
TestKnight: An Interactive Assistant to Stimulate
Test Engineering

Cristian-Alexandru Botocan∗

Piyush Deshmukh
Pavlos Makridis

botocan.christian@gmail.com

p.a.deshmukh@student.tudelft.nl

p.makridis@student.tudelft.nl

Delft University of Technology

The Netherlands

Jorge Romeu Huidobro
Mathanrajan Sundarrajan

Maurício Aniche
Andy Zaidman

j.romeuhuidobro@student.tudelft.nl

m.sundarrajan@student.tudelft.nl

M.FinavaroAniche@tudelft.nl

a.e.zaidman@tudelft.nl

Delft University of Technology

The Netherlands

ABSTRACT

Software testing is one of the most important aspects of modern

software development. To ensure the quality of the software, devel-

opers should ideally write and execute automated tests regularly as

their code-base evolves. TestKnight, a plugin for the IntelliJ IDEA

integrated development environment (IDE), aims to help Java de-

velopers improve the testing process through support for creating

and maintaining high-quality test suites.

Github repo: https://github.com/SERG-Delft/testknight

Jetbrains Marketplace: https://plugins.jetbrains.com/plugin/17072-

testknight
YouTube video: https://www.youtube.com/watch?v=BSaL-K7ug6M

KEYWORDS

Software Testing, Developer Assistance, IDE plug-in

ACM Reference Format:
Cristian-Alexandru Botocan, Piyush Deshmukh, Pavlos Makridis, Jorge
Romeu Huidobro, Mathanrajan Sundarrajan, Maurício Aniche, and Andy
Zaidman. 2022. TestKnight: An Interactive Assistant to Stimulate Test Engi-

neering. In 44th International Conference on Software Engineering Companion
(ICSE ’22 Companion), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3510454.3517052

1 INTRODUCTION

In order to ensure that software systems under development are

of high quality, software engineers should write and maintain au-

tomated tests that enforce the quality of their code-base [1, 2, 4].

However, software developers generally view software testing as
an arduous and dull process [5, 6, 14]. As a consequence, testing is
often neglected [5, 7, 13, 17–19] and the resulting software systems

are potentially riddled with bugs and defects. As software systems

∗The first five authors have contributed equally to this paper.

This Work is Licensed under a Creative Commons Attribution International 4.0 License.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9223-5/22/05.
https://doi.org/10.1145/3510454.3517052

get increasingly integrated into all aspects of modern life, problem-

atic software can have catastrophic consequences [12]. Therefore,

it is of the utmost importance that developers actively ensure the

quality of their product.

Ergo, the question arises; how can we encourage software engi-

neers to incorporate testing into their daily workflow? TestKnight,

a plugin for the IntelliJ IDEA IDE ensures a better experience for de-

velopers during the testing process. The plugin supports developers

in three dimensions, namely: (1) coming up with test cases, (2) im-

plementing tests, and (3) evaluating existing test suites. Concretely,

the tool allows the user to quickly duplicate and adapt automated

test cases, inspect how the test coverage evolves, and find assertions

they can use when creating new test cases.

2 TESTKNIGHT

We hypothesize that using TestKnight’s workflow enables quick

and effective test case engineering. Let’s consider the following

scenario that involves Alice.

Alice was recently given a piece of code developed by one of

her colleagues to test. She does not understand the code, so it is

difficult for her to figure out where to start. To come up with tests,

Alice uses the testing checklist generation and assertion suggestion

features of TestKnight. Then she proceeds to write the tests. To

avoid writing a lot of boilerplate code, she uses TestKnight’s test

method generation feature. At the same time, to quickly create

new test cases by adapting existing ones, she uses TestKnight’s

test duplication feature. As she adds new test cases, she uses the

diff coverage feature to evaluate how effective the new tests are.

During this process, she notices that some of the tests fail. To

pinpoint where issues might arise, she invokes TestKnight’s test

traceability feature.

In the following sections, we will present the above options in

more detail. Furthermore, we will also be showcasing the customiz-

ability options TestKnight offers for each of its features so that

users can tailor the plugin to their preferences.

2.1 Assertion Suggestion

The assertion suggestion feature can be used to help find effective

and meaningful assertions for your test cases based on the method

under test (MUT). It works based on two pillars. Firstly, it analyzes

222

2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

http://creativecommons.org/licenses/by/4.0/

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA C. Botocan, P. Deshmukh, P. Makridis, J. Romeu Huidobro, M. Sundarrajan, M. Aniche, A. Zaidman

Figure 1: Example of assertion suggestion applied on p1.translate.

the MUT to determine the type of output and reminds the user

to assert for it. For example, if the MUT is supposed to return an

integer, then the user is reminded to assert that the correct integer

was returned. Secondly, it generates assertions based on the MUT’s

side effects, where a side effect is defined as a state change that can

be observed by the code that invoked the MUT [15].

Although there are many categories of side effects [16], TestKnight

focuses on only two. Specifically, it looks for class field and method

argument side effects. Class field side effects occur when a method

mutates at least one of the fields of the class it belongs to. A typical

case of such a method is a setter, but another example method is

represented in Figure 1. Similarly, argument mutation side effects

occur when a method mutates one of its arguments.

2.2 Checklist

TestKnight offers the ability to generate testing checklists for meth-

ods/classes. These checklists contain the test cases which should

be implemented to adequately cover the class/method according to

several structural and black box testing criteria.

To generate the checklist for these test cases, TestKnight tra-

verses the unit under test and generates different checklist items

for each code construct encountered as seen in Figure 2. For exam-

ple, when testing methods, the plugin suggests testing for different

values of the input parameters. For for and while loops, the tool

suggests implementing test cases needed to fulfill the loop bound-

ary adequacy criterion [10]. For if blocks and other conditionals,

the tool generates a checklist item for each MC/DC independence

pair in the condition. Doing this ensures that if the test cases for

each checklist item were implemented, the unit under test would

have 100% MC/DC coverage.

The checklist generation is highly customizable, e.g., the user

can change the parameter suggestions for methods, change the

coverage criterion from MC/DC to Branch coverage and disable

generating checklists for any code construct.

Once the checklist has been generated, TestKnight can auto-

generate typical JUnit boilerplate code for a test case given a check-

list item, thus potentially speeding up the writing of test cases.

Figure 2: Example of checklist generated for class Point

2.3 Coverage

Figure 3 shows how TestKnight keeps track of changes in code

coverage between editing actions. Currently, it only provides in-

formation about changes in line coverage. The change in coverage

information can be accessed from either the gutter or TestKnight’s

toolwindow. New colors are added to coverage highlighters to indi-

cate newly covered and uncovered lines. The coverage tab provides

numerical information on the coverage change. A detailed coverage

diff can be requested through the coverage table. However, this

information can only be obtained if the respective source file has

not been modified since the last two test runs with coverage.

2.4 Test Duplication

A recent observational study has shown that developers often engi-

neer test cases by copying and pasting a previous test method as a

way to start writing a new test method [3]. Following this, refactor-

ing test code is also common behaviour. TestKnight offers support

for the aforementioned behaviour. Specifically, when a test is se-

lected to be duplicated through TestKnight, the selected test will be

duplicated in the source code and certain elements of the method

that are likely to be changed in the duplicate are highlighted.

In order to determine which sections of the method need to be

highlighted, a variety of highlight-resolution strategies are imple-

mented, which each analyze the method contents and a collection

of elements that should be highlighted. In particular, there are

Figure 3: Coverage user interface found in the tool window.

223

TestKnight: An Interactive Assistant to Stimulate

Test Engineering
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

Figure 4: Example of traced code being highlighted.

strategies for finding: Constructor arguments, Assertion arguments

and Literals. By default, all three are highlighted in addition to the

method name, but the individual strategies can be enabled/disabled

in the settings panel.

Lastly, we need an algorithm to resolve conflicts when several

highlight resolution strategies have overlapping sections. For ex-

ample, if there is a literal inside of a constructor argument there

will be two overlapping highlighted elements. To resolve this, we

use the interval partitioning algorithm to find the largest possible

subset of non-overlapping highlights [11, pages 116–120].

2.5 Customizability

TestKnight aims to provide as much customizability as possible to

ensure that the user is not limited by the restrictions of the plugin.

These options can be found under TestKnight’s settings panel.

The user can choose which sections of the test method are high-

lighted when it is being duplicated. Similarly, the user can choose

the strategies used to generate the checklist (e.g., checklist for If

Statements). Furthermore, the user can also modify the parameter

suggestions for data types.

2.6 Traceability

This feature allows the user to immediately see the lines of pro-

duction code covered by an individual test case, as it is shown in

Figure 4. In order to get this data, whenever tests are run with

coverage, the tool keeps track of the lines of code exercised by each

test case [9]. Once this data is available the tool can highlight the

lines specific of code which are evaluated in a given test case.

3 IMPLEMENTATION AND CHALLENGES

3.1 Coverage

A central aspect of TestKnight is differential coverage, which en-

ables the user to see the difference between two consecutive test

runs. Specifically, it enables to see in an intuitive way how the

test code modification affected code coverage. This boils down to

making the coverage run information stateful, which drew in some

challenges. The most obvious and naïve solution would probably

be persisting every coverage report and displaying two consecutive

ones side by side. However, there are multiple obvious problems

with this approach: a) a lot of unncecessary information is required

to be persisted as we store 2 reports (previous and current) for a

run even if this feature is never used, b) just showing two reports

side by side is not very useful for the users to navigate between

the differences lines, especially for large classes, and c) showing

actual line coverage difference for better user experience would

be difficult as it would involve writing a script to traverse through

all lines in the source code to highlight the coverage difference

alongside trying to relate a line in the previous run to the current

run.

Hence, a different approach was required. We made use of the

CoverageDataManager, which is an internal IntelliJ service. It maps

lines of source code to the tests that cover it, which is a good repre-

sentation for this cause. We attached listeners to the coverage run

events which were charged with manipulating and maintaining the

correct state information (e.g., switching the current coverage in-

formation to the previous coverage information just before running

the test suite). And when the suite coverage data was maintained

side by side with a hashmap for all classes, it is trivial and compu-

tationally cheap to produce a diff view for the class requested by

parsing the lines only in that class and coloring them according to

the scheme decided. The default one being — dark green for lines

that were recently covered in the new run but not in the old test

run, dark red for lines lost in the new run that were covered before,

light green for lines covered in both runs, and light red for lines

not covered in both. We tackled the aforementioned challenge of

changes in source code by assuming no changes in between consec-

utive test runs. However, this may not be intuitive for some users,

so we had to develop better guarantees to detect such a change

in the source code file to inform the user that it has changed so

the diff view would not be accurate. To do this, modification times-

tamps were used. These are stored alongside the coverage suite

information when listeners are triggered as mentioned before. So if

the timestamps do not match for a requested file, an informative

warning is thrown to the user. A future version of our approach

can investigate the use of Clone Region Descriptors [8].

3.2 Testing Checklist Generation

When it came to generating the testing checklist, we have encoun-

tered a few challenges related to its implementation. Firstly, the

checklist generation should be efficient. Secondly, customizability

to allow the user to turn on and off generating checklist items for

certain language constructs.

As mentioned above, the first challenge when it came to the

testing checklist generation was to ensure its efficiency. To do that,

we designed the system in such a way that each source code file is

only traversed once. This is achieved by using the Visitor design

pattern to traverse the PSI tree generated by IntelliJ.

The second challenge we faced was keeping the checklist gen-

eration system configurable and customizable at runtime. To do

this efficiently we used an adaptation of the Strategy design pat-

tern that allows the Visitor to call upon the Strategy classes which

implement the checklist generation for their corresponding code

construct. With this structure in place, it was then easy for the

Visitor to check for every node in the program tree that it visited

whether the Strategy for it was enabled, by a simple lookup in the

IDE’s settings. If that is the case the Visitor performs the call to the

Strategy. Otherwise, it simply moves on to the next node.

Again the Visitor pattern was useful here because it allows check-

ing for every node in the PSI that is visited, whether the user wants

checklist items for it. The latter part was achieved by looking up

the settings using the IntelliJ API.

224

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA C. Botocan, P. Deshmukh, P. Makridis, J. Romeu Huidobro, M. Sundarrajan, M. Aniche, A. Zaidman

3.3 MC/DC checklist generation

To generate testing checklist items that would fully cover the unit

under test with MC/DC coverage the first step is parsing the boolean

expression in the condition into a syntax tree representation. From

this tree, a simplified propositional expression with 𝑛 propositions

can be obtained by compressing all subtrees with a precedence

lower than the || operator into a single proposition.

Each of these propositions is a term whose Boolean value affects

the value of the overall expression. Now the expression is evaluated

with all possible combinations of truth values yielding the truth

table of the expression. Lastly, the truth table is traversed to find

𝑛 − 1 independence pairs which fully cover the condition.

3.4 Side Effect Detection

Side effect detection was one of the most challenging parts to im-

plement. Most of the traditional approaches heavily rely on the

heavy use of call-graphs. This structure allows for detecting both

immediate and transitive side effects. Immediate side effects are

those that are immediately obvious from a single source code file

(e.g., a method changes the value of some field in its class), whereas

transitive side effects are side effects that occur when the MUT

calls upon another method which either performs an immediate

side effect or has other transitive side effects as well.

Although call-graph based approaches are highly accurate, they

were deemed inappropriate for TestKnight since they become com-

putationally expensive when analyzing large codebases. Without

them, we were able to implement accurate immediate side effect

detection. However for transitive side effect detection we opted for

a heuristic-based approach. The heuristic we came up with was

“method calls on reference types are considered side effects”. With

this heuristic, the tool can detect transitive side effects, although

admittedly it results in some false positives.

4 USER STUDY

To assess the strengths, weaknesses and usability of TestKnight a

preliminary user survey was conducted. The survey was conducted

among 14 experienced programmers. We asked the participants

to use the plugin on a sample project in any way they seemed fit

and then fill in a feedback form. Users were also given a document

showcasing the different features of the plugin.

The next part of the survey involved rating the usefulness, us-

ability and intuitiveness of TestKnight’s features. Specifically, par-

ticipants were asked to rate the above qualities on a scale from 1 to

5 for all the major features of TestKnight. The boxplots in Figures 6

through 8 show respectively the participants’ opinion on usability,

usefulness, and intuitiveness of TestKnight’s features. In summary,

users generally found the features useful and easy to use. Thetest-

ing checklist and test list features were rated to be the most useful,

usable and intuitive overall, scoring mostly 4 and 5 in all aspects.

The tracability feature was deemed very useful, but not as usable

or intuitive to use. As Figure 5 shows, the testing checklist was also

the one most liked by the participants. The assertion suggestion

feature on the other hand was found to be the least intuitive, with

most users giving it a 3. Additionally, the assertion suggestion was

the feature least liked.

28.6%7.1%

21.4%

42.9%

Favorite

7.7%

46.2%

7.7%
7.7% 30.8%

Least Favorite
Differential Coverage
Assertion suggestion
Test List
Testing Checklist
Traceability

Figure 5: The results of the user survey questions “Which feature

did you like the most?" and “Which feature did you like the least?",

respectively

Three metrics were used to evaluate the ratings of each of the

features incorporated into TestKnight: usability, intuitiveness, and

usefulness. Usefulness could be explained as a measure of effective-

ness to remedy the root problem the individual feature is aimed

at if it would be implemented perfectly. Intuitiveness is a measure

of how easy it is for a new user to navigate the UI and use the

functionality. Usability refers to the practical ease of application in

regular development scenarios. As can be seen from the plots in

Figures 6, 7 and 8, the testing checklist received consistently high

scores for all three metrics, probably making it to be the most liked

feature. Assertion suggestion on the other hand received lower

scores for intuitiveness, which indicates why it was relatively low-

ranked among other features. Also, the usefulness of this feature

was commonly remarked about in the reviews because it did not

highlight rather non-trivial side effects. The responses mention go-

to as a simple and effective feature to save time and was liked as a

“shortcut”. One of the respondents mentioned differential coverage

to be their favorite feature because it helped them achieve standard

testing requirements that are often enforced. In contrast, however,

another developer mentioned that differential coverage was not

the most useful for their use case because they rigorously prac-

ticed testing the more vulnerable aspects of the code and did not

mind lower coverage statistics. They did agree, however, that the

coverage would be useful in development scenarios after rigorous

testing to help additionally achieve more coverage so that even the

less “vulnerable” code blocks are minimally tested. Test traceability

received mixed reviews in terms of intuitiveness, because of the

procedure required to run it (some settings need to be in place

beforehand), however, the usefulness score was quite high.

At the end of the survey, the participants were asked to give

an overall rating of TestKnight. On average the plugin scored 4.35

out of 5. The exact distribution of the scores given is showcased

in Figure 9. The average score indicates that TestKnight fulfils

developer needs to a good extent.

ACKNOWLEDGMENTS

The authors would like to thank Pouria Derakhshanfar and Mark

Swillus for their guidance during development, as well as the par-

ticipants of our user study. This work was partially sponsored by

the Dutch science foundation NWO through the Vici “TestShift”

project (No. VI.C.182.032), and the Swiss National Science Founda-

tion through SNF Project No. 200021M 205146.

225

TestKnight: An Interactive Assistant to Stimulate

Test Engineering
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

2 3 4 5

Average score

Traceability

Testing Checklist

Assertion suggestion

Test List

Differential coverage

Usability

Figure 6: Boxplot of the usability of TestKnight’s main features

2 4

Average score

Traceability

Testing Checklist

Assertion suggestion

Test List

Differential coverage

Usefulness

Figure 7: Boxplot of the usefulness of TestKnight’s main features

2 3 4 5

Average score

Traceability

Testing Checklist

Assertion suggestion

Test List

Differential coverage

Intuitiveness

Figure 8: Boxplot of the intuitiveness of TestKnight’s main features

Figure 9: The results of the user survey question “How would you

rate TestKnight?"

REFERENCES
[1] Maurício Aniche. [n.d.]. Why software testing? https://sttp.site/chapters/getting-

started/why-software-testing.html
[2] Maurício Aniche. 2022. Effective Software Testing: A developer’s guide. Manning.
[3] Maurício Aniche, Christoph Treude, and Andy Zaidman. [n.d.]. How Developers

Engineer Test Cases: An Observational Study. IEEE Trans. on Softw. Engineering
([n. d.]). To Appear.

[4] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman. 2014.
Test Code Quality and Its Relation to Issue Handling Performance. IEEE Trans.
Software Eng. 40, 11 (2014), 1100–1125.

[5] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven
Amann, and Andy Zaidman. 2017. Developer testing in the IDE: Patterns, beliefs,
and behavior. IEEE Transactions on Software Engineering 45, 3 (2017), 261–284.

[6] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
When, how, and why developers (do not) test in their IDEs. In Proceedings of the
Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM, 179–190.

[7] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2015. How (Much) Do
Developers Test?. In 37th IEEE/ACM International Conference on Software Engi-
neering (ICSE Volume 2), Antonia Bertolino, Gerardo Canfora, and Sebastian G.
Elbaum (Eds.). IEEE, 559–562.

[8] Ekwa Duala-Ekoko and Martin P. Robillard. 2010. Clone region descriptors:
Representing and tracking duplication in source code. ACM Trans. Softw. Eng.
Methodol. 20, 1 (2010), 3:1–3:31.

[9] Victor Hurdugaci and Andy Zaidman. 2012. Aiding Software Developers to
Maintain Developer Tests. In 16th European Conference on Software Maintenance
and Reengineering (CSMR). IEEE, 11–20.

[10] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. 1994. Ex-
periments on the effectiveness of dataflow-and control-flow-based test adequacy
criteria. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE, 191–200.

[11] Jon Kleinberg and Tardos Éva. 2005. Algorithm design. Pearson.
[12] Amy J Ko, Bryan Dosono, and Neeraja Duriseti. 2014. Thirty years of soft-

ware problems in the news. In Proceedings of the 7th International Workshop on
Cooperative and Human Aspects of Software Engineering. ACM, 32–39.

[13] Leon Moonen, Arie van Deursen, Andy Zaidman, and Magiel Bruntink. 2008. On
the Interplay Between Software Testing and Evolution and its Effect on Program
Comprehension. In Software Evolution. Springer, 173–202.

[14] Marc Rettig. 1991. Practical programmer. Commun. ACM 34, 5 (1991), 25–29.
[15] Atanas Rountev. 2004. Precise identification of side-effect-free methods in Java.

In Proc. Int’l Conf. on Softw. Maintenance (ICSM). 82–91.
[16] David A Spuler and A Sayed Muhammed Sajeev. 1994. Compiler detection of

function call side effects. Informatica 18, 2 (1994), 219–227.
[17] Chak Shun Yu, Christoph Treude, and Maurício Finavaro Aniche. 2019. Compre-

hending Test Code: An Empirical Study. In International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 501–512.

[18] Andy Zaidman, Bart Van Rompaey, Serge Demeyer, and Arie van Deursen. 2008.
Mining Software Repositories to Study Co-Evolution of Production & Test Code.
In First International Conference on Software Testing, Verification, and Validation
(ICST) 2008. IEEE, 220–229.

[19] Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. 2011.
Studying the co-evolution of production and test code in open source and indus-
trial developer test processes through repository mining. Empir. Softw. Eng. 16, 3
(2011), 325–364.

226

