloning on varying granularity
levels and tracks the ground truth. This technique will allow a
precise analysis of precision and recall of our clone detection
approach. This generator is based on the automatic mutation
framework for evaluating code clone detection tools from
Roy et al. [45] and extends it with cloning of variants. We
plan to evaluate our approach based on synthetically created
scenarios, which allows measuring precision and recall of our
clone detection approach for arbitrary granularity level. Those
are key measures to show the correctness of clone detection
approaches [45]. In a second step, we aim to establish software
product-lines from known variant-rich case studies such as
the pick and place unit (PPU) [46] or ArgoUML [47]. For
evaluation of the multi product-line extraction, we derive as
a base-line all integrated variants and compare if all variants
could be derived correctly and the number of required artifacts.
To determine the performance and scalability of our approach,
we measure run-time and memory consumption. To determine
our feature model synthesis usability, we measure how many
operations need to be applied manually and how usable our
approach is. Moreover, we plan a user study with practitioners
from local industry to determine our approach’s usefulness in
real-world scenarios.

REFERENCES

[1] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the automatic
detection of function clones in a software system using metrics.” in icsm,
vol. 96, 1996.

[2] R. Koschke, “Large-scale inter-system clone detection using suffix
trees,” in IEEE 2012 16th European Conference on Software Mainte-
nance and Reengineering.

[3] K. Schmid and M. Verlage, “The economic impact of product line
adoption and evolution,” IEEE software 2002, vol. 19, no. 4.

[4] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “En-
hancing clone-and-own with systematic reuse for developing software
variants,” in 2014 IEEE International Conference on Software Mainte-
nance and Evolution. IEEE, 2014.

[5] R. Lapeña, M. Ballarin, and C. Cetina, “Towards clone-and-own support:
locating relevant methods in legacy products,” in 20th International
Systems and Software Product Line Conference, 2016.

[6] C. J. Kapser and M. W. Godfrey, ““cloning considered harmful” con-
sidered harmful: patterns of cloning in software,” Empirical Software
Engineering, vol. 13.

[7] L. Aversano, L. Cerulo, and M. Di Penta, “How clones are maintained:
An empirical study,” in IEEE 11th European Conference on Software
Maintenance and Reengineering (CSMR’07), 2007.

[8] J. Krinke, “A study of consistent and inconsistent changes to code
clones,” in 14th working conference on reverse engineering (WCRE
2007). IEEE, 2007.

[9] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s School of Computing TR, vol. 541, no. 115, 2007.

[10] R. Koschke, “Survey of research on software clones,” in Dagstuhl
Seminar. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

[11] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in 2009 IEEE 31st International Conference on Software
Engineering.

[12] N. Gode and J. Harder, “Clone stability,” in 2011 15th European
Conference on Software Maintenance and Reengineering. IEEE, 2011.

[13] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto, “Is duplicate code more
frequently modified than non-duplicate code in software evolution? an
empirical study on open source software,” in ERCIM Workshop on
Software Evolution (EVOL), 2010.

[14] J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik, “Managing
forked product variants,” in 16th International Software Product Line
Conference-Volume 1, 2012.

[15] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
and A. Wąsowski, “A survey of variability modeling in industrial
practice,” in Proceedings of the Seventh International Workshop on
Variability Modelling of Software-intensive Systems, 2013.

[16] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czar-
necki, “An exploratory study of cloning in industrial software product
lines,” in 2013 17th European Conference on Software Maintenance and
Reengineering. IEEE, 2013, pp. 25–34.

[17] C. Krueger, “Eliminating the adoption barrier,” IEEE Software, vol. 19,
no. 4, 2002.

[18] J. Krüger, W. Mahmood, and T. Berger, “Promote-pl: a round-trip
engineering process model for adopting and evolving product lines,” in
24th ACM Conference on Systems and Software Product Line: Volume
A-Volume A 2020.

[19] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. Le Traon,
“Bottom-up technologies for reuse: automated extractive adoption of
software product lines,” in 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering Companion (ICSE-C). IEEE, 2017.

[20] J. Martinez, W. K. Assunção, and T. Ziadi, “ESPLA: a catalog of
extractive SPL adoption case studies,” in 21st International Systems and
Software Product Line Conference-Volume B, 2017.

[21] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “The
ECCO tool: Extraction and composition for clone-and-own,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, vol. 2. IEEE, 2015.

[22] D. Wille, T. Runge, C. Seidl, and S. Schulze, “Extractive software
product line engineering using model-based delta module generation,” in
Eleventh International Workshop on Variability Modelling of Software-
intensive Systems, 2017.

[23] G. Holl, P. Grünbacher, and R. Rabiser, “A systematic review and an ex-
pert survey on capabilities supporting multi product lines,” Information
and Software Technology, vol. 54, no. 8, 2012.

[24] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R. Läm-
mel, S. Stănciulescu, A. Wąsowski, and I. Schaefer, “Flexible product
line engineering with a virtual platform,” in Companion Proceedings of
the 36th International Conference on Software Engineering, 2014.

[25] K. Arnold, J. Gosling, D. Holmes, and D. Holmes, The Java program-
ming language. Addison-wesley Reading, 2000, vol. 2.

[26] M. Tiegelkamp and K.-H. John, IEC 61131-3: Programming industrial
automation systems. Springer, 1995, vol. 14.

[27] C. W. Krueger, “Software reuse,” ACM Computing Surveys (CSUR),
vol. 24, no. 2, 1992.

[28] E. S. De Almeida, A. Alvaro, D. Lucrédio, V. C. Garcia, and S. R.
de Lemos Meira, “A survey on software reuse processes,” in IRI-2005
IEEE International Conference on Information Reuse and Integration,
Conf, 2005.

[29] W. B. Frakes and K. Kang, “Software reuse research: Status and future,”
IEEE transactions on Software Engineering, vol. 31, no. 7, 2005.

[30] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in IEEE 29th International
Conference on Software Engineering (ICSE’07).

[31] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract
syntax suffix trees,” in IEEEE 2006 13th Working Conference on Reverse
Engineering.

[32] C. K. Roy and J. R. Cordy, “NiCad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in 2008 16th iEEE international conference on program comprehension.

[33] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent ap-
proach for detecting duplicated code,” in IEEE International Conference
on Software Maintenance-1999 (ICSM’99).’Software Maintenance for
Business Change’(Cat. No. 99CB36360).

[34] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, 2002.

[35] H. A. Basit and S. Jarzabek, “Efficient token based clone detection with
flexible tokenization,” in 6th joint meeting of the European software
engineering conference, 2007.

[36] H. Kim, Y. Jung, S. Kim, and K. Yi, “MeCC: memory comparison-
based clone detector,” in 33rd International Conference on Software
Engineering, 2011.

[37] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in IEEE International Conference
on Software Maintenance (Cat. No. 98CB36272), 1998.

[38] N. Göde and R. Koschke, “Incremental clone detection,” in IEEE 2009
13th european conference on software maintenance and reengineering.

[39] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
BigCloneBench,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2015.

[40] J. Rubin and M. Chechik, “N-way model merging,” in 2013 9th Joint
Meeting on Foundations of Software Engineering, 2013.

[41] J. Rubin, K. Czarnecki, and M. Chechik, “Managing cloned variants:
a framework and experience,” in Proceedings of the 17th International
Software Product Line Conference, 2013, pp. 101–110.

[42] D. Wille, “Managing lots of models: the famine approach,” in 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014.

[43] D. Wille, S. Schulze, C. Seidl, and I. Schaefer, “Custom-tailored
variability mining for block-based languages,” in 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1. IEEE, 2016.

[44] A. Schlie, A. Knüppel, C. Seidl, and I. Schaefer, “Incremental fea-
ture model synthesis for clone-and-own software systems in MAT-
LAB/Simulink,” in 24th ACM Conference on Systems and Software
Product Line: Volume A-Volume A, 2020.

[45] C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic frame-
work for evaluating code clone detection tools,” in 2009 International
Conference on Software Testing, Verification, and Validation Workshops.
IEEE, 2009.

[46] B. Vogel-Heuser, C. Legat, J. Folmer, and S. Feldmann, “Researching
evolution in industrial plant automation: Scenarios and documentation
of the pick and place unit,” Institute of Automation and Information
Systems, Technische Universität München, Tech. Rep., 2014.

[47] M. Zhang, “ArgoUML,” Journal of Computing Sciences in Colleges,
vol. 21, no. 5, 2006.

	I Introduction
	II Proposed Approach
	III Planned Contributions
	IV Evaluation Plan
	References

