
MASS: A tool for Mutation Analysis of Space CPS

Oscar Cornejo
SnT Centre, University of

Luxembourg

Luxembourg, Luxembourg

oscar.cornejo@uni.lu

Fabrizio Pastore
SnT Centre, University of

Luxembourg

Luxembourg, Luxembourg

fabrizio.pastore@uni.lu

Lionel Briand
SnTCentre, University of Luxembourg

School of EECS, University of Ottawa

Ottawa, Canada

lionel.briand@uni.lu

ABSTRACT

We present MASS, a mutation analysis tool for embedded software

in cyber-physical systems (CPS). We target space CPS (e.g., satel-

lites) and other CPS with similar characteristics (e.g., UAV).

Mutation analysis measures the quality of test suites in terms of

the percentage of detected artificial faults. There are manymutation

analysis tools available but they are inapplicable to CPS because of

scalability and accuracy challenges.

To overcome such limitations, MASS implements a set of opti-

mization techniques that enable the applicability of mutation anal-

ysis and address scalability and accuracy in the CPS context. MASS

has been successfully evaluated on a large study involving em-

bedded software systems provided by industry partners; the study

includes an on-board software system managing a microsatellite

currently on-orbit, a set of libraries used in deployed cubesats, and

a mathematical library provided by the European Space Agency. A

demo video of MASS is available at

https://www.youtube.com/watch?v=gC1x9cU0-tU.

CCS CONCEPTS

• Software and its engineering→ Software verification and

validation.

KEYWORDS

Mutation analysis, CPS, European Space Agency

ACM Reference Format:

Oscar Cornejo, Fabrizio Pastore, and Lionel Briand. 2022. MASS: A tool

for Mutation Analysis of Space CPS. In 44th International Conference on

Software Engineering Companion (ICSE ’22 Companion), May 21–29, 2022,

Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.

1145/3510454.3516840

1 INTRODUCTION

Software has an important role in modern cyber-physical systems

(CPS) and in space systems in particular. Indeed, software com-

ponents are used, for example, to control the system, encapsulate

the data, and manage the communication with other systems; sim-

ilar features are also implemented in other critical CPS such as

automotive, avionics, and industry 4.0 (e.g., robots).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-6654-9598-1/22/05.
https://doi.org/10.1145/3510454.3516840

The embedded software running on space CPS (hereafter, space

software) and similar CPS has to meet strict quality constraints

imposed by regulatory agencies (e.g., the European Space Agency

- ESA [16]). Software validation and verification (V&V) activities

largely rely on test suites, which are usually derived manually from

requirements. Unfortunately, the manual definition of test cases

may lead to incomplete test suites; similarly, the independent V&V

procedures mandated by standards (e.g., ESA regulates Independent

Software V&V — ISVV [14, 15]), which are manually performed,

provide limited guarantees about the quality of CPS software sys-

tems.Automated means to assess the quality of test suites are therefore

necessary to ensure CPS quality and motivated the project that led

to the development of MASS [2].

Mutation analysis is an effective way to automatically assess

the quality of a test suite; it consists of measuring the proportion

of artificially injected faults detected by a test suite [12]. Despite

its potential, mutation analysis is not widely adopted in industry

because of its limited scalability and doubts about the pertinence of

the mutation score as adequacy criterion [28]. For example, space

software is typically large and accompanied by test suites that take

a long time to execute, which leads to a large number of mutants

that may require months to be tested if scalable solutions are not in

place. The literature about mutation analysis has proposed a num-

ber of optimizations to overcome the problems presented above. On

one hand, scalability problems can be addressed by sampling the

mutants [21, 36], or by prioritizing and selecting the test cases to be

executed for each mutant [37]. On the other hand, equivalent and

redundant mutants can be identified by means of trivial compiler

optimisations [25], or by comparing the code coverage of the origi-

nal program against its mutants [22, 31–33]. Nevertheless, none of

these techniques and tools have been assessed in industrial contexts

and, furthermore, there are no studies about the integration of such

optimizations and their combined benefits.

In this paper, we introduce MASS (Mutation Analysis for Space

Software), a tool for the assessment of test suites based on mutation

analysis. MASS integrates a pipeline of solutions that make muta-

tion analysis feasible with large software systems. The three main

features of MASS are (1) the automated identification of equivalent

mutants using an ensemble of compiler optimization options, (2)

the computation of the mutation score based on mutant sampling

with a fixed size confidence interval approach, (3) the automated

identification of likely equivalent mutants based on code cover-

age. Furthermore, MASS provides information useful to produce

a verification report for ISVV activities; it includes the sets of live

mutants and killed mutants (i.e., mutants that are discovered by the

test suite), the statement coverage of the test suites under analysis,

and the mutation score (i.e., the percentage of mutants discovered

by the test suite).

134

2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)
20

22
 IE

EE
/A

C
M

 4
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g:
 C

om
pa

ni
on

 P
ro

ce
ed

in
gs

 (I
C

SE
-C

om
pa

ni
on

) |
 9

78
-1

-6
65

4-
95

98
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
SE

-C
om

pa
ni

on
55

29
7.

20
22

.9
79

37
38

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Oscar Cornejo, Fabrizio Pastore, and Lionel Briand

We empirically evaluated the scalability and accuracy of MASS

with case study subjects provided by our industry partners, which

are ESA, GomSpace Luxembourg (GSL), a manufacturer and sup-

plier of nanosatellites [19], and LuxSpace (LXS), a developer of in-

frastructure products (e.g., microsatellites) and solutions for space [27].

Not only MASS enabled the identification of shortcomings affect-

ing the test suites of these software systems but, furthermore, we

demonstrated that mutation analysis was indeed feasible in realistic

industrial contexts. In short, mutation analysis with MASS can be

completed in a few days, even for large systems, which enables its

adoption in ISVV contexts.

The paper proceeds as follows. Section 2 presents related work.

Section 3 describes our mutation analysis pipeline. Section 4 pro-

vides details about theMASS architecture and availability. Section 5

summarizes our empirical results. Section 6 concludes the paper.

2 RELATEDWORK

Mutation analysis is a topic that has been extensively discussed

over the years in the literature [29]. The mutation testing tool

repository refers to 87 mutation analysis tools [6]; however, only a

small portion of them can be applied to space software and related

CPS, which are typically implemented with Ada, C, and C++ [1, 7,

11, 13, 23, 24, 30, 35]. Furthermore, only three of these tools are still

under active maintenance [1, 7, 13]. Finally some of these tools (i.e.,

Mull [13], Dextool [1], Accmut [35], Mart [7]) require the software

under test (SUT) to be compiled as LLVM bitcode, which prevents

their applicability to a wide range of CPS software because (a) CPS

software often relies on compiler optimizations not supported by

the LLVM infrastructure and (b) there is no guarantee that the

software artifacts compiled with LLVM are equivalent to those

compiled with the original compiler (e.g., LLVM is not qualified by

ESA/ECSS for category A software [17]). Also, some of these tools

apply mutations dynamically, which is infeasible for CPS software

that runs on dedicated simulators.

The few tools that do not rely on LLVM and are thus widely

applicable to CPS software (i.e., Milu [24] and SRCIRor [23]) either

require the generation of preprocessed source code [24], which

leads to a large number of compilation problems with large software

systems, or implement a limited set of mutation operators and do

not detect equivalent and redundant mutants based on compiler

optimization techniques [23].

Based on the above, we conclude that there is a lack of tools

applicable to large software systems for CPS. To overcome the lim-

itations above, MASS mutates the source code and relies on the

original compiler infrastructure. Also, it relies on compiler opti-

mizations for detecting equivalent and redundant mutants. Finally,

it is the first tool to make mutation analysis scalable thanks to the

integration of both mutants sampling and test cases selection and

prioritization.

3 MASS METHODOLOGY

MASS is the tool supporting our methodology for the mutation

analysis of embedded software within CPS [10]. MASS performs

mutation analysis in eight steps, which are depicted in Figure 1.

In Step 1, MASS collects the SUT code coverage. Code coverage

enables some optimizations such as not mutating statements that

Figure 1: Workflow of theMASS approach.

are not covered by the test suite, and executing only the test cases

that cover a mutated statement.

In Step 2, MASS generates mutants by relying on an extended

sufficient set of operators, which consists of ABS, AOR, ICR, LCR,

ROR, SDL, UOI, AOD, LOD, ROD, BOD, SOD, and LVR [10].

In Step 3,MASS compiles the mutants in an iterative way to lever-

age the incremental compilation implemented by build systems.

It compiles every mutant within the same source folder structure;

for each mutant, it replaces the corresponding original source file

with the mutated one and builds the software. The original file is

restored after each compilation. This enables the reuse of compiled

objects thus saving a considerable amount of time.

In Step 4,MASS removes equivalent and redundant mutants from

the set of generated mutants by relying on compiler optimizations

(i.e., O0, O1, O2, O3, O4, Ofast, Os for the GCC compiler [4]). For

every optimisation level,MASS re-compiles everymutant and stores

the SHA-512 hash of the generated executable. Equivalent and

redundant mutants are identified by comparing SHA-512 hashes,

which is more efficient than comparing the compiled executables.

To further address scalability issues, in Step 5, MASS samples

mutants from the set of compiled, nonequivalent, and nonredun-

dant mutants. MASS supports proportional uniform sampling [36],

proportional method-based sampling [36], uniform fixed-size sam-

pling [21], and FSCI-based sampling. Proportional uniform sampling

randomly samples a user-specified percentage of mutants, propor-

tional method-based sampling randomly samples a user-specified

135

MASS: A tool for Mutation Analysis of Space CPS ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

MASSEnd-User

Step 1Step 1

Step 2

Step 4

Step 6

Step 5

Step 7

Step 8

Step 3 & 6

Legend: Green boxes represent software components. Orange parallelograms are
inputs/outputs. Thick arrows capture control flow. Thin arrows show the data flow.

Figure 2: Architecture of theMASS tool.

percentage of mutants for each method of the SUT, uniform fixed-

size sampling randomly samples a user-specified number of mutants

across the whole program. FSCI-based sampling (hereafter, FSCI)

determines the sample size dynamically while exercising mutants,

based on a fixed-width sequential confidence interval approach [18].

With FSCI,MASS iteratively selects a random mutant and exercises

it with the SUT test suite; the process stops when the confidence

interval computed with the Clopper-Pearson method [8] is below a

user-specified threshold (defaults to 0.10). Since FSCI enablesMASS
to provide statistical guarantees about the accuracy of the estimated

mutation score (see Section 5), we therefore recommend its use.

FSCI is a novel feature of MASS.

In Step 6, MASS executes a prioritized and reduced set of test

cases for each mutant. First, MASS selects only the test cases that

cover the mutated statement. Second, MASS defines the order of

execution of test cases based on the likelihood of killing a mutant.

To determine this likelihood, we rely on code coverage to deter-

mine how dissimilar two test cases are and compare the number of

times each statement has been covered by test cases. To measure

the distance between two test cases we use the cosine similarity

distance.

In Step 7,MASS identifies likely equivalentmutants based on code

coverage; a mutant is likely equivalent when the cosine similarity

distance from the original program is equal to zero; such threshold

has been empirically determined [10]. Redundant mutants cannot

be identified with this method because it has not been possible to

empirically determine a threshold for this purpose [10]; such finding

is probably due to test suites being typically unable to distinguish

redundant mutants [34].

In Step 8, MASS estimates the mutation score as the number of

killed mutants divided by the number of total mutants, excluding

equivalent and redundant mutants. MASS also reports other rele-

vant metrics such as statement coverage, the number of executed

mutants, and the number of killed and live mutants.

4 TOOLSET ARCHITECTURE

We implemented MASS with C, Python, and Bash. MASS supports

software written in C/C++, built using GCC Make [5] or WAF [26],

and compiled with GCC versions above 4. Furthermore,MASS offers

built-in features to process the SUT test harness Google Test [20].

Figure 2 shows the architecture of MASS; it consists of five com-

ponents: Launcher, Prepare SUT, Mutant Generation, Mutant Execu-

tion, andMutant Reporting. Figure 3 shows the structure of a project

analyzed with MASS.

The Launcher component orchestrates the execution of each step

ofMASS. The inputs to be provided by the end-user are (1) the path

to the source code of the SUT, (2) the test suite to evaluate (SUT Test

Suite in Figure 2), (3) a script with the compilation commands to

be used to build the SUT (SUT compilation script), (4) a script with

the commands required for executing the test suite and collecting

code coverage (Prepare SUT configuration script), and (5) the MASS

configuration file, which is used to specify a number of options in-

cluding the mutants sampling strategy, the execution environment

(i.e., single machine or HPC), and the type of test suite prioritization

to apply.

The Prepare SUT component compiles and executes the SUT test

suite to collect code coverage information through gcov [3]. For a

CPS without a filesystem, we use GDB for dumping coverage infor-

mation at runtime. Then, based on code coverage, the Prepare SUT

component generates a file that, for every source code statement,

reports the test cases that cover the statement; such file is used,

later on, to select the test cases to be executed with each mutant.

The Mutant Generation component processes the SUT source

code and the code coverage files to generate mutants (i.e., it dis-

cards mutants for statements that are not covered). Each mutant is

univocally identified with a name that captures information about

the mutated statement (i.e., applied mutation operator, modified

source file, line, and column). The Mutant Generation component

discards non-compilable mutants and mutants detected as being

redundant and equivalent according to the compiler optimization

approach [25]. The identifier of the mutants not discarded is re-

ported in the file uniquemutants. TheMutant Generation component

also generates, for each mutant, a directory with the mutated source

files. To generate mutants, we extended the SRCIRor toolset [23].

The Mutant Execution component (1) generates a prioritized

and reduced test suite, (2) samples and executes mutants, and (3)

identifies likely equivalent mutants based on code coverage.

MASS also supports execution on High-Performance Computing

(HPC) infrastructures, which is key for the application of mutation

analysis with large projects. End-users can leverage an HPC to

parallelize both the execution of mutants and the identification of

equivalent and redundant mutants based on compiler optimizations.

Finally, the Mutant Reporting component collects all the results

of the mutation analysis process and produces a report file (i.e.,

MASS report) with the following data: mutation score, number of

killed and live mutants, sampling strategy, total execution time,

code coverage. Furthermore, it generates a file with a subset of the

live mutants that should be inspected by engineers to improve the

test suite (i.e., to generate test cases that kill them). Our objective

is to minimize the number of redundant mutants inspected; indeed,

the file includes only live mutants that differ from each other in

terms of code coverage. Also, since engineers may only be able

to inspect the first items on the list, to minimize the number of

equivalent mutants inspected, MASS sorts the mutants according

136

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Oscar Cornejo, Fabrizio Pastore, and Lionel Briand

Figure 3: Structure of aMASS project.

Table 1: Case study subjects.

Subject LOC Test suite type # Test cases Statements coverage

ESAIL𝑆 2 235 System 384 95.36%
LIBN 9 836 Integration 89 63.10%
LIBP 3 179 Integration 170 77.60%
LIBU 10 576 Unit 201 83.20%
MLFS 5 402 Unit 4042 100.00%

Table 2: Compiler Optimizations Results.

Subject # generated
mutants

mutants
compiled

MCT
(sec)

equivalent and
redundant mutants (%)

unique
mutants

ESAIL𝑆 7 212 5 347 7 640 1 811 (33.87) 3 536
LIBN 8 666 7 878 11 425 2 896 (36.76) 4 982
LIBP 7 252 6 440 9 392 2 509 (38.96) 3 931
LIBU 22 295 20 268 30 624 5 694 (28.09) 14 574
MLFS 31 526 28 069 3 157 6 694 (23.84) 21 375

Legend:MCT = mutants compilation time.

to their distance from the original SUT (mutants that largely differ

appear first since they are unlikely to be equivalent).

The MASS toolset and its specifications are available online [9].

5 EMPIRICAL EVALUATION

We have applied MASS to five software artifacts: a mathematical

library provided by ESA (MLFS), a subset of the control software of

ESAIL (hereafter, ESAIL𝑆), which is a micro-satellite developed by

LXS, the libraries LIBU , LIBN , and LIBP , which are developed by

GSL and used in cubesat constellations. LIBN is a network protocol

library. LIBP is a light-weight parameter system. LIBU is a utility

library providing cross-platform APIs [10].

Details about the different artifacts can be found in Table 1. For

ESAIL𝑆 , we focused on its system test suite executed in the Software

Validation Facility (SVF) (i.e., a simulator for the onboard hardware).

The other artifacts are tested with either unit or integration test

suites. Our case study subjects thus cover different application

scenarios for mutation analysis.

Our empirical evaluation concerned (1) the effectiveness of the

identification of equivalent and redundant mutants with compiler

optimization approaches (MASS Step 4), (2) the accuracy of dif-

ferent mutant sampling techniques (Step 5), (3) the time savings

obtained by combining mutants sampling and a reduced and priori-

tized test suite (Step 6), (4) the accuracy of our approach to detect

nonequivalent mutants based on coverage information (Step 7).

Our experiments have shown that identifying equivalent and

redundant mutants by combining all the compiler optimizations

provided by the GCC compiler is scalable and effective. Indeed, it

enables the detection of the largest number of such mutants and can

be executed in a few hours, even for large SUTs. The overview of

the data collected in our experiments is provided in Table 2. Table 2

shows that it takes approximately two hours to compile the 5,347

mutants generated for ESAIL𝑆 , our largest case study subject; also,

it takes less than one hour to compile the 28,069 mutants generated

for MLFS. The percentage of equivalent and redundant mutants

identified by the approach ranges from 23.84% (MLFS) to 38.96%

(LIBP).

Table 3 provides information about the number of mutants and

the accuracy obtained with the different sampling techniques pro-

posed in the literature (i.e., proportional uniform sampling, and

uniform fixed-size sampling) and our approach (i.e., FSCI sampling),

across the different subjects. FSCI sampling is the strategy that se-

lects the smallest number of mutants (between 248 and 366 mutants,

for each subject), in addition to providing statistical guarantees on

the accuracy of mutation score estimates (i.e., the estimated muta-

tion score differs at most by 5% from the actual one). The sample

size obtained with FSCI is much lower than the—worst case—sample

size proposed by Gopinath et al. [21], which is 1,000.

Table 4 provides the execution time obtained with the different

strategies used in our experiments: (1) testing all the mutants with

the original SUT test suite (i.e., traditional mutation analysis), (2)

sampling mutants with FSCI and executing them with the original

SUT test suite, and (3) sampling mutants with FSCI and executing

them with a reduced and prioritized test suite. The data in Table 4

show that combining test cases selection and prioritization with

FSCI further reduces execution time while still guaranteeing the

accurate estimation of the mutation score. For example, for our

case study ESAIL𝑆 , we reduced mutation analysis time from 11,000

to 1,865 hours. In practice, this makes mutation analysis feasible

in seven days with 10 computing nodes. Given that the validation

procedures for critical CPS are long (e.g., weeks), such execution

time is acceptable for both software and ISVV providers. Note that

without MASS optimizations, mutation analysis would take more

than 100 days to complete, even with 100 computing nodes.

Finally, concerningMASS Step 7, we demonstrated that the strat-

egy adopted by MASS to detect nonequivalent mutants based on

code coverage leads to extremely accurate results (precision = 81%,

recall = 100%). This is important since it increases the chances that

the reported live mutants represent actual test suite shortcomings.

6 CONCLUSION

We have presentedMASS, a tool that makes mutation analysis feasi-

ble for space software and, in general, for large embedded software

in CPS. Our aim is to support both software developers and reg-

ulatory agencies performing independent V&V. The key features

of MASS include (1) discarding equivalent and redundant mutants

through compiler optimizations, (2) generating mutants with a

comprehensive set of sufficient mutation operators, (3) accurately

sampling mutants with a confidence interval-based approach, (4)

137

MASS: A tool for Mutation Analysis of Space CPS ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Accuracy with proportional uniform sampling (uniform), uniform fixed-size sampling (fixed) and FSCI sampling.

LIBN LIBP LIBU MLFS ESAIL𝑆
#Mutants 𝛿𝑎𝑐𝑐 Method #Mutants 𝛿𝑎𝑐𝑐 Method #Mutants 𝛿𝑎𝑐𝑐 Method #Mutants 𝛿𝑎𝑐𝑐 Method #Mutants 𝛿𝑎𝑐𝑐 Method

50 13.64 uniform 0.01 40 12.19 uniform 0.01 100 7.32 fixed 100 7.80 fixed 36 14.04 uniform 0.01
200 5.86 fixed 100 10.17 fixed 146 7.54 uniform 0.01 200 5.20 fixed 100 8.89 fixed
250 7.07 uniform 0.05 197 6.98 uniform 0.05 200 5.73 fixed 214 4.90 uniform 0.01 177 6.39 uniform 0.05
300 4.48 fixed 200 6.12 fixed 300 5.37 fixed 248 4.56 FSCI 200 6.14 fixed
364 4.42 FSCI 300 5.88 fixed 333 4.73 FSCI 300 4.04 fixed 300 5.53 fixed
400 5.49 fixed 346 4.26 FSCI 400 4.45 fixed 400 3.80 fixed 354 5.26 uniform 0.1
499 4.61 uniform 0.1 394 4.36 uniform 0.1 500 3.80 fixed 500 3.11 fixed 366 3.92 FSCI
500 3.85 fixed 400 4.27 fixed 600 3.29 fixed 600 2.89 fixed 400 4.52 fixed
600 3.65 fixed 500 3.63 fixed 700 3.30 fixed 700 2.80 fixed 500 4.08 fixed
700 3.00 fixed 600 3.72 fixed 729 3.11 uniform 0.05 800 2.44 fixed 600 3.73 fixed
800 2.90 fixed 700 3.27 fixed 800 3.26 fixed 900 3.02 fixed 700 3.01 fixed
900 3.09 fixed 787 3.24 uniform 0.2 900 3.04 fixed 1000 2.35 fixed 708 3.52 uniform 0.2
997 2.81 uniform 0.2 800 2.51 fixed 1000 2.31 fixed 1069 2.58 uniform 0.05 800 2.55 fixed
1000 2.41 fixed 900 2.50 fixed 1458 2.10 uniform 0.1 2138 1.55 uniform 0.1 900 2.37 fixed
1495 2.32 uniform 0.3 1000 2.72 fixed 2915 1.57 uniform 0.2 4275 1.09 uniform 0.2 1000 2.96 fixed

Accurate results (i.e., 𝛿𝑎𝑐𝑐 ≤ 5%) are in bold. Legend: uniform 𝑟 indicates proportional uniform sampling with rate 𝑟 , fixed indicates uniform fixed-size sampling, and FSCI indicates uniform FSCI sampling.

Table 4: Execution times (hours) of different strategies.

Execution Strategy
Subject All mutants +

Original test suite
FSCI + Original

test suite
FSCI + Test suite

reduction

ESAIL𝑆 11 001.24 2 804.06 1 865.73
LIBN 70.22 12.97 14.91
LIBP 13.32 4.21 3.03
LIBU 59.45 9.97 6.34
MLFS 47.72 13.89 9.00

reducing the test suite execution time by prioritizing and reduc-

ing the number of test cases, and (5) discarding likely equivalent

mutants based on code coverage.

We evaluated MASS with five representative case study subjects

from our industrial partners. Our results show thatMASS can be ef-

fectively applied on large space software; it reduces the processing

time of mutation analysis by (1) discarding equivalent and redun-

dant mutants, (2) sampling a subset of the mutants without affecting

the accuracy of the estimated mutation score, and (3) prioritizing

and reducing test suites. MASS is available for download [9].

ACKNOWLEDGMENTS

This work was funded by ESA (ITT-1-9873/FAQAS), the European

Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (grant agreement No 694277),

and NSERC Discovery and Canada Research Chair programs.

REFERENCES
[1] 2021. Dextool. https://github.com/joakim-brannstrom/dextool
[2] 2021. FAQAS project. https://faqas.uni.lu.
[3] 2021. gcov. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[4] 2021. GDB: The GNU Project Debugger. https://www.gnu.org/software/gdb/
[5] 2021. GNU Make. https://www.gnu.org/software/make/.
[6] 2021. Mutation Testing Repository. https://mutationtesting.uni.lu/tools.php
[7] Thierry Chekam, Mike Papadakis, and Yves Le Traon. 2019. Mart: a mutant

generation tool for LLVM. In Proceedings of the 27th ESEC/FSE.
[8] C. J. Clopper and E. S. Pearson. 1934. The Use of Confidence or Fiducial Limits

Illustrated in the Case of the Binomial. Biometrika (1934).
[9] Oscar Cornejo, Fabrizio Pastore, and Lionel Briand. 2021. MASS toolset.

https://github.com/SNTSVV/FAQAS_MASS.
[10] Oscar Cornejo, Fabrizio Pastore, and Lionel Briand. 2021. Mutation Analysis for

Cyber-Physical Systems: Scalable Solutions and Results in the Space Domain.
IEEE Transactions on Software Engineering (2021). https://doi.org/10.1109/TSE.
2021.3107680

[11] Márcio Delamaro, José Maldonado, and AP Mathur. 1996. Proteum-a tool for the
assessment of test adequacy for c programs user’s guide. In PCS.

[12] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer (1978).

[13] Alex Denisov and Stanislav Pankevich. 2018. Mull it over: mutation testing based
on LLVM. In Proceedings of IEEE ICSTW.

[14] ESA. 2009. ECSS-E-ST-40C - Software general requirements. http://ecss.nl/
standard/ecss-e-st-40c-software-general-requirements/

[15] ESA. 2017. ECSS-Q-ST-80C Rev.1 - Software product assurance. http://ecss.nl/
standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/

[16] ESA. 2021. European Space Agency. https://www.esa.int
[17] ESA. 2021. RTEMS SMP qualification. https://rtems-qual.io.esa.int/qdp/rtems-

smp-status-08042021-final.pdf
[18] Jesse Frey. 2010. Fixed-Width Sequential Confidence Intervals for a Proportion.

The American Statistician (2010).
[19] Gomspace. 2021. Systems for cubesats and nanosatellites. https://gomspace.com/
[20] Google. 2021. Google Test Framework. https://github.com/google/googletest.
[21] Rahul Gopinath, Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce.

2015. How hard does mutation analysis have to be, anyway?. In ISSRE.
[22] Bernhard JM Grün, David Schuler, and Andreas Zeller. 2009. The impact of

equivalent mutants. In Proceedings of IEEE ICSTW.
[23] Farah Hariri and August Shi. 2018. SRCIROR: a toolset for mutation testing of C

source code and LLVM intermediate representation. In ASE.
[24] Yue Jia and Mark Harman. 2008. MILU: A customizable, runtime-optimized

higher order mutation testing tool for the full C language. In TAIC-PART.
[25] Marinos Kintis, Mike Papadakis, Yue Jia, Nicos Malevris, Yves Le Traon, and Mark

Harman. 2017. Detecting trivial mutant equivalences via compiler optimisations.
IEEE TSE (2017).

[26] Thomas Nagy. 2021. WAF - The meta-build system. https://waf.io/.
[27] OHB LuxSpace. 2021. The first provider of space systems, applications and

services in Luxembourg. https://luxspace.lu/
[28] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon.

2016. Threats to the validity of mutation-based test assessment. In ISSTA.
[29] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark

Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in Computers.

[30] Duy Loc Phan, Yunho Kim, and Moonzoo Kim. 2018. MUSIC: Mutation Analysis
Tool with High Configurability and Extensibility. In Proceedings of IEEE ICSTW.

[31] David Schuler, Valentin Dallmeier, and Andreas Zeller. 2009. Efficient mutation
testing by checking invariant violations. In Proceedings of the 18th ISSTA.

[32] David Schuler and Andreas Zeller. 2010. (Un-) covering equivalent mutants. In
IEEE ICST.

[33] David Schuler and Andreas Zeller. 2013. Covering and uncovering equivalent
mutants. STVR (2013).

[34] Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. 2017. A theoretical and empirical
study of diversity-aware mutation adequacy criterion. IEEE TSE (2017).

[35] Bo Wang, Yingfei Xiong, Yangqingwei Shi, Lu Zhang, and Dan Hao. 2017. Faster
mutation analysis via equivalence modulo states. In Proceedings of the 26th ISSTA.

[36] Lingming Zhang, Milos Gligoric, Darko Marinov, and Sarfraz Khurshid. 2013.
Operator-based and random mutant selection: Better together. In ASE.

[37] Lingming Zhang, Darko Marinov, and Sarfraz Khurshid. 2013. Faster mutation
testing inspired by test prioritization and reduction. In Proceedings of ACM ISSTA.

138

