
Deriving Semantics-Aware Fuzzers fromWeb API Schemas
Zac Hatfield-Dodds

Australian National University

Canberra, Australia

zac.hatfield.dodds@anu.edu.au

Dmitry Dygalo

schemathesis.io

Prague, Czech Republic

dmitry@dygalo.dev

ABSTRACT
Fuzzing—whether generating or mutating inputs—has found many

bugs and security vulnerabilities in a wide range of domains. State-

ful and highly structured web APIs present significant challenges

to traditional fuzzing techniques, as execution feedback is usually

limited to a response code instead of code coverage and vulnerabil-

ities of interest include silent information-disclosure in addition to

explicit errors.

Our tool, Schemathesis, derives structure- and semantics-aware

fuzzers from web API schemas in the OpenAPI or GraphQL formats,

using property-based testing tools [23]. Derived fuzzers can be

incorporated into unit-test suites or run directly, with or without

end-user customisation of data generation and semantic checks.

We construct the most comprehensive evaluation of web API

fuzzers to date, running eight fuzzers against sixteen real-world

open source web services. OpenAPI schemas found in the wild

have a long tail of rare features and complex structures. Of the

tools we evaluated, Schemathesis was the only one to handle more

than two-thirds of our target services without a fatal internal error.

Schemathesis finds 1.4× to 4.5× more unique defects than the

respectively second-best fuzzer for each target, and is the only
fuzzer to find defects in four targets.

1 INTRODUCTION
Much modern software communicates over the internet, and each

service therefore defines some kind of web API - often via a REST

[9] or more recently GraphQL [10] architecture. Many services also

provide machine-readable schemas or specifications which describe

their input and output contracts and their semantics within the

REST or GraphQL architecture.

Such API schemas can be used to derive a service-specific fuzzer
that can use the known structure of valid inputs and sequences of ac-

tions to focus effort on interesting parts of an otherwise intractably

large search space. Derived fuzzers can also check for otherwise

silent semantic errors such as non-conforming responses, missing

headers, or silent information-disclosure vulnerabilities, based on

standard schema and HTTP semantics.

In practice OpenAPI [16] or GraphQL schemas are often un-
sound, permitting inputs or actions not handled by the service. This

may be due to errors in the schema or the service implementation,

because working with sound schemas is uneconomical, or because

of application-level constraints—such as database constraints, or-

der of event timestamps, relations between endpoints, etc.—which

cannot be expressed in the schema. We therefore see an ongoing

role for human judgement in customising automatically derived

fuzzers, analysing failures, detecting over-restrictive schemas, and

hand-coding additional or more precise tests.

The main contributions of this paper are to:

• describe Schemathesis, a property-based testing library to

automatically derive customisable web API fuzzers from

OpenAPI or GraphQL schemas;

• demonstrate that Schemathesis discovers more defects and

handles more real schemas than previous tools; and

• provide a large evaluation suite of real web services, schemas,

and fuzzers as reusable containers for use in future research.

1.1 Property-based testing
Property-based testing (PBT) originated with the Haskell library

QuickCheck [6], which emphasised testing algebraic properties of

functions by generating many random inputs to a test function.

PBT generally differs from fuzzing more in workflow and the affor-

dances of tooling than fundamental concept (typically focussing

on highly-structured and always-valid data, along with integrated

shrinking). The definitive PBT library for Python is Hypothesis

[23], with an estimated five hundred thousand users and dozens of

third-party extensions. Hypothesis is explicitly designed as a library

of tools to construct fuzzable tests—which can detect errors that di-

rect fuzzing would not—and a non-user-visible bytestring-oriented

fuzzing backend for them
1
.

This abstraction has been very successful. The Hypothesis back-

end includes integrated shrinking and error-deduplication [24],

targeted property-based testing [2, 21, 22], swarm testing [14], and

optionally coverage-guided fuzzing. Structured inputs are defined

using parser-combinators (‘strategies’
2
); and only the primitives

supplied by Hypothesis have any knowledge of the backend. Such

separation of concerns has made it practical for third-party develop-

ers to write functions which take some formal description of a set

of values—examples include type annotations, regular or context-

free grammars, validation callbacks, and JSONschema or GraphQL

schemas—and return a strategy which generates examples.

Several projects have chosen to fuzz web APIs with Hypothesis

because of the ease and effectiveness of sophisticated input gener-

ation, including swagger-fuzzer [8] swagger-conformance [28],

Yelp’s [3]-inspired fuzz-lightyear [20] for insecure direct object

reference vulnerabilities, and finally Schemathesis itself.

1.2 Web API standards
The REST architecture was described in 2000 [9], with the Swag-

ger/OpenAPI schema format subsequently invented in 2011. While

OpenAPI is far from the only specification format for REST APIs,

it is by far the most common. Thanks to the shared architecture

1
https://hypothesis.works/articles/what-is-property-based-testing/

2
Most PBT libraries call their description of possible values “generators”. Because

generators are a builtin type in Python, Hypothesis instead names them “strategies”.

ar
X

iv
:2

11
2.

10
32

8v
1

 [
cs

.C
R

]
 2

0
D

ec
 2

02
1

https://hypothesis.works/articles/what-is-property-based-testing/

Zac Hatfield-Dodds and Dmitry Dygalo

and semantics, schemas in other formats
3
can be quickly and often

automatically translated into the OpenAPI format.

The GraphQL architecture and schema format were designed to-

gether at Facebook from 2012, and released in 2015 [10]. Motivated

by performance considerations, GraphQL uses a fundamentally

different data and request model to RESTful APIs, but the same

property-based testing techniques are applicable to each.

While system state and highly structured inputs make fuzzing

challenging, OpenAPI or GraphQL schemas make it practical to

exploit this structure. Combined with HTTP’s clear client/service

interface and common properties arising from the standardised

semantics, schema-based fuzzing has an enduring attraction.

1.3 Standards imply semantic properties
In addition to input structure, schemas constrain application se-

mantics. Wherever standards documents impose requirements on

implementations, semantics-aware fuzzers can treat “requirements

not violated” as a testable property—including RFC 7231’s universal
and relatively simple constraints on HTTP services, such as:

• 200 OK responses must have a non-empty body

• 204 No Content and 205 Reset Content responses must

have an empty body

• 302 Found responses to a POST request must allow the sub-

sequent response to use either POST or GET methods

• 405 Method Not Allowed responses must have an Allow
header listing supported methods

• 500 Internal Server Error responses are always errors
• GET fails after successful DELETE (use-after-free rule) [4]
• GET fails after unsuccessful POST (resource-leak rule) [4]

In addition to input structure, API schemas document the expected

content and structure of API responses and the relationship between

endpoints. OpenAPI schemas extend HTTP semantics to include

further schema-specific testable properties, including:

• Response has undeclared status code

• Response has undeclared content-type

• Response body matches the schema

• Response has wrong headers or missing required headers
4

• Non-conforming requests are rejected (negative testing) [30]

• No information leaks from unauthorised requests [4, 20]

Information disclosure vulnerabilities such as insecure direct object

references can be detected by making two sequences of requests.

The “victim” sequence creates and then retrieves a private resource;

then the “attacker” creates their own resource but attempts to

retrieve the victim resource
5
. While in principle this could be done

purely on the basis of OpenAPI’s security and securitySchemes
keywords, it is typically customised on a per-service basis.

Finally, we might wish to check for performance problems which

could be exploited to mount a denial-of-service attack. These checks

are typically disabled by default, because failure consists of exceed-

ing a subjective and configurable threshold rather than a binary

success/failure state:

3
such as RAML, WSDL, or API Blueprint

4
Schemathesis seems to be the only fuzzer to check if required headers are missing.

5
A property relating multiple input-output pairs is known as a metamorphic relation.
[25] propose twenty-two such relations relevant to web application security, which

are often easier to check than one-shot properties. See also §2.1.

• Slow responses, i.e. time to first (or last) byte of response

• Request amplification measured in number of requests, or

total response size, or amplification ratio

Hypothesis’ support for targeted property-based testing [21, 22]

is particularly valuable for threshold tests [15], and targets may

be reported either by Schemathesis derived fuzzers, or in user-

supplied hooks. Anecdotally, we have found that multi-objective

optimisation—e.g., targeting response size and amplification ratio—

is remarkably effective.

1.4 Prior art in schema-based web API fuzzing
Property-based testing provides the most common framing for

schema-based web API fuzzing, with early work such as [11, 13]

focused on derived input generators (structure) and others [5, 19,

26], additionally deriving test oracles (semantics).

QuickREST [17] aims to free up human effort by automating API

exploration with Clojure.spec. Their tool tests for response con-
formance and known HTTP status codes, with further properties

specifiable by the user.

RestTestGen [30] proposes heuristics to statically recover an

‘operation dependency graph’ which describes the relationship

between response data and subsequent request to other endpoints -

and enables far more efficient testing with sequences of requests.

They also comment on the importance of testing error handling, i.e.

negative testing, using the property that nonconforming requests

should receive HTTP 4xx instead of 2xx responses.

RESTler [3, 4] is a security testing tool in the tradition of greybox

fuzzing, which infers dependencies between request types, gener-

ates sequences of requests satisfying those dependencies, and learns

to predict sequence validity based on the responses to these test

sequences. Their evaluation finds that all these features are required

for effective testing of web APIs.

EvoMaster [1] frames the problem as one of Evosuite-style [12]

test-case generation, using JVM instrumentation to evolve a high-

coverage set of test cases. A blackbox mode supports non-JVM

services, albeit with reduced performance. [7] also generates JUnit

test suites, based on a model of schema and test semantics rather

than execution feedback.

We are unaware of prior work on GraphQL schema-based testing

beyond Karlsson et al [18], who demonstrate a proof-of-concept

property-based testing tool and a method for evaluating the schema

coverage achieved.

To summarise, an ideal feature set might include:

• Deriving input generators and test oracles fromAPI schemas,

for both valid and invalid actions and data

• Some kind of feedback to enable search-based testing, ideally

available in the blackbox HTTP-only setting

• A way to make sequences of requests, and exploit the data in

responses to make further semantically-meaningful requests

• A way to learn or discover relationships between endpoints

for more efficient sequence-of-requests testing
6

6
e.g. [30]’s operation dependency graph. Schemathesis relies on OpenAPI 3.0 “links”

for this purpose, which are often omitted from schemas despite their value to tools.

Deriving Semantics-Aware Fuzzers from Web API Schemas

2 SCHEMATHESIS
Schemathesis is a tool for automated blackbox or whitebox ran-

domised testing of web APIs, deriving structure- and semantics-

aware fuzzers from OpenAPI or GraphQL schemas.

Derived fuzzers use Hypothesis’ [23] mature and sophisticated

toolkit for creating test inputs—including hybrid random genera-

tion, feedback-guided structured mutation, and explicit examples—

plus a variety of test functions and oracles for both individual

endpoints and sequences of requests to multiple endpoints. Both

data-generation and test oracles can easily be customised by the

end user.

Schemathesis can be used via a command-line interface or a

Python API, in either case to fuzz services written in any lan-

guage via HTTP. If the service under test is also written in Python,

Schemathesis can communicate in-process using the WSGI and

ASGI
7
conventions rather than over the network. This is often con-

siderably faster, and supports coverage-guided fuzzing with tools

such as HypoFuzz
8
, or Atheris

9
via Hypothesis’ fuzz_one_input

interface.

With thousands of downloads every week, Schemathesis is a

thriving open-source project. It has already been widely adopted,

integrated into Microsoft’s REST API Fuzz Testing project
10
, train-

ing from Red Hat
11
, and is the basis for the IBM Service Validator

[29].

2.1 Single requests or sequences?
Internally, Schemathesis distinguishes single-request tests from

those which make a sequence of requests to multiple endpoints,

using the data from past responses. In 2020, we converted the

latter from special-purpose logic to a thin wrapper around Hy-

pothesis’ RuleBasedStateMachine, a generic system defined in

terms of transition rules between states
12
. Comparing these im-

plementations gives us some basis to discuss the advantages of

property-based testing.

The new state-machine tests tend to report fewer bugs per run,
because they test the whole system rather than individual end-

points, but are correspondingly faster to run. The difference is

fundamentally a property-based testing vs. a fuzzing workflow: the

new style is designed for interactive use in a run-fix-rerun cycle,

rather than long-running testing campaigns.

We believe that the heuristics built into Hypothesis, including

swarm testing [14], make a substantial contribution to Schemathe-

sis’ performance. While such techniques can be added to standalone

tools, our experience is that the implementation effort is best shared

and tuned in dedicated property-based testing libraries which ben-

efit from synergies between techniques.
13

7
Web Server Gateway Interface and Asynchronous Server Gateway Interface

8
https://hypofuzz.com/

9
https://github.com/google/atheris

10
https://github.com/microsoft/rest-api-fuzz-testing

11
https://appdev.consulting.redhat.com/tracks/contract-first/

12
Similar to [5]’s use of QuiviQ state machines

13
For example, Hypothesis is to our knowledge the only tool to support both swarm

testing and targeted property-based testing [14, 21, 22].

c
c
c
a
t
a
l
o
g

c
o
v
i
d
1
9
_
j
a
p
a
n

d
i
s
e
a
s
e
_
s
h

j
u
p
y
t
e
r
_
s
e
r
v
e
r

j
u
p
y
t
e
r
h
u
b

o
p
e
n
_
f
e
c

r
e
q
u
e
s
t
_
b
a
s
k
e
t
s

r
e
s
t
l
e
r
_
d
e
m
o

w
o
r
k
l
o
g

a
g
e
_
o
f
_
e
m
p
i
r
e
s

State-machine 3 0 0 8 3 78 0 4 1 1

Hand-written 0 0 9 1 80 0 4 1 1

Table 1: Switching to Hypothesis’ state-machines made
Schemathesis considerably faster and improved the quality
of reported failures. In this evaluation on schemas we augu-
mented with OpenAPI ‘links’, state-machine tests detected
a similar number of defects the old hand-written approach.
See Section 3.2 for details.

2.2 Hypothesis-Jsonschema
Schemathesis converts schemas into data generators using the

hypothesis-jsonschema14 library, whose from_schema() func-

tion takes an arbitrary JSON Schema
15

and returns a Hypothesis

strategy to generate valid instances. JSONschema is something of

a lingua franca for web related schemas; Swagger and OpenAPI

use it directly, while others are easy to convert into JSONschemas.

Simple schemas admit simple translations:

{"type": "integer", "minimum": 0, "maximum": 10}
-> st.integers(min_value=0, max_value=10)

while others, especially if they involve the oneOf or allOf16 combi-

nators, defy easy or efficient translation. We therefore ‘canonicalise’

schemas by defining a suite of rewrite rules which preserve schema

semantics while reducing the need for rejection sampling, and iter-

ate them to a fixpoint. Consider for example:

{"type": "object", "allOf": [
{"additionalProperties": false},
{"properties": {"a": {"type": "string"}}},

]}

containing intersecting constraints - the value must be an object,

must not contain any items if it is an object, and if the value is an

object with key "a", the corresponding value must be a string. Our

rewrite rules combine these constraints into a single schema:

{"additionalProperties": False,
"properties": {"a": False},
"type": "object",
"maxProperties": 1}

and further simplify that schema into a minimal form:

{'type': 'object', 'maxProperties': 0}

Such nonlocal constraints are common in real-world schemas

even before accounting for widespread use of the $ref keyword.We

therefore inline non-recursive references, merge overlapping sub-

schemas, and canonicalise the results before converting the schema

14
https://pypi.org/project/hypothesis-jsonschema/

15
https://json-schema.org/

16anyOf is trivially satisfied by taking the union of the generators for sub-schemas.

oneOf admits a quadratically-large translation to allOf, not, and anyOf—e.g.
oneOf: [a, b, ...] → anyOf: [{a, {not: {anyOf: [b, ...]}}}, ...]—
but linear-size rewrites and rejection sampling are usually much faster in practice.

https://wsgi.readthedocs.io/
https://asgi.readthedocs.io/
https://hypofuzz.com/
https://github.com/google/atheris
https://github.com/microsoft/rest-api-fuzz-testing
https://appdev.consulting.redhat.com/tracks/contract-first/
https://pypi.org/project/hypothesis-jsonschema/
https://json-schema.org/

Zac Hatfield-Dodds and Dmitry Dygalo

to a Hypothesis strategy, which makes hypothesis-jsonschema
considerably faster than naïve translators such as Jsongen [13]

with an otherwise similar design.

As well as generating valid inputs with no relation to ordinary

production traffic, this logic gives us an elegant way to synthesise

subtly invalid examples for ‘negative testing’ to check that noncon-

forming requests are rejected by the API: create a set of variant

schemas, e.g. “an invalid instance of a valid type”, and then use

each of the variants to generate input:

schema = ...
gen_invalid = from_schema(

{"type": schema["type"], "not": schema}
)

This generator will be as efficient as anything we could write by

hand
17
, guaranteeing that instances are invalid with a minimum

of rejection sampling. By contrast, RESTTESTGEN [30] generates

data for negative testing by applying relatively crude mutations to

valid instances.

2.3 Customising Schemathesis
One of Schemathesis’ strengths is ease of customisation via our

command-line interface or from Python. The four main ways to

customise tests for a specific API are hooks, checks, serialisers, and
format strategies.

Hooks. call user-defined functions to customise Schemathesis’

behaviour at different steps of the testing process:

• Hooks such as before_process_path allow you change the

API schema for certain endpoints, working around incom-

patibilities or changing the data that will be generated

• Hooks like before_generate_query allow you to replace

Hypothesis strategies that are inferred from API schemas,

for example by adding a filter to reject undesired test cases

• Network request hooks allow you to send additional custom

test cases, or to adjust generated data before sending it to

the application under test

• Custom targets, for e.g. performance tests as in §1.3

Checks. are custom test oracles, which allow verification of user-

defined properties of responses received from the application under

test. Because checks are decoupled from data generation, they can

be run for both known-valid and known-invalid test cases.

Serialisers. Generated data must be serialised before transmis-

sion to to the application under test. Schemathesis supplies default

serialisers for common media types such as application/json,
multipart/form-data, and text/plain. Custom serialisers can

overide these defaults, or add support for less common media types

expected by the application.

Format strategies. Many Open API schemas use custom format
keywords to describe the input data. For example, if the API under

test consumes data that is expected to contain a payment card

number, this might be expressed as:

{"type": "string", "format": "payment_card"}

17
we designed comprehensive rewrite rules based on our knowledge of the spec, and

update or expand them when inefficiencies are reported, e.g. by Reviewer #2 (really!)

Category Number Should work?

Total OpenAPI directory endpoints 66,925 —

Schemathesis correctly handles 65,195 —

With unhandled recursive refs 1,254 yes

With Python-incompatible regex 170 opt

With too complex schemas 26 yes

With un-inlined remote refs 8 yes

With YAML parsing issues 168 no

With invalid enums 45 no

With path parameters including / 33 no

With logically unsatisfiable schemas 26 no

Table 2: OpenAPI Directory endpoints, with detailed break-
down of those Schemathesis does not handle.

The JSONschema specification requires implementations to ignore

unknown format keys, so Schemathesis allows the user to supply

a strategy that will be used to generate values for this format:

def luhn_ok(card_number: str) -> bool:
"""Validate check digit for the card number."""

schemathesis.register_string_format(
"payment_card",
st.from_regex(r"^4[0-9]{15}$").filter(luhn_ok)

)

2.4 The limits of specification support
hypothesis-jsonschema correctly, and almost always efficiently,

handles every construct from draft-04 to draft-07 of the JSON-

schema specification except for recursive references. It’s tested

against every schema in the official JSONschema compatibility test

suite, the hundreds of real-world schemas from schemastore.org,

and fuzzed with a custom schema generator—to the point of finding

bugs in Python’s jsonschema validator library and omissions from

the standard-compliance test suite.
18

Schemathesis supports almost everything in the OpenAPI spec,

covering the subset in common use and including user-defined

extensions. Of the more than three thousand schemas in the Ope-

nAPI directory, we successfully parse a higher proportion than are

actually valid—and can generate data for some endpoints of many

invalid schemas. Table 2 shows a detailed breakdown of the end-

points we do not support; aside from (some) recursive references,

more endpoints are invalid than unsupported.
Schemathesis currently handles recursive references by unrolling

and inlining the schema up to a reasonable depth. This is sufficient

for more than 98% of endpoints in the OpenAPI directory; but also

the most common reason we fail to generate data. We’d prefer to

leverage property-based testing by expressing recursive schemas

directly with Hypothesis’ deferred() generator, but modifying

hypothesis-jsonschema’s rewrite rules to be reference-aware is

a tricky engineering challenge—and unrolling works well enough

that to date other features have always taken priority.

18
See Julian/jsonschema/issues?q=author%3AZac-HD+label%3ABug

and json-schema-org/JSON-Schema-Test-Suite/pulls?q=author%3AZac-HD

https://www.schemastore.org/json/
https://github.com/Julian/jsonschema/issues?q=author%3AZac-HD+label%3ABug
https://github.com/json-schema-org/JSON-Schema-Test-Suite/pulls?q=author%3AZac-HD

Deriving Semantics-Aware Fuzzers from Web API Schemas

Issue Description

django-rest-framework#7134 and #7448 Crash on SQLite integer overflow due to validator order

django-rest-framework-jwt#70 Internal server error when token is invalid unicode

tfranzel/drf-spectacular#186 Generated schema is too permissive

satellite-passes-api#2 and #4 Internal server errors on missing attribute, missing cache key

tournesol-backend#17 Checking HTTP status codes found “a lot of bugs”

OfficiumDivinum#4 Eleven failing tests with Schemathesis

python-restx/flask-restx#303 Non-matching X- fields filter out all results instead of no results

http-rs/async-h1#144 Numerous client-side failures, causes unclear

tiangolo/fastapi#240 Invalid schema (following wrong version of specification)

tiangolo/fastapi#3790 Nonconforming response when reporting validation errors

goadesign/goa#2840 Schema is missing known HTTP status codes

optimade-python-tools#763 Schema is missing known HTTP status codes

marshmallow-code/apispec#614 Invalid schema attempting to bound datetime strings

django-action-framework#14 Internal server error on unexpected URL fragment

jupyter-server#518 Schemathesis motivates and rewards comprehensive schemas

Table 3: A sample of GitHub issues reporting independent use of Schemathesis.

We hypothesize that OpenAPI schemas found in the wild have

a long tail of rare features and complex structures, such that most

non-trivial schemas include at least one which breaks naïve fuzzers.

3 EVALUATION
We experimentally evaluate Schemathesis’—and previous web API

fuzzers—defect detection, runtime, and consistency of reporting.

These experiments are restricted to containerised open-source ser-

vices, ensuring that they are representative, reproducible, and do

not attack live systems.

Since Schemathesis was open-sourced in August 2019, a range

of bug reports on GitHub have been attributed to Schemathesis.

A representative sample is shown in Table 3 to contextualize our

experiments.

Users evidently value detection of server errors (caused by con-

forming inputs or not), as well as reporting of invalid, incomplete,

or overly-permissive schemas. Almost all of these results require

the fuzzer to understand schema semantics, in addition to the struc-

ture of inputs and possible actions, to a higher degree than “HTTP
500 means failure”.

3.1 Experiment design
We run three configurations of Schemathesis, and seven other

fuzzing tools in their default configurations
19

(Table 4), on six-

teen open-source web APIs (Table 5), for thirty runs each.

To our knowledge, this is the most comprehensive evaluation

of web API fuzzers to date. Our scripts make it easy to add further

fuzzing tools or targets in Docker containers, andwill bemaintained

as a standard benchmark suite for the community.

The full set of containers to reproduce our work, or use it in evalu-

ating future fuzzers, is available from github.com/schemathesis/web-

api-fuzzing-project, along with both raw and processed data.

19
mostly - following [27], we avoided fuzzing e.g. Jupyter’s /shutdown endpoint

Name Version Language Supported schemas

Schemathesis 3.9.0 Python Open API, GraphQL

Restler 7.1.0 Python, F# Open API 2 / 3

Cats 5.2.3 Java Open API 2 / 3

TnT-Fuzzer 2.3.1 Python Open API 2

Got-Swag 1.3.0 JavaScript Open API 2

APIFuzzer b786c1b Python Open API 2

Fuzz-lightyear 0.0.9 Python Open API 2

Swagger-conform 0.2.5 Python Open API 2

Fuzzy Swagger 0.1.11 Python Open API 2

Swagger fuzzer 0.1.0 Python Open API 2

Table 4: Evaluated schema-based web API fuzzers.

For ease of analysis, we parse the 250GB of raw logs into a JSON

summary, and further reduce this dataset to report the duration,

number of events, and per-run reports of each unique defect.

Manual defect triage and deduplication is impractical for such a

large and extensible evaluation. Instead, where possible we mon-

itor the fuzzing process using Sentry
20
, a widely-used platform

for error tracking and performance monitoring. This gives us a

cross-language notion of unique defects, i.e. internal server errors

deduplicated by code location—regardless of triggering endpoint

or what the fuzzer was attempting to check at the time.

We add semantic errors
21

to our defect count by counting each

kind of bug report parsed from saved logs only once per endpoint,

regardless of variations or how many times it was observed. This

matches our experience of users’ tend to group reports which are

consistently either fixed or ignored.

This typically works well, with the notable exception of TnT-

Fuzzer—which reports more than a thousand 404 Not Found re-
sponses for randomly-generated paths:

20
https://sentry.io/

21
unexpected status code, schema non-conformance, information disclosure, etc.

https://github.com/encode/django-rest-framework/issues/7134
https://github.com/encode/django-rest-framework/issues/7448
https://github.com/Styria-Digital/django-rest-framework-jwt/issues/70
https://github.com/tfranzel/drf-spectacular/issues/186
https://github.com/redraw/satellite-passes-api/pull/2
https://github.com/redraw/satellite-passes-api/pull/4
https://github.com/tournesol-app/tournesol-backend/pull/17#discussion_r669219677
https://github.com/OfficiumDivinum/OfficiumDivinum/issues/4
https://github.com/python-restx/flask-restx/issues/303
https://github.com/http-rs/async-h1/issues/144
https://github.com/tiangolo/fastapi/issues/240
https://github.com/tiangolo/fastapi/issues/3790
https://github.com/goadesign/goa/issues/2840
https://github.com/Materials-Consortia/optimade-python-tools/issues/763
https://github.com/marshmallow-code/apispec/issues/614
https://github.com/jyveapp/django-action-framework/issues/14
https://github.com/jupyter-server/jupyter_server/issues/518
https://github.com/schemathesis/web-api-fuzzing-project
https://github.com/schemathesis/web-api-fuzzing-project
https://sentry.io/

Zac Hatfield-Dodds and Dmitry Dygalo

Service Language Framework Endpoints Schema type Schema source

aalises/age-of-empires-II-api Python Flask 1.1.2 8 Open API 3.0.0 Static

creativecommons/cccatalog-api Python Django 2.2.13 8 Swagger 2.0 Dynamic, drf-yasg 1.17.1

ryo-ma/covid19-japan-web-api Python Flask 1.1.2 4 Swagger 2.0 Dynamic, flasgger 0.9.4

disease-sh/api JavaScript Express 4.17.1 34 Swagger 2.0 Static

postmanlabs/httpbin Python Flask 1.0.2 73 Swagger 2.0 Dynamic, flasgger 0.9.0

jupyter-server/jupyter_server Python Tornado 6.1.0 29 Swagger 2.0 Static

jupyterhub/jupyterhub Python Tornado 6.1.0 35 Swagger 2.0 Static

mailhog/MailHog Go Net/HTTP 2 Swagger 2.0 Static

fecgov/openFEC Python Flask 1.1.1 85 Swagger 2.0 Dynamic, flask-apispec 0.7.0

ajnisbet/opentopodata/ Python Flask 1.1.2 2 Open API 3.0.2 Static

rtyler/otto Rust Tide 0.14.0 2 Open API 3.0.3 Static

fossasia/pslab-webapp Python Flask 1.1.2 3 Swagger 2.0 Dynamic, flasgger 0.9.5

pulp/pulpcore Python Django 2.2.17 67 Open API 3.0.3 Dynamic, drf-spectacular 0.11.0

darklynx/request-baskets Go Net/HTTP 20 Swagger 2.0 Static

microsoft/restler-fuzzer Python Flask 1.1.2 6 Swagger 2.0 Static

IBM/worklog Python Flask 1.0.2 9 Swagger 2.0 Dynamic, flasgger 0.9.1

Table 5: Tested web services, chosen to represent a variety of programming languages, schema formats (OpenAPI and
GraphQL), and sources (generated or hand-written) across a realistic range of sizes, structures, and API complexity.

"result": {"type": "failure",
"kind": "unexpected_status_code",
"status_code": 404},

"path": "/haugixqhzhjcgdwjqluktpxtzuerizamqmhqsu...

We therefore count any number of “unexpected 404” reports as a

single unique defect per target, ignoring the path.

3.2 Defect-detection experiment
In all-checks mode, Schemathesis reports a total of 755 bugs across

fourteen out of our sixteen targets, including 111 HTTP 500 re-

sponses, 436 unexpected status codes, 52 non-schema-conforming

responses, and 152 responses with a wrong or missing content type.

Schemathesis finds 1.4× to 4.5×more defects than the respectively

second-best fuzzer for each target, and is the only fuzzer to find

defects in four targets.

Schemathesis was the only one of the tools we evaluated to

handle all–or more than two-thirds of–our targets without a fatal

internal error. Surprisingly, this appears unrelated to our pairing

of OpenAPI 3 targets with fuzzers which do not claim to support

OpenAPI 3.

Table 6 shows a summary of identified defects by fuzzer and

target, some of whichmight be resolved bymaking the schemamore

permissive, particularly the unexpected status codes. We argue that

such mismatches between specified and actual behaviour are still

reasonably described as bugs - the schema being no less important

than the implementation of the service. The issues listed in Table 3

indicates that at least some of our users agree.

To support clear comparisons to fuzzers which check fewer se-

mantic properties, Table 7 shows only HTTP 500 internal server

errors. We see a rich understanding of application semantics, includ-

ing over request sequences, as a key contribution of our research.

Nonetheless, Schemathesis detected more unique errors than the

respectively second-best fuzzer for each target.

0

10

20

30

ru
ns

open_fec

0

10

20

30

ru
ns

jupyter_server

0

10

20

30

ru
ns

cccatalog

0

10

20

30

ru
ns

pulpcore

distinct identifiable defect
0

10

20

30

ru
ns

pslab_webapp

Figure 1: Sorting unique defects by the number of runs de-
tecting them, we see that Schemathesis (black) is less consis-
tent but discovers more than other fuzzers. Defect IDs are
consistent between runs but not between fuzzers.

https://github.com/aalises/age-of-empires-II-api
https://github.com/creativecommons/cccatalog-api
https://github.com/ryo-ma/covid19-japan-web-api
https://github.com/disease-sh/api
https://github.com/postmanlabs/httpbin
https://github.com/jupyter-server/jupyter_server
https://github.com/jupyterhub/jupyterhub
https://github.com/mailhog/MailHog
https://github.com/fecgov/openFEC
https://github.com/ajnisbet/opentopodata/
https://github.com/rtyler/otto
https://github.com/fossasia/pslab-webapp
https://github.com/pulp/pulpcore
https://github.com/darklynx/request-baskets
https://github.com/microsoft/restler-fuzzer
https://github.com/IBM/worklog

Deriving Semantics-Aware Fuzzers from Web API Schemas

c
c
c
a
t
a
l
o
g

c
o
v
i
d
1
9
_
j
a
p
a
n

d
i
s
e
a
s
e
_
s
h

h
t
t
p
b
i
n

j
u
p
y
t
e
r
_
s
e
r
v
e
r

j
u
p
y
t
e
r
h
u
b

m
a
i
l
h
o
g

o
p
e
n
_
f
e
c

p
s
l
a
b
_
w
e
b
a
p
p

r
e
q
u
e
s
t
_
b
a
s
k
e
t
s

r
e
s
t
l
e
r
_
d
e
m
o

w
o
r
k
l
o
g

a
g
e
_
o
f
_
e
m
p
i
r
e
s

o
p
e
n
t
o
p
o
d
a
t
a

o
t
t
o
_
p
a
r
s
e
r

p
u
l
p
c
o
r
e

OpenAPI version 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3

Endpoints 8 4 34 73 29 35 2 85 3 20 6 9 8 2 2 67

api_fuzzer 0 0 36 0 17 2 16 6 4 0 11

cats 0 0 5 0 10 2 0 0 6

fuzz_lightyear 2 0

got_swag 3 32 0 0 13

restler 2 0 1 0 3 2 0 0 0 0 0

schemathesis:AllChecks 13 0 11 316 32 12 1 184 7 39 14 3 7 1 0 24

schemathesis:Default 3 0 0 66 10 1 0 80 2 0 4 1 1 0 0 5

schemathesis:Negative 3 0 0 13 8 40 0 73 2 0 1 3 1 0 0 9

swagger_fuzzer 16

tnt_fuzzer 10

Table 6: Total number of unique defects across all 30 runs, regardless of triggering endpoint, using Sentry to determine
‘ground truth’ for internal server errors and custom log parsing to group property violations.

api_fuzzer 0 0 13 0 17 2 0 1 0 0 0

cats 0 0 2 0 10 2 0 0 2

fuzz_lightyear 1 0

got_swag 2 5 0 0 0

restler 2 0 1 0 3 2 0 0 0 0 0

schemathesis:AllChecks 6 0 0 15 15 2 0 78 4 0 6 2 0 0 0 8

schemathesis:Default 3 0 0 10 9 1 0 80 2 0 4 1 0 0 0 5

schemathesis:Negative 3 0 0 11 7 6 0 73 2 0 1 3 0 0 0 9

swagger_fuzzer 0

tnt_fuzzer 0

Table 7: Total unique HTTP 500 server errors, for comparison between tools which check different semantic properties.

api_fuzzer 3 23:32 13:25 2 11:01 23 12 31 3 4 15:56

cats 5 6:45 11 4 1:42 8 5 4 1:42

fuzz_lightyear 11 1

got_swag 1 16 1 1 1

restler 5 3 5 3 4:28:06 3 10 4 17 3 3

schemathesis:AllChecks 12 2 2:49 25:51 16 20 2 10:32 4 7 9 37 6 5:48 2 4:16

schemathesis:Default 29 2 9:41 42:29 28 1:06 3 8:18 2 37 49 35 5 3 2 8:52

schemathesis:Negative 53 16 4:36 11:38 50 1:40:50 15 6:48:18 3 3:12 33 41 8 15 6 42:32

swagger_fuzzer 6

tnt_fuzzer 3

Table 8: Mean runtime, showing a clear but noisy correlation to number of endpoints and detected defects.

api_fuzzer 34 15 130 3 44 1 1,276

cats 44 15 81 2

fuzz_lightyear 6

got_swag 1 1 1

restler 2 2 2 2

schemathesis:AllChecks 1 7 1 1 1 1 1 1 1 1 1 1 1 1

schemathesis:Default 1 1 1 1 1 1 1 1 1 1

schemathesis:Negative 1 1 1 1 1 1 1 1 1 1

swagger_fuzzer 1

tnt_fuzzer 1

Table 9: Mean number of reports per unique defect, of those reported in a given run. Hypothesis’ shrinking allows
Schemathesis to report a single easy-to-understand example for each defect, easing triage.

Zac Hatfield-Dodds and Dmitry Dygalo

Property-based testing workflows also outperform fuzzing when

it comes to actionable reporting. Table 9 shows the mean number

of reports per unique defect, averaged over each independent run.

Schemathesis reports a single minimal triggering input or action-

sequence for each, with the exception of a few cases where our

evaluation harness uses additional information from server logs to

deduplicate internal errors.

Figure 1 shows the consistency of defect-detection between runs.

For most tools, detection is binary: if they do not discover a defect

on the first run, they are unlikely to ever do so. APIFuzzer, Cats,

and Schemathesis are less consistent for all but the easiest defects.

In Schemathesis, we attribute this effect to the property-based

testing workflow! Because the user is expected to fix each failing

test by changing either the service or the test harness, Hypothesis

stops looking shortly after finding the first failing input. When

there are multiple defects which may be discovered in different

orders, this early stopping also reduces consistency compared to

long-running fuzzing workflows (Table 8).

If inconsistency is driven by low detection probabilities instead

of early stopping, this is also good news for users: they can simply

run these fuzzers for longer and discover more defects—and in the

absence of a run reporting zero defects, they are likely to do so.

4 DIRECTIONS FOR FUTURE RESEARCH
Expand and share benchmark suite. Our evaluation suite is de-

signed to be reused, and will be maintained as an open source

project by the Schemathesis developers. Adding and updating REST

and GraphQL fuzzers
22

and targets, improving our understanding

of the ‘ground truth’ by manually identifying defects or better auto-

mated tools for triage, and collaboration among fuzzer developers

would all be valuable contributions.

Build defect analysis into fuzzers. A single HTTP 500 internal

error should be reported once, not once-per-triggering-endpoint—

and automatic defect analysis works well enough in our evaluation

that we think this is within reach, at least when running in-process

or with an existing monitoring solution
23
.

Support the long tail of schema features. Schemathesis has gone

further down this path than previous fuzzers, and outperforms ac-

cordingly. What further gains are locked behind support for rare

features such as ECMA-specific regex syntax, non-unrollable recur-

sive references, or niche content-types?

Investigate code-coverage-guided fuzzing for web APIs. While

coverage-guided fuzzing has been highly successful for native code,

to date it has been impractical to evaluate the value of coverage feed-

back for web API fuzzing. Schemathesis’ support for ASGI/WSGI

in-process fuzzing, and EvoMaster’s JVM instrumentation, allow

measuring the value of coverage feedback
24

in present systems.

Improved request-sequence testing without “links”. Schemathesis

is often limited by the absence of OpenAPI “links” describing how

22
e.g. RESTest [26], EvoMaster [1], and Karlsson et al [18]

23
respectively e.g. Schemathesis ASGI/WSGI support, or Sentry

24
as distinct from the client-observable notions of behavioural coverage that can be

explored using e.g. Schemathesis targets.

data from one response can be used to make further requests. Inves-

tigating [3, 30]-style heuristics or ways to learn links from traffic

records could substantially improve performance.

Recommend schema improvements. Tools could suggest improve-

ments to API schemas, whether to resolve basic type confusions

or refine their semantics. This would be particularly valuable in

combination with learned links between endpoints.

Embed property checks into web frameworks. Web frameworks

which dynamically generate the application schema from code

could also check conformance with the schema at runtime. Even

if limited to a debug mode for performance, such automatic test

oracles could improve the effectiveness of property-naïve fuzzers

and other forms of testing

5 CONCLUSION
Building onmature and versatile property-based testing toolsmakes

Schemathesis easily adaptable to specific services or workflows and

remarkably effective. Working with Hypothesis offers a integrated

and growing suite of useful techniques which we would not other-

wise have implemented.

Schemathesis is the only fuzzer in our comprehensive evaluation

to handle every real-world schema and web service, and consis-

tently reports more defects than the previous state-of-the-art.

We hope that future work on web API fuzzing will reuse—and

perhaps extend—our summary of testable properties and our evalu-

ation corpus of tools and services.

REFERENCES
[1] Andrea Arcuri. 2018. EvoMaster: Evolutionary Multi-context Automated System

Test Generation. In 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). 394–397. https://doi.org/10.1109/ICST.2018.

00046

[2] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. 2020.

IJON: Exploring Deep State Spaces via Fuzzing. In 2020 IEEE Symposium on
Security and Privacy (SP). 1597–1612. https://doi.org/10.1109/SP40000.2020.00117

[3] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. REST-ler:

Automatic Intelligent REST API Fuzzing. In Proceedings of the 41st International
Conference on Software Engineering. IEEE Press. https://www.microsoft.com/en-

us/research/uploads/prod/2018/04/restler.pdf

[4] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2020. Checking

Security Properties of Cloud Service REST APIs. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST). IEEE. https:

//doi.org/10.1109/icst46399.2020.00046

[5] Clara Benac Earle, Lars-Åke Fredlund, Ángel Herranz, and Julio Mariño. 2014.

Jsongen: A Quickcheck Based Library for Testing JSON Web Services. In Proceed-
ings of the Thirteenth ACM SIGPLAN Workshop on Erlang (Gothenburg, Sweden)

(Erlang ’14). Association for Computing Machinery, New York, NY, USA, 33–41.

https://doi.org/10.1145/2633448.2633454

[6] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for

Random Testing of Haskell Programs. Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (2000). https://doi.org/10.

1145/357766.351266

[7] Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2018. Auto-

matic Generation of Test Cases for REST APIs: A Specification-Based Approach.

In 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference
(EDOC). 181–190. https://doi.org/10.1109/EDOC.2018.00031

[8] Boris Feld. 2016. Swagger Fuzzer. https://github.com/Lothiraldan/swagger-fuzzer

[9] Roy Thomas Fielding. 2000. REST: Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation. University of California,

Irvine. http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[10] The GraphQL Foundation. 2021. GraphQL. https://graphql.org/

[11] Miguel A. Francisco, Macías López, Henrique Ferreiro, and Laura M. Castro.

2013. Turning Web Services Descriptions into Quickcheck Models for Automatic

Testing. In Proceedings of the Twelfth ACM SIGPLAN Workshop on Erlang (Boston,

Massachusetts, USA) (Erlang ’13). Association for Computing Machinery, New

York, NY, USA, 79–86. https://doi.org/10.1145/2505305.2505306

https://doi.org/10.1109/ICST.2018.00046
https://doi.org/10.1109/ICST.2018.00046
https://doi.org/10.1109/SP40000.2020.00117
https://www.microsoft.com/en-us/research/uploads/prod/2018/04/restler.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/04/restler.pdf
https://doi.org/10.1109/icst46399.2020.00046
https://doi.org/10.1109/icst46399.2020.00046
https://doi.org/10.1145/2633448.2633454
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/357766.351266
https://doi.org/10.1109/EDOC.2018.00031
https://github.com/Lothiraldan/swagger-fuzzer
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://graphql.org/
https://doi.org/10.1145/2505305.2505306

Deriving Semantics-Aware Fuzzers from Web API Schemas

[12] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-

eration for Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (Szeged, Hungary) (ESEC/FSE ’11). Association for Computing Machinery,

New York, NY, USA, 416–419. https://doi.org/10.1145/2025113.2025179

[13] Lars Ake Fredlund, Clara Benac Earle, Angel Herranz, and Julio Marino. 2014.

Property-Based Testing of JSON Based Web Services. In 2014 IEEE International
Conference on Web Services. IEEE. https://doi.org/10.1109/icws.2014.110

[14] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. 2012.

Swarm Testing. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis (ISSTA 2012). Association for Computing Machinery, New

York, NY, USA, 78–88. https://doi.org/10.1145/2338965.2336763

[15] Zac Hatfield-Dodds. 2020. Falsify your Software: validating scientific code with

property-based testing. In Proceedings of the 19th Python in Science Conference.
https://doi.org/10.25080/majora-37cdd580-016

[16] The OpenAPI Initiative. 2021. OpenAPI. https://www.openapis.org/

[17] Stefan Karlsson, Adnan Causevic, and Daniel Sundmark. 2019. Quick-

REST: Property-based Test Generation of OpenAPI-Described RESTful APIs.

arXiv:1912.09686 [cs.SE]

[18] Stefan Karlsson, Adnan Čaušević, and Daniel Sundmark. 2020. Automatic

Property-based Testing of GraphQL APIs. arXiv:2012.07380 [cs.SE]

[19] Leonidas Lampropoulos and Konstantinos Sagonas. 2012. Automatic WSDL-

guided Test Case Generation for PropEr Testing of Web Services. Electronic
Proceedings in Theoretical Computer Science 98 (Oct 2012), 3–16. https://doi.org/

10.4204/eptcs.98.3

[20] Aaron Loo, Joey Lee, and Victor Zhou. 2020. Automated IDOR Discovery through

Stateful Swagger Fuzzing. https://engineeringblog.yelp.com/2020/01/automated-

idor-discovery-through-stateful-swagger-fuzzing.html

[21] Andreas Löscher and Konstantinos Sagonas. 2017. Targeted Property-Based

Testing. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis (Santa Barbara, CA, USA) (ISSTA 2017). Association
for Computing Machinery, New York, NY, USA, 46–56. https://doi.org/10.1145/

3092703.3092711

[22] Andreas Löscher and Konstantinos Sagonas. 2018. Automating Targeted Property-

Based Testing. In 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). 70–80. https://doi.org/10.1109/ICST.2018.00017

[23] David MacIver, Zac Hatfield-Dodds, and Many Contributors. 2019. Hypothesis:

A new approach to property-based testing. Journal of Open Source Software 4, 43
(2019), 1891. https://doi.org/10.21105/joss.01891

[24] David R. MacIver and Alastair F. Donaldson. 2020. Test-Case Reduction via Test-

Case Generation: Insights from the Hypothesis Reducer (Tool Insights Paper). In

34th European Conference on Object-Oriented Programming (ECOOP 2020) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 166). 13:1–13:27. https:

//doi.org/10.4230/LIPIcs.ECOOP.2020.13

[25] Phu X. Mai, Fabrizio Pastore, Arda Goknil, and Lionel Briand. 2020. Metamorphic

Security Testing for Web Systems. In 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST). 186–197. https://doi.org/10.

1109/ICST46399.2020.00028

[26] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2021. RESTest:

Automated Black-Box Testing of RESTful Web APIs. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis. Associ-
ation for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/

3460319.3469082

[27] Barton P. Miller, Mengxiao Zhang, and Elisa R. Heymann. 2020. The Relevance

of Classic Fuzz Testing: Have We Solved This One? arXiv:2008.06537 [cs.SE]

[28] Oli Pratt. 2017. Swagger-conformance. https://pypi.org/project/swagger-

conformance/

[29] Barrett Schonefeld. 2020. IBM-service-validator. https://pypi.org/project/ibm-

service-validator/

[30] Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2020. RESTTEST-

GEN: Automated Black-Box Testing of RESTful APIs. In 2020 IEEE 13th Interna-
tional Conference on Software Testing, Validation and Verification (ICST). 142–152.
https://doi.org/10.1109/ICST46399.2020.00024

https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/icws.2014.110
https://doi.org/10.1145/2338965.2336763
https://doi.org/10.25080/majora-37cdd580-016
https://www.openapis.org/
https://arxiv.org/abs/1912.09686
https://arxiv.org/abs/2012.07380
https://doi.org/10.4204/eptcs.98.3
https://doi.org/10.4204/eptcs.98.3
https://engineeringblog.yelp.com/2020/01/automated-idor-discovery-through-stateful-swagger-fuzzing.html
https://engineeringblog.yelp.com/2020/01/automated-idor-discovery-through-stateful-swagger-fuzzing.html
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1109/ICST.2018.00017
https://doi.org/10.21105/joss.01891
https://doi.org/10.4230/LIPIcs.ECOOP.2020.13
https://doi.org/10.4230/LIPIcs.ECOOP.2020.13
https://doi.org/10.1109/ICST46399.2020.00028
https://doi.org/10.1109/ICST46399.2020.00028
https://doi.org/10.1145/3460319.3469082
https://doi.org/10.1145/3460319.3469082
https://arxiv.org/abs/2008.06537
https://pypi.org/project/swagger-conformance/
https://pypi.org/project/swagger-conformance/
https://pypi.org/project/ibm-service-validator/
https://pypi.org/project/ibm-service-validator/
https://doi.org/10.1109/ICST46399.2020.00024

	Abstract
	1 Introduction
	1.1 Property-based testing
	1.2 Web API standards
	1.3 Standards imply semantic properties
	1.4 Prior art in schema-based web API fuzzing

	2 Schemathesis
	2.1 Single requests or sequences?
	2.2 Hypothesis-Jsonschema
	2.3 Customising Schemathesis
	2.4 The limits of specification support

	3 Evaluation
	3.1 Experiment design
	3.2 Defect-detection experiment

	4 Directions for future research
	5 Conclusion
	References

