
Learning to Boost the Efficiency of Modern Code Review

Robert Heumüller
Otto von Guericke University Magdeburg, Germany

robert.heumueller@ovgu.de

Abstract—Modern Code Review (MCR) is a standard in all
kinds of organizations that develop software. MCR pays for itself
through perceived and proven benefits in quality assurance and
knowledge transfer. However, the time invest in MCR is generally
substantial. The goal of this thesis is to boost the efficiency of
MCR by developing AI techniques that can partially replace or
assist human reviewers. The envisioned techniques distinguish
from existing MCR-related AI models in that we interpret these
challenges as graph-learning problems. This should allow us to
use state-of-science algorithms from that domain to learn coding
and reviewing standards directly from existing projects. The
required training data will be mined from online repositories
and the experiments will be designed to use standard, quantitative
evaluation metrics. This research proposal defines the motivation,
research-questions, and solution components for the thesis, and
gives an overview of the relevant related work.

Index Terms—modern code review, deep learning, automated
software engineering

I. MOTIVATION

Today, many organizations - ranging from open-source
projects to global players like Microsoft or Google - have
adopted some variation of a lightweight yet systematic peer
code review process [1], [2]. To distinguish them from previ-
ous more rigid practices, contemporary processes that are tai-
lored to the needs of specific development teams and projects
are known as Modern Code Review (MCR) [3]. For example,
the MCR process at Google involves five steps: Creating,
Previewing Changes, Commenting, Addressing Feedback, and
Approving Changes [1].

To get an idea of the average time invested for MCR,
we interviewed project leads and developer teams of three
medium-sized projects (> 25 kSLOC) at a mid-sized software-
development company in Germany1. In addition to these
qualitative assessments, we also consulted statistics of the
project management software, to determine how much time
issues spend in the code-review state. The results indicate
that, between projects, 5.2h-10h per week (13%-25%) of
developers’ time is spent on MCR at that company. These
results are similar to what was reported for open-source
projects (6.4h/wk) but higher than the findings of a case study
at Google (3.2h/wk) [1], [4]. While these numbers’ generality
is limited, we believe they do illustrate the potential gains of
optimizing MCR processes. Thus, the goal of this thesis is to
design AI models capable of assisting or partially replacing
human reviewers, to reduce the time per review without
compromising review quality. Trained on source code and

1The author has been working part-time as a product owner and as a systems
architect at that company for several years.

7 // ...
8 total = 42 * numUnits;
9 // ... Extract Constant PricePerUnit.

Fig. 1. Example MCR comment requesting a refactoring

*

=

42 numUnits

total

;

// ... // ...
Comment-likelihood: 1.0

Meta-topic: Structural

Text: "Extract Const..."

Fig. 2. Labeled AST for the example from Figure 1

review data, these models should learn both coding and
reviewing standards from real-world data.

II. RESEARCH QUESTIONS

Using only source code, review comments and meta-data:

RQ1: How can we design a model that can partially replace a
human reviewer by predicting some aspects of their comments
with respect to a given code change?

Here, the goal is to predict different aspects of what a human
reviewer would remark on in an MCR situation. This includes
predicting the comment locations, i.e. likelihood scores for
the line numbers of a change under review, predicting the
comment meta-topics (e.g. style-violations, structural issues,
bugs, use-case issues) for these locations, and ultimately
generating meaningful comment texts.

The first major challenge is deciding what can be learned
only from source code and review data, to accordingly define
the concrete learning tasks. For example, some comments
address issues between an implementation and its software
specification. Since a formal specification is typically not
available for most source code, predicting such comments
will be impossible in the majority of cases. To overcome
such problems, we are already working on models classifying
the meta-topic of given comments. This should enable us to
define achievable learning tasks, for example detecting style-
violations, structural issues, or some types of bugs.

The second challenge is providing the necessary ground-
truth, including positive and negative labels for features like
the comment-likelihood. How do you identify code that is not
likely to be commented on? Our starting point is to use code

ar
X

iv
:2

10
4.

08
31

0v
1 

 [
cs

.S
E

] 
 1

6 
A

pr
 2

02
1



that was recently changed due to a review but then remained
stable for a minimum period.

The third challenge is designing and evaluating AI models
for the defined learning tasks. Here, the different learning tasks
induce particular types of models such as regression, classifi-
cation, or text generation. However, we interpret all learning
tasks as graph-learning problems for program representation
graphs, e.g. ASTs (Abstract Syntax Trees). All models will
thus learn to compute features, to classify, or to generate
text for graphs or subsets of their nodes and edges. Figure 1
illustrates the graph-learning idea for ASTs using the source
code and review comment from Figure 2.

RQ2: How can we design and train a model that judges the
quality of review comments concerning a given change?

Here, the goal is to learn to quantify the quality of code
review comments, e.g. for providing feedback to reviewers.
The definition of quality encompasses many aspects, some
of which were explored in related work (cf. Section IV).
As a starting point, we define two features, actionability, i.e.
whether the comment induces changes to the respective code,
and clarity, e.g. how much further discussion the comment
induced. Formally, we then interpret the judging of comment
quality as a multimodal embedding and regression problem.

RQ3: How can the methods developed in RQ1 and RQ2 be
effectively integrated into a real-world MCR workflow?

Here, the goal is to develop a practical assistance architec-
ture that integrates the models from RQ1 and RQ2 to provide
valuable assistance in different phases of MCR processes. We
outline two examples for Google’s review flow (cf. I): In
the previewing changes phase, likely comment-locations and
topics could be highlighted, and in the commenting phase,
reviewers would receive feedback on comment usefulness. We
anticipate that such assistance should help to increase MCR
efficiency, which we intend to evaluate in an empirical study.
Another important consideration for this RQ is how to keep
models up to date, for example by utilizing online training.

III. SOLUTION COMPONENTS

We propose a concept involving four major components.
1 Dataset: First, the essential data of software and code

reviews must be sufficient in quality, quantity, and diversity.
Thus, we will mine large-scale online repositories, for example
specialized review tools like Gerrit, and, in particular, GitHub
pull-requests. We are currently working on a first dataset
for Elasticsearch that will include comments (≈ 100k), their
corresponding change hunks, and relevant java file revisions
(≈47k). Datasets must then be curated and labeled with input-
and ground-truth-features, e.g. comment meta-topics.

2 Input Representation: Second, we will analyze suitable
input representations for source code, review comments, and
meta-data. We will focus on graph-based program represen-
tations, i.e. ASTs, or other specialized representations, for
two reasons: First, it has been observed that several program-
analysis tasks benefit from structure-aware representations

[5], [6]. Second, it allows us to experiment with recent
graph-learning algorithms, which achieve state-of-the-art per-
formance for various graph-analysis tasks [7]–[9]. Similarly,
for review comments, numerous synthetic representations and
representation learning techniques can be explored [10]–[14].

3 Model Design and Evaluation: Third, we want to design
AI models that can learn relationships between source code
and review data. Following the standard procedure, we intend
to split the dataset into training and testing sets. For RQ1
we will then train models to predict, e.g., whether the AST
of a particular change will be commented on or what such
a comment’s meta-topic will likely be. Example models for
RQ2 will either process only comments, or jointly process
comments and ASTs, to estimate how helpful a comment may
be, first generally, and then respecting a particular change. For
all evaluations we aim to compute standard accuracy metrics
on the separate testing data to detect over-fitting.

4 Practical Evaluation: Fourth, we will implement relevant
parts of the architecture from RQ4, probably as plugins to
existing MCR tools. Then, we want to perform a case-study
with professional developers to assess the real-world impact
on efficiency and to gain insights into developer acceptance.

IV. RELATED WORK

Many studies have analyzed aspects of the effectiveness of
MCR [15]–[26]. However, proving MCRs effectiveness is not
our research focus. Instead, for RQ2 we are interested in what
metrics they defined to quantify MCR effectiveness, e.g. good
code-reviews uncover bugs or improve the software design.

An important distinction to previous work on code-review
analysis is that our envisioned methodology will learn to
directly correlate source code and review data. To the best
of our knowledge, this has not been successfully attempted
before. The most similar, yet still conceptually different, re-
lated approach analyzed how reviews can be mapped between
projects via code clone detection [5].

Some review datasets which we can build on have been
previously published [27]–[29]. However, after our preliminary
screening, we believe that further repository mining is neces-
sary to meet the particular needs of our research. Particularly
CROP [27] gives important insights into the challenges and
pitfalls of constructing review datasets.

Regarding neural and graph-based program-representations,
we can draw on many promising, recent approaches [6], [30]–
[33]. Further, various general graph-learning algorithms could
be adapted, e.g. graph-convolutional- and graph-attention-
networks [8], [9]. A recent survey is also available [7].

For representing comments, many existing learning tech-
niques for text could be relevant, particularly word embeddings
[14], RNN- [11], CNN- [12], and attention-models [13].

For both representation learning tasks, we are particularly
interested in attention-based approaches [13] for their superior
trainability and ability to focus on relevant sub-structures of
graphs and long sequences.



REFERENCES

[1] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: A case study at google,” in Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice, ser. ICSE-SEIP ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 181–190.

[2] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. IEEE Press, 2013,
p. 712–721.

[3] P. C. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2013. New York, NY, USA:
Association for Computing Machinery, 2013, p. 202–212.

[4] A. Bosu and J. C. Carver, “Impact of peer code review on peer
impression formation: A survey,” in 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement, Bal-
timore, Maryland, USA, October 10-11, 2013. IEEE Computer Society,
2013, pp. 133–142.

[5] C. Guo, D. Huang, N. Dong, Q. Ye, J. Xu, Y. Fan, H. Yang, and Y. Xu,
“Deep review sharing,” in 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2019, pp.
61–72.

[6] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, pp. 40:1–40:29, 2019.

[7] F. Chen, Y. Wang, B. Wang, and C. C. J. Kuo, “Graph representation
learning: A survey,” APSIPA Transactions on Signal and Information
Processing 9 (2020) e15, 2019.

[8] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net, 2017.

[9] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” CoRR, vol. abs/1710.10903,
2017.

[10] K. S. Jones, “Index term weighting,” Information Storage and Retrieval,
vol. 9, no. 11, pp. 619–633, nov 1973.

[11] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing
Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q.
Weinberger, Eds., vol. 27. Curran Associates, Inc., 2014, pp. 3104–
3112.

[12] Y. Kim, “Convolutional neural networks for sentence classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar,
A meeting of SIGDAT, a Special Interest Group of the ACL, A. Moschitti,
B. Pang, and W. Daelemans, Eds. ACL, 2014, pp. 1746–1751.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017, pp. 5998–6008.

[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composition-
ality,” in Advances in Neural Information Processing Systems, C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
Eds., vol. 26. Curran Associates, Inc., 2013, pp. 3111–3119.

[15] J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not find bugs:
How the current code review best practice slows us down,” in Proceed-
ings of the 37th International Conference on Software Engineering -
Volume 2, ser. ICSE ’15. IEEE Press, 2015, p. 27–28.

[16] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code review quality:
How developers see it,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 1028–1038.

[17] M. Caulo, B. Lin, G. Bavota, G. Scanniello, and M. Lanza, “Knowledge
transfer in modern code review,” in Proceedings of the 28th International
Conference on Program Comprehension, ser. ICPC ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 230–240.

[18] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical
study of the impact of modern code review practices on software

quality,” Empirical Software Engineering, vol. 21, no. 5, pp. 2146–2189,
apr 2015.

[19] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects,”
in 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), 2015, pp. 171–180.

[20] G. Bavota and B. Russo, “Four eyes are better than two: On the
impact of code reviews on software quality,” in 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2015, pp.
81–90.

[21] C. F. Kemerer and M. C. Paulk, “The impact of design and code
reviews on software quality: An empirical study based on psp data,”
IEEE Transactions on Software Engineering, vol. 35, no. 4, p. 534–550,
Jul. 2009.

[22] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, ser. MSR 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
192–201.

[23] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey,
“Investigating code review quality: Do people and participation matter?”
in 2015 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2015, Bremen, Germany, September 29 - October 1,
2015, R. Koschke, J. Krinke, and M. P. Robillard, Eds. IEEE Computer
Society, 2015, pp. 111–120.

[24] A. Edmundson, B. Holtkamp, E. Rivera, M. Finifter, A. Mettler, and
D. Wagner, “An empirical study on the effectiveness of security code
review,” in Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 197–212.

[25] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman, “The
impact of code review on architectural changes,” IEEE Transactions on
Software Engineering, pp. 1–1, 2019.

[26] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code
reviews: An empirical study at microsoft,” in 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories, 2015, pp. 146–
156.

[27] M. Paixao, J. Krinke, D. Han, and M. Harman, “Crop: Linking code
reviews to source code changes,” in 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), 2018, pp. 46–49.

[28] X. Yang, R. G. Kula, N. Yoshida, and H. Iida, “Mining the modern
code review repositories: a dataset of people, process and product,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016, M. Kim,
R. Robbes, and C. Bird, Eds. ACM, 2016, pp. 460–463.

[29] M. Mukadam, C. Bird, and P. C. Rigby, “Gerrit software code review
data from android,” in Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, San Francisco, CA, USA, May
18-19, 2013, T. Zimmermann, M. D. Penta, and S. Kim, Eds. IEEE
Computer Society, 2013, pp. 45–48.

[30] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in Pro-
ceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, J. M. Atlee,
T. Bultan, and J. Whittle, Eds. IEEE / ACM, 2019, pp. 783–794.

[31] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA, D. Schuurmans and M. P.
Wellman, Eds. AAAI Press, 2016, pp. 1287–1293.

[32] L. Chen, W. Ye, and S. Zhang, “Capturing source code semantics
via tree-based convolution over api-enhanced AST,” in Proceedings of
the 16th ACM International Conference on Computing Frontiers, CF
2019, Alghero, Italy, April 30 - May 2, 2019, F. Palumbo, M. Becchi,
M. Schulz, and K. Sato, Eds. ACM, 2019, pp. 174–182.

[33] H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code,” in Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, C. Sierra, Ed. ijcai.org, 2017, pp. 3034–3040.


	I Motivation
	II Research Questions
	III Solution Components
	IV Related Work
	References

