
ar
X

iv
:2

40
3.

06
48

4v
1 

 [
cs

.S
E

] 
 1

1 
M

ar
 2

02
4

Technical Debt Management: The Road Ahead for

Successful Software Delivery

Paris Avgeriou

Dept. of Computing Science

University of Groningen

Groningen, The Netherlands

p.avgeriou@rug.nl

Ipek Ozkaya

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA, USA

ozkaya@sei.cmu.edu

Alexander Chatzigeorgiou

Dept. of Applied Informatics

University of Macedonia

Thessaloniki, Greece

achat@uom.edu.gr

Marcus Ciolkowski

QAware GmbH

München, Germany

marcus.ciolkowski@qaware.de

Neil A. Ernst

Department of Computer Science

University of Victoria

Victoria, Canada

nernst@uvic.ca

Ronald J. Koontz

The Boeing Company

Mesa, AZ, USA

ron.j.koontz@boeing.com

Eltjo Poort

CGI

Rotterdam, The Netherlands

eltjo.poort@cgi.com

Forrest Shull

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA, USA

fjshull@sei.cmu.edu

Abstract—Technical Debt, considered by many to be the ‘silent
killer’ of software projects, has undeniably become part of
the everyday vocabulary of software engineers. We know it
compromises the internal quality of a system, either deliber-
ately or inadvertently. We understand Technical Debt is not
all derogatory, often serving the purpose of expediency. But,
it is associated with a clear risk, especially for large and
complex systems with extended service life: if we do not properly
manage Technical Debt, it threatens to “bankrupt” those systems.
Software engineers and organizations that develop software-
intensive systems are facing an increasingly more dire future state
of those systems if they do not start incorporating Technical Debt
management into their day to day practice. But how? What have
the wins and losses of the past decade of research and practice
in managing Technical Debt taught us and where should we
focus next? In this paper, we examine the state of the art in
both industry and research communities in managing Technical
Debt; we subsequently distill the gaps in industrial practice and
the research shortcomings, and synthesize them to define and
articulate a vision for what Technical Debt management looks
like five years hence.

Index Terms—technical debt, software maintenance and evo-
lution

I. INTRODUCTION

Imagine a scenario where a development team is under

pressure to quickly add a high-value product feature and must

choose between building the feature ‘first time right’ or build-

ing it ‘quick-and-easy’ [1]. The development team will likely

choose the ‘quick-and-easy’ solution, with the intention of

refactoring to the more robust solution later if one or more of

the following conditions exist: 1) significant time pressure, 2)

insufficient funding, 3) unavailability of the required engineer-

ing resources, 4) large feature size and/or feature complexity.

This tradeoff decision can have far-reaching consequences,

ranging from complex and hard to maintain code to reduced

team velocity and frequent, unexpected rework. The ‘quick

and easy’ solution often multiplies and becomes permanent,

thereby eroding the product’s architecture and limiting the

ability to make future updates. The Technical Debt metaphor

has proven to be a useful vehicle to help understand the

behavioral and economic aspects of tradeoffs like this, where

a team or product benefit in the short-term but suffer negative

consequences in the long-term [2].

Software engineers perform these tradeoffs routinely, some-

times deliberately, other times inadvertently. On occasion, they

have access to complete information; at times, they may need

to rely on partial data. They could be aware of the uncertainties

around the evidence they have, but in many cases they are not.

At various intervals, competing social, financial, and strategic

priorities influence the tradeoffs in unexpected ways. Such

technical and management decisions that imply a tradeoff

among outcomes at different points in time (immediate benefit

versus increased future maintenance costs) have been widely

studied in economics. Intertemporal choices, where distant

outcomes are often valued lower than short-range ones lead

to temporal discounting [3], a phenomenon which over and

over leads to unmanageable Technical Debt.

The tradeoff decision-making process is not unique to

software; it is the nature of engineering. However, the ability

of a single software engineer to quickly implement and deploy

changes to an end product differentiates software engineering

from other engineering disciplines, where such modifications

http://arxiv.org/abs/2403.06484v1


are likely to occur far more gradually.

The concept of Technical Debt has been embraced by

software engineers ever since Ward Cunningham coined the

term in 1992 [2], as the idea effectively encapsulates multiple

aspects of tradeoff decision-making in software development

while accounting for both value and cost. In his original

premise, Cunningham specifically emphasized the need to

refactor code that is often written with only partial knowledge

of the problem and domain, and without enough upfront design

[2]. Since then, the Technical Debt perspective has shaped

the way both industry and academia think of shortcuts taken

in software development, viewing them as a consequence of

tradeoffs that expedite software release at the potential risk of

higher cost for changes in the long term.

Since Ward Cunningham’s original proclamation, significant

progress has been made in raising awareness of software

engineers to understand and manage Technical Debt. There

is now widespread consensus that managing Technical Debt

should be treated as a core software engineering practice,

applied continuously across the software development life cy-

cle [4]. Industry is increasingly incorporating Technical Debt

management practices to their development processes [5], [6].

Many software quality tools now incorporate features to help

software engineering teams visualize and triage Technical Debt

issues within their code bases. Software project management

and issue tracker tools have also experimented with including

Technical Debt as one of the default labels, e.g. Planview 1.

This advancement in industrial practice is paired with very

vibrant research. The research community has produced a

substantial body of knowledge on the topic of Technical Debt,

especially in investigating the problem and its manifestation,

understanding its urgency and impact, and proposing solutions

to address it. This research is often performed in collaboration

with industry, indicating its practical relevance but also the

aligned interests of researchers and practitioners.

In this paper, we examine current progress made by industry

and research communities and then lay out a path forward with

some substantial shifts in theory and practice. We first clarify

concepts related to Technical Debt in Section II. We then

discuss the challenges and current state of industry practice

regarding Technical Debt, through the lenses of four different

representative organizations in Section III. Subsequently we

take a critical review of the latest research in managing

Technical Debt, including the available tools and research data

sets in Section IV. Finally, we present a vision for effectively

managing Technical Debt where researchers, tool vendors, and

practitioners collaborate to close the gaps in Section V.

II. WHAT IS TECHNICAL DEBT?

Like most popular terms in software engineering, Technical

Debt has been defined time and again in both gray literature

(especially blogs) and scientific literature. We simply rely on

the definition that emerged from a Dagstuhl Seminar on this

topic through consensus, and has stood the test of time [7]:

1https://www.planview.com/

In software-intensive systems, Technical Debt is a

collection of design or implementation constructs

that are expedient in the short term but set up a

technical context that can make future changes more

costly or impossible. Technical Debt presents an ac-

tual or contingent liability whose impact is limited to

internal system qualities, primarily maintainability

and evolvability.

This definition covers the essential elements of Technical

Debt, also anchored by the original intent of Cunningham,

emphasizing “a little debt speeds development as long as it is

paid back promptly with a rewrite”:

• It highlights that Technical Debt concerns not only

implementation constructs (as often misunderstood or

miscommunicated) but also earlier development artifacts

that pertain to software requirements, architecture and

design.

• It reflects the tradeoff between short-term gain in certain

business metrics (e.g., time to market or development

cost) and long-term increase in cost of change (which

can become prohibitive). This tradeoff has important

implications for strategies to manage Technical Debt:

some debt, consciously acquired, can be a good thing -

for example, by delivering working software to end users

faster so that they can provide feedback.

• It captures that Technical Debt may directly affect cur-

rent software development (e.g., by slowing development

velocity) or it may contingently do so in the future. The

latter is mostly unintentional Technical Debt: instead of

the development team making design decisions deliber-

ately, a change of circumstances can trigger a liability;

e.g., a third-party library no longer being supported by

its provider can increase maintenance costs.

• It emphasizes how Technical Debt directly affects design-

time qualities, such as maintainability and evolvability

of software-intensive systems. Within complex large-

scale systems, Technical Debt can also indirectly affect

other quality attributes, especially run-time qualities like

security and reliability, in the sense that maintenance and

evolution issues can in turn cause security vulnerabilities

and bugs.

• It stresses a simple bottom line: Technical Debt is about

managing the impact of cost of change over time.

A. Technical Debt versus Other Debts and Issues

Both the scientific and gray literature are riddled with uses

of the term “debt” in the context of software engineering activ-

ities. We often read about social, process, infrastructure, and

management “debt”, applying the concept to other software

engineering activities, such as development-process execution,

hardware-upgrade cycles, or people and team management.

This often leads to confusion among both practitioners and

researchers regarding the meaning of Technical Debt and its

relation to other “debts”. We take no issue with such term



usage; we see the potential utility in many of them and

encourage the examination of their relation to Technical Debt.

However, we do argue that these are separate notions from

Technical Debt and need to be independently and clearly

defined and established. We insist on this clear separation of

terms for a simple reason: the power of the Technical Debt

metaphor lies in it being clearly defined, scoped, and related to

design or implementation constructs (including e.g. tests, build

scripts, and algorithms). In contrast, if everything detrimental

to software development is labeled as “debt”, then Technical

Debt as a notion is diluted and loses its practical usage and

essential emphasis on value-creation as one can no longer

concretely identify, measure, or fix it.

Confusion also exists around the relationship between Tech-

nical Debt, security vulnerabilities, and defects (or bugs).

While Technical Debt may also cause security vulnerabilities

(e.g., due to a deprecated library not being updated) or

bugs (e.g., introducing unintentional defects when changing

“smelly” or incomprehensible code), those vulnerabilities and

bugs are not actual Technical Debt. Conversely, the existence

of bugs or vulnerabilities does not directly imply Technical

Debt as their root cause.

In practical terms, there is one very simple criterion, a

litmus test, to assess when something is Technical Debt or

not: if a design or implementation construct incurs interest

when being changed, then it is indeed Technical Debt. The

notion of “interest” in this context is defined as “additional

costs incurred by the project in the presence of Technical

Debt” [8]. In other words, if the existence of such a construct

(e.g., a ‘God’ component or dependency cycles) causes an

increase in the cost of change (e.g., implementing a feature

takes longer) [9], then interest is being paid, and we can safely

classify it as Technical Debt. As a simple example, when a

dependency cycle among three components causes changes in

any of these components to be costlier (compared to if the

cycle was not there), then we clearly pay interest. Because of

these dependency cycles, we may be incurring other additional

costs as well: for example, increased operations costs due to

run-time penalties. To prevent “watering down” the Technical

Debt concept to anything that potentially reduces development

budget, costs need to clearly map to changing design and

implementation constructs; otherwise, they are not considered

Technical Debt.

B. Technical Debt Research and Practice at An Inflection

Point

The interest of the research community on Technical Debt

followed a 2010 Future of Software Engineering workshop

paper [10] which put forward the following vision at the time:

The impact of this research, if it succeeds, will be improved

software development productivity and quality. Software de-

velopers and managers will better reason about the liabilities

and opportunities created by Technical Debt and make better

decisions about managing them. Software engineers would

understand the rationale that managers use in making such

decisions. This will lead to improved software maintenance

and, in the end, better software. Finally, software tool devel-

opers will have a new set of functions to support and new

markets for their tools based on a coherent framing of the

issues.

Revisiting this vision statement, thirteen years later, there

are three points to emphasize. First, improving software devel-

opment productivity and quality, as well as enhancing tradeoff

analysis and execution, may seem like goals specific to the

development team. However, these principles also affect the

users’ ability to consistently receive value in future software

updates: addressing Technical Debt appropriately and at the

right time enables teams to continually deploy new updates

on appropriate cycles, while maintaining a justified confidence

that the software performs as expected, is safe and secure, and

can allow for future evolution.

The second point relates to recent advances in software

engineering tools, and their ability to address technical, evo-

lutionary and organizational concerns in Technical Debt man-

agement:

• On one hand, there is an accelerated increase in new

automated features within development tools that aim

to improve development efficiency and reliability for

engineers. Emerging tools are increasingly investigating

how to leverage the predictive capabilities of AI and

language models trained on huge code bases. Their goal

is mostly to enable developers to catch implementation

errors as they occur, complete code correctly, and recom-

mend/fix areas of code where straightforward refactoring

opportunities exist.

• On the other hand, while the industry is driving the sim-

plification of code generation with AI-augmented tools

to develop vast new quantities of code and develop it

fast, it risks resulting in greater potential for incurring

unanticipated Technical Debt. This regression may be

further worsened by the potential for a new generation of

developers who are over reliant on AI support for basic

programming tasks and do not develop sufficient exper-

tise to assess quality, understand risks, explore tradoffs,

and weigh decision consequences [11].

The third point concerns the reality of industrial soft-

ware engineering and specifically the significant amount of

legacy software. In these heritage systems, no matter their

pedigree, accumulated Technical Debt exists where software

development teams do not have sufficient resources to address

all existing issues. A large portion of that Technical Debt

was introduced many years prior; it remains hidden and

undocumented, and involves design or architecture issues that

cannot be mined by analyzing source code. Any new tools and

practices for managing Technical Debt must also deal with the

harsh reality of brownfield development.

In the next sections, our discussion of the current state

of both industry practice and academic research and the

challenges for practitioners and researchers today and for the

future alike are motivated by these inflection points: the need

to consistently provide value to end users under the pressure

of accumulating Technical Debt, the evolving capabilities



of automated tools and the ongoing brownfield development

realities of existing software systems.

III. CURRENT STATE OF INDUSTRY PRACTICE AND

CHALLENGES

Across the software industry, Technical Debt, by and large,

is now part of the vernacular. The main reason for this

terminology adoption is easier discussion of internal software

quality: instead of explaining technical aspects like cohesion

and coupling or design smells to managers, Technical Debt

attempts to put a dollar sign to these abstract qualities and

helps justify investment of resources to pay back the debt.

More importantly, the monetization of said characteristics

through Technical Debt expresses a clear risk: a debt running

in the millions of dollars/euros is something development

teams can urgently raise to their management.

The software industry has evolved significantly since 1992,

when Cunningham first introduced the term, and even since

2016, when a group of researchers, industry, and tool vendors

at Dagstuhl established a formal Technical Debt definition (see

Section II). While the quest for “quantifying” Technical Debt

continues, industry has also recognized that there is no one-

size-fits-all tool or magic metric for Technical Debt, yet a

toolbox is indeed needed to manage it. This realization is

a big step forward for establishing an intentional Technical

Debt management practice across the software industry. Fur-

thermore, large software development organizations now also

share their experience in managing Technical Debt and share

techniques that may work better than others [5], [6], [12].

As one example of such an industry organization, we

consider Google, parent company now Alpha. Google has

taken an empirical approach to understanding how Technical

Debt manifests itself in their teams, publishing an engineering

satisfaction survey since 2018 to understand how engineers

may have been hindered by unnecessary complexity and

Technical Debt [5]. Survey outcomes have helped teams who

are focused on developer productivity in Google understand

the “somewhat” common areas of Technical Debt. In addition,

Google explored 117 metrics as indicators of these common

areas of Technical Debt (e.g., dependencies, code quality,

migration, code degradation) and concluded that no single

metric predicts reported Technical Debt. Their initial findings

assert that there is no single generalizable metric to understand

leading indicators of Technical Debt. This implies that teams

must select and adjust metrics based on their context.

Technical Debt is not only crucially important in industry;

its impact has increasingly been emphasized for any govern-

ments responsible for managing software at scale. For exam-

ple, the significance of Technical Debt is sufficiently high to

have been recognized by US Congress. In the FY22 National

Defense Authorization Act (NDAA), which became public law

in December 2021, Congress required a study of Technical

Debt practices in the Department and recommendations for

improvement [13], [14].

Based on our collective experience, there is no doubt

that methods to manage Technical Debt will be increasingly

relevant to industry. To help align targeted near-term and

long-term research, we provide four different industry per-

spectives to exemplify current industry difficulties in dealing

with Technical Debt: 1) dealing with Technical Debt in safety

critical systems with insights from Boeing, 2) managing a large

portfolio of projects which have accumulated Technical Debt

as exemplified in government software management initiatives

such as the US Department of Defense, 3) managing Technical

Debt in an organization developing custom software solutions

such as QAware, and 4) managing Technical Debt within

the agile and business enterprise with experience from CGI.

These views provide exemplars of common problems and gaps

between research ideas and tools and often overlooked realities

of managing Technical Debt in the trenches.

A. Technical Debt and Safety Critical Systems

Similar to the broader software industry, Technical Debt is

a pervasive challenge within The Boeing Company 2, as it

is prevalent in all software aspects and across all software

life cycle stages. Military and commercial aircraft service

life typically extends across several decades, where embedded

avionics software typically undergoes multiple incremental

upgrades and improvements.

Technical Debt symptoms which are not unique to Boeing

and are usually visible to all stakeholders include:

• Perpetually late deliveries

• System fragility

• Source code complexity

• Reduced productivity

• High maintenance cost

• Culture erosion

While the above symptoms can result from multiple root

causes adjacent to Technical Debt, software-intensive systems

impacted by several of these symptoms are likely struggling

with excessive Technical Debt. System fragility is often the

result of early life cycle software architectural decisions that

are expedient in the near-term (Technical Debt) that are not

corrected and evolve into brittle/fragile mature systems that

lack sufficient modularity and are not designed with well-

defined interfaces. For example, a change to one software

component ripples across multiple components, thereby neg-

atively impacting productivity and causing late deliveries.

Culture erosion becomes more obvious when Technical Debt

is not addressed in a timely manner. It manifests in multiple

ways that include inability to staff a legacy project (software

engineers choose best available assignments that leverage

latest industry programming language(s), technologies, tools,

and processes). Senior engineers, with vast domain knowledge,

choose to leave the workforce leading to inability to adequately

staff these outdated long-running programs.

Technical Debt extends from research and development

projects, where annual decisions to continue or delay funding

of multi-year software projects are made, to developmental and

2The Boeing Company is a global aerospace company with headquarters
in Arlington, VA, United States of America.



production programs, where programs determine whether to

reuse existing software products or undergo new development.

Technical Debt also spreads into decision-making associated

with when to replace or upgrade developer tools and build

environments, which are known to rapidly change.

The Boeing Enterprise Software Engineering organization

has identified recurring Technical Debt examples and is now

taking remedial steps to manage and eliminate them where

possible. Two common examples are:

1) Reified Prototyping: Occurs when software solutions

are built to support initial capability demonstrations and

are then evolved into production solutions. The issue

is that these preliminary prototypes were not designed

and built to the same level of process rigor as required

for safety-critical production programs, which results in

high-cost re-engineering to meet the latter’s objectives.

2) Bespoke Designs & Tools: These software systems

typically lack modularity, are not built with light-weight

component interfaces and are tightly coupled with low

cohesion. Such attributes lead to resistance to upgrade,

where the designs, tools and build environments them-

selves become increasingly difficult to maintain.

Strategies undertaken to combat these Technical Debt ex-

amples are often applied at the system level and address long-

term business benefits. For example, bespoke designs are being

replaced by feature-based product line engineering where

software solutions in the form of products and capabilities

are leveraged across multiple programs. Furthermore, open

source software and modular tools are being composed and

applied to enable frequent and incremental upgrade. As a

broader measure, the Boeing Enterprise Software Engineering

organization has established a Technical Debt Relief Bureau

(TDRB) that is focused on raising Technical Debt awareness

across the organization. The primary TDRB responsibility is

to capture a consistent and continuously improving Technical

Debt management methodology by:

• Documenting Technical Debt items and root causes using

established, uniform and consistent methods (as well as

simple tools like spreadsheets and Markdown);

• Establishing a business model for Technical Debt mitiga-

tion;

• Performing holistic examination of the business model

and key business goals relative to all software engineering

decisions (e.g., shaping business objectives based on all

potential future customers and product roadmaps while

making full life cycle tradeoffs versus focusing on secur-

ing near-term business);

• Recommending corrective / mitigating actions;

• Applying new efforts and principles to prevent Technical

Debt, e.g., common and modular development environ-

ments that enable incremental upgrade.

The long-term TDRB objective is inculcation of Technical

Debt management via informed decision-making that naturally

occurs and evolves across the Enterprise. The leveraging

of open source tooling and consistent software architecture

capture, e.g., using Krutchen’s 4+1 Views [15], across the

organization enables streamlined Technical Debt management

and provides opportunities to evaluate and instantiate future

Technical Debt management research advancements.

Known gaps and areas for further research:

• Industry needs automated Technical Debt management

tooling that provides broad stakeholder insight into its

root cause and status. Required capabilities include: 1)

configurable Technical Debt cost modeling that forecasts

product-specific periodic (e.g., annual) maintenance fund-

ing levels required to adequately manage Technical Debt,

2) system-level Technical Debt tracking and trending

where the configurable cost model is utilized to prioritize

Technical Debt issues, e.g., filtered by incurring cost

impact or by remedial cost and 3) relative to software

product lines, tooling that can extract underlying Tech-

nical Debt root cause from unstructured Technical Debt,

e.g., program tracked specific items, all of which trace

back to a single root cause.

Common and consistent Technical Debt management

tooling applied across all products will lead to the ability

to make informed funding decisions across the organiza-

tion. They will also enable defense contractors to convey

Technical Debt costs and share Technical Debt decision-

making with the customer community; additionally, they

should also provide rapid feedback on individual decision

tradeoff choice, driven by organization-specific configu-

ration file(s) and cost models.

• Industry must better exploit the relationship of product

line engineering and Technical Debt. Large-scale soft-

ware heavily relies on feature-based software engineer-

ing. Open source tooling exists for managing large-scale

feature models; however, whether these tools adequately

support Technical Debt tradeoff analysis remains as an

unexplored topic. Product line engineering requires fre-

quent testing across all supported configurations. Tooling

that can intelligently identify and execute a subset of tests

based upon specific problem reports and code updates

leads to earlier code error detection that can remedy

multiple types of debt.

• Research aimed at increasing Technical Debt awareness

and perhaps establishing a software community catalog of

symptoms, causes and examples, searchable by software

domain and/or life-cycle stage, could benefit practitioners

by providing common understanding and insights. Exist-

ing research in these topics has not yet reached practical

industry application.

B. Technical Debt and Legacy Systems Portfolio Management

Legacy system portfolio management is a concern of not

only large industry enterprises, but also governments across the

globe. Technical Debt rapidly accumulates due to challenges

tied to managing software systems through multiple decades

of technology upgrades, handovers, and iterative functionality

evolution. We use the US Department of Defense (DoD) as an

example where many of the challenges are representative of



larger issues relevant to government software systems around

the globe:

• The agency is focused on its mission (whether civil or

military) and tends to view its software assets as a means

to accomplishing that mission, not end products;

• Investments in such systems are made to accomplish

public interest goals, not to create sources of revenue to

pay for their upkeep or to contribute to the bottom line;

• Systems tend to be long-lived and have evolved over the

course of their lifetime, potentially by a series of different

contractors;

• Systems are potential targets of attack to a variety of

adversaries, motivated by a spectrum of different reasons

(e.g., to harm essential government functions, to uncover

sensitive information or to harm national prestige).

An increasingly important DoD cost driver is the effort

expended to develop, acquire, and sustain software-intensive

systems. Most DoD systems are in operation for long periods

of time, and they continuously evolve to support incorporation

of new functionality and to address maintenance issues. Even

in mature systems, a continual demand for system adaptation is

likely due to changing mission profiles, the need to incorporate

more effective or efficient technologies into the system, or the

desire to repair newly discovered software vulnerabilities. For

all of these scenarios, software tends to be the logical and

cost-effective way to make the upgrade, meaning that in effect,

software continually evolves and is never “done.”

At a time when the scope of responsibility for many govern-

ment agencies seems to be steadily increasing, the allocation

of public funds between new systems / new capabilities and

maintaining existing systems is increasingly fraught. However,

we know that Technical Debt in many systems continues to

accumulate even if the code is not being actively changed,

e.g., because the underlying technologies become obsolete

over time and the need for periodic investments driven by

modernization and associated software updates. These issues

pose a continuous funding need to address Technical Debt that

can be difficult to identify, given competing priorities.

Consequently, dealing with Technical Debt in software is

an unavoidable phenomenon for the DoD. Similar to other

organizations, for systems on which Technical Debt has been

allowed to accumulate as the system evolves, dealing with a

stream of continual changes becomes increasingly less cost

effective as more and more effort is required to simply

understand and modify the system, much less implement new

capabilities. This scenario can result in cost escalation and

schedule slippages and/or a diminished ability to field new

capabilities. However, because these systems provide essential

government and security services, the government typically

has much less flexibility than a commercial entity regarding

the decision to retire such software; it is not possible to simply

stop maintaining a system because the cost of upkeep is no

longer practical.

Given that Technical Debt identification is often context-

specific, individual teams have had a significant amount of

leeway in defining their own practices around Technical Debt.

As a result, there is a wide variety of different practices in

place across the Department. However, similarly to the Boeing

example above, there has recently been a renewed interest

in raising awareness across the entire organization, and in

supporting enterprise-level efforts to improve practices across

the board. The 2019 report of a key advisory group, the De-

fense Innovation Board, emphasized the need to periodically

invest in paying down Technical Debt [16]. This led to a

policy change requiring programs acquiring software for the

Department to actively manage Technical Debt [17].

The new policy places renewed emphasis on the need for

software programs to demonstrate value by presenting periodic

and frequent evidence about the impact on the mission from

the working software they have produced. This approach will

help make visible the instances where software efforts are

hampered by large amounts of Technical Debt and unable

to deploy new capabilities on meaningful timeframes. The

Department of Defense’s 2021 Science and Technology strat-

egy for software likewise re-emphasized the need to focus

on Technical Debt reduction, linking it to the speed with

which updates can be made to the software and hence to

improving cybersecurity. This strategy focuses on research

into Technical Debt approaches as a contributor to improving

mission performance [18].

Government-driven research, such as the Technical Debt

study required by the fiscal year 2022 US defense authoriza-

tion act [13], ensure that, while the teams acquiring individual

systems make their own choices about how to manage Techni-

cal Debt in their unique situation, the Department can consider

tools and practices that would improve performance across

all teams. One issue that needs to be addressed, according

to the terms of the study, is not just what measures to use

to gain insight into Technical Debt, but whether and how

to report a version of those measures to indicate progress to

stakeholders and avoid surprises due to missed commitments

or slow deployments of functionality. Other focus areas are

likely to include how to propagate best practices across teams

for reserving some amount of effort in each iteration to keep

Technical Debt issues under control, and avoid the temptation

to focus entirely on new capabilities.

Known gaps and areas for additional research include:

• Ability to combine meta-data about the team with analy-

sis of code base artifacts, to predict the levels of periodic

maintenance that would be required to properly manage

Technical Debt in a code base. Meta-data could describe

aspects of the software effort such as the domain (e.g.,

business systems, logistics, data processing, embedded

Cyber-Physical System software); length of time the

software has been being evolved; quality metrics; etc.

• Large enterprises need to manage Technical Debt across

different teams and organizations and life cycle stages.

Techniques that enable successful hand over of Technical

Debt as teams and systems evolve can help improve open

discussions around what Technical Debt stays in systems

which needs to be resolved sooner than later.



• Stakeholders who oversee a portfolio of different projects,

need to understand how to allocate resources across those

projects based on criteria that should include Technical

Debt. For example, how can decision makers objectively

compare different projects to understand which systems

should be retired or replaced, if resources are available,

and which have sufficiently managed their Technical Debt

such that they can continue to add functionality?

C. Technical Debt, Speed and Quality For Organizations

Developing Custom Software

Like many small and medium enterprises that develop

unique customer software solutions, QAware3 is challenged by

intensified competition, driven not just by the sheer number

of service providers but also by firms leveraging near and

far-shore outsourcing to offer cost-competitive propositions.

Given this context, consistently delivering superior quality and

achieving high productivity are key aspects to remain relevant

and ensure long-term clientele partnerships.

One strategy to achieve both high quality and high produc-

tivity is by establishing practices and principles for managing

Technical Debt that ensure that quality is ingrained into

software engineering and development practices as well as into

project management.

These practices and principles need to be flexible so that

they can be adapted to different customer organizations and

cultures. In addition, they need to take into account that, in

agile settings, the responsibility for prioritizing the resolution

of Technical Debt falls to the product owner, who is usually a

customer representative. This allocation of responsibility im-

plies that principles and practices cannot be dictated to product

owners but rather need to be addressed to the product team,

alongside techniques for making the prioritization arguments

to the product owner.

The practices and principles also need to be comprehensive

in order to cover Technical Debt and its interest as well

as other debts and consequences: to provide prioritization

arguments to the product owner, it helps to make consequences

and interest tangible, such as implementation delays, risk, or

product (in)stability. Furthermore, being able to add value to a

product over a long period of time (as opposed to a short-term

project) requires addressing not only cost of change but also,

for example, cost of operations or cost on the users’ side (such

as user experience issues or costs caused because users need

longer to complete workflows).

Some examples of the principles and practices that QAware

has established are: software craftsmanship and clean code

principles through internal education and teaching measures

that are mandatory for all developers; a quality contract as

well as Technical Debt grooming and prioritization principles

for all projects; and regular quality and innovation review at

the organizational-level.

Let us consider in more detail one of the aforementioned

principles, namely the project-level quality contract that in-

3QAware is a Germany-based software manufacturer and consultancy
developing custom software solutions

cludes continuous quality measurement based on available

software quality tools, including, for example, SonarQube4

and OWASP5 . The contract enforces a zero-violation policy:

any violations detected by these tools must be adjudicated and

resolved. This zero-violation policy is critical to contain and

prevent Technical Debt expansion due to quality erosion. At

the same time, it is often hard to achieve, as it may necessitate

obtaining customer consent.

One may argue that a zero-violation policy already de-

tects and manages Technical Debt. However, existing tools

focus on detecting low-level (software implementation) issues.

This is valuable but, in QAware’s view, only sets the basis

for managing “relevant” Technical Debt and for achieving

high quality. Figuratively speaking, the metaphor of software

craftsmanship is often used to describe professional software

development that aspires to achieve high software quality.

Under this analogy, most tools that attempt to detect Technical

Debt rather measure the amount of sawdust in the craftsman’s

workshop. Thus, a zero-violation scenario is the equivalent of

ensuring that the workshop floor is incrementally swept and

remains clean of sawdust. While this is considered to be a

prerequisite, true craftsmanship goes beyond the mere absence

of such flaws.

Technical Debt management starts from there – a solid,

clean basis – by: continually maintaining a refactoring backlog

through manual collection of Technical Debt items from

the team; manual estimation of their principal, and manual

prioritization; and assurance that refactoring happens - be it

through the Scout principle 6 or through explicit prioritization

and planning.

A particular challenge is to remain diligent on different

causes for cross-cutting, “painful” Technical Debt. Examples

are domain-level causes (e.g., misunderstood or changed user

workflows) and systems architecture (i.e., on system land-

scape level, such as interfaces between different systems or

products). These are difficult to detect and to address, since

they require comprehensive knowledge and involve multiple

stakeholders. However, when present, they can significantly

reduce development speed and product value.

Current trends in custom software development increase

challenges for detecting Technical Debt. With the growing

importance of DevOps and cloud applications, software devel-

opment teams must build expertise in deployment and moni-

toring processes as well as platform engineering. This situation

implies that code bases contain new artifacts - along with new

programming languages such as Terraform - to support these

tasks. At the same time, legacy programming languages grow

in importance: Many legacy applications are currently either

migrated to cloud applications, or companies seek external

support for maintenance of legacy systems. One driver for this

trend may be retirement of many expert developers. Further-

more, because the trend is to develop landscapes of (micro-)

4https://www.sonarsource.com/
5https://owasp.org/
6“Leave things better than you found them.”



services instead of monoliths, application code is becoming

distributed across many repositories, while measurement tools

tend to focus on single repositories. Last but not least, artificial

intelligence (AI) is increasing in importance; this means that

we need to learn how to express and measure Technical Debt

of AI-enabled systems (i.e. systems that contain at least one

AI component inside).

Known gaps and areas for additional research include:

• Better support for detection of debt with high impact,

e.g., early life cycle architecture Technical Debt: tool

support is currently typically restricted to downstream,

low-level issues (code, low-level design). While this is

highly valuable, it falls short of detecting high-level

design and architecture issues, which are often cross-

cutting and occur early in the software life cycle, and

therefore are typically the most impactful and “painful”

ones

• Support Technical Debt detection for emerging pro-

gramming languages (e.g., Rust, Julia, Terraform) and

older programming languages in legacy code (e.g., Ada,

Cobol).

• Support for detection and management of Technical Debt

symptoms and tracing them to the respective Technical

Debt item(s).

• Support for expressing and communicating interest and

other consequences and costs.

• Understanding and representing applications as sets of

repositories; that is, sets of microservices that include

application, platform, and operations code.

D. Technical Debt Ownership by Business and Architecture in

Large Organizations

CGI7 sees many of its client organizations struggling with

Technical Debt. 79% of CIOs interviewed worldwide by CGI

indicate that their ability to change is slowed significantly by

technology and agility constraints. CGI’s consultants see that

these constraints are often related to Technical Debt. High

pressure to produce new features causes business stakeholders

to consistently under-prioritize the work needed to keep IT

landscapes healthy and up to date. An informal analysis based

on anecdotal evidence yielded the following potential causes:

• Short term focus caused by quarterly result pressure and

associated Key Performance Indicators;

• Overinflated stakeholder expectations caused by short

‘pilot’ projects that produce quick business results, but

not at a sustainable rate;

• Misapplication of agile practices without understand-

ing their intended context or limitations; examples are

“Weighted Shortest Job First” (a prioritization formula

that works well for business features, but is inadequate

for Technical Debt repair and other backlog items that

add only indirect business value, so-called ‘enablers’)

and “You Ain’t Gonna Need It” - YAGNI (a principle

to prevent unnecessary future-proofing of a product);

7CGI is a large global IT services and business consultancy organization

• Splitting budget between business and IT (business pays

for new features, IT pays for ‘maintenance’ including

Technical Debt management).

Business stakeholders are often surprised by the size of the

Technical Debt, and sometimes blame IT for not keeping it

under control. Part of the problem is in the name: because it’s

called technical debt, business stakeholders are not inclined

to take problem ownership; they rather feel like victims of a

technology problem.

One thing that becomes clear from the aforementioned

causes, is that keeping Technical Debt under control cannot be

achieved by technical departments only. The decision tradeoffs

that involve Technical Debt must be made by collaborative

stakeholders from both business and IT. This makes Technical

Debt management part of business-IT alignment, which in

turn is an architecture responsibility. This is why CGI has

added Technical Debt management practices to its architecture

approach, called Risk and Cost Driven Architecture [19].

The practices are focused on fostering collaboration between

business owners and development teams by:

• Translating Technical Debt related concerns into business

terms like risk, cost of delay and opportunity cost;

• Making the tradeoffs in decisions involving Technical

Debt transparent (such as when to eliminate the debt by

refactoring or upgrading), e.g. in business cases;

• Visualizing the dependencies between Technical Debt,

business features, product quality and external pressures

in ways that are easily digestible by business stakeholders

[20].

Reports from CGI architects show that such practices help to

involve business stakeholders in the decision-making process;

particularly, once they realize that Technical Debt and enablers

are an integral part of their products, they start to feel owner-

ship of Technical Debt. This in turn helps prioritize Technical

Debt resolution and management at the business level.

Important areas of further research include:

• The relationship between the technical and busi-

ness/economic aspects of software evolution needs atten-

tion. We need a deeper understanding of the business

impact of the timing of Technical Debt remediation,

taking into account opportunity cost, team velocity and

sustainable rates of software development. It would help

to have funding and budgeting models that clarify the real

tradeoffs in the business decisions surrounding Technical

Debt

• While industry focuses on architecture in managing Tech-

nical Debt, the practices developed in industry need val-

idation: evidence-based practices will help in the (some-

times painful) process of getting business stakeholders on

board.

E. Themes from Industry Perspectives

The four industry perspectives shared in this section come

from very different domains and organizations, but reveal a

number of common themes:



• Value generation & ROI. The bottom line of Technical

Debt management is return on investment (ROI) for the

business and value, as difficult as it is to quantify financial

bottom line reliably.

• Architecture in addition to code. All perspectives empha-

size the difficulties around managing architecture-level

Technical Debt where the tradeoffs are more implicit and

more complex.

• More capable tools. All perspectives suggest that in the

absence of sophisticated tools, they have repurposed code

quality tools to help manage Technical Debt, but are

aware of their gaps and desire better tools.

• Common principles and practices. Organization specific

principles and established practices for managing Tech-

nical Debt exist, but are not codified.

• Continuous Practice. All perspectives demonstrate that

detecting and resolving Technical Debt is not a one time

activity and involves input from multiple stakeholders.

Next, we will look at the state of research. The state of

both industry and research, and particularly their shortcomings

and relevance to each other feed into the vision in Section V

as that will require the contribution of both researchers and

practitioners.

IV. REFLECTIONS FROM MORE THAN A DECADE OF

TECHNICAL DEBT RESEARCH

One of the indicators of the progress and maturity in

a scientific field is the number of peer-reviewed research

publications investigating it. In the case of Technical Debt,

since the very first “Managing Technical Debt” workshop

in 2010 [10], hundreds of related publications in scientific

conferences and journals have been released. The latest tertiary

study in this field [21] summarizes the results of 19 secondary

studies (systematic literature reviews or mapping studies) that

in turn collectively summarize 532 unique primary studies.

In this section we reflect on the progress research has made

on developing tools, techniques, and practices for managing

Technical Debt. It is not our goal to conduct another systematic

literature study. Instead, we present an informal meta-analysis

of the literature from both the secondary and the tertiary

studies to map the existing evidence, and summarize the main

research contributions and trends. Specifically, we use as input

all secondary and tertiary studies (see Table I) on the field of

Technical Debt contained within CORE A scientific journals,

as those set a certain quality expectation.

Our meta-analysis reviews the current state of research by

summarizing focus areas that received most attention, as well

as related fields. Subsequently, we review data sets, and tools

followed by implications of current research.

A. Research Focus Areas in Technical Debt

A majority of the research studies have been exploratory,

attempting to understand the different facets of Technical

Debt and its management, define the related concepts, rec-

ognize current industry practices and the needs of software

practitioners, and propose potential technological solutions for

managing Technical Debt. In this respect, significant progress

has been made on both defining the problem space and in

exploring the solution space.

Research focus areas that received most attention include

definitions, conceptual models, classifications of Technical

Debt, and the Technical Debt management process.

TABLE I
OVERVIEW OF SLRS AND SMS RELATED TO TECHNICAL DEBT (JOURNAL

PUBLICATIONS WITH AT LEAST CORE A)

Authors Title Journal Year #Studies

HJ. Junior, GH.
Travassos

Consolidating a com-
mon perspective on
Technical Debt and its
Management through
a Tertiary Study

IST 2022 19
(sec-
ondary)

A. Melo, R.
Fagundes, V.
Lenarduzzi, W.
Barbosa Santos

Identification and
measurement of
Requirements
Technical Debt
in software
development: A
systematic literature
review

JSS 2022 66

V. Lenarduzzi, T.
Besker, D. Taibi,
A. Martini, F.
Arcelli Fontana

A systematic litera-
ture review on Tech-
nical Debt prioritiza-
tion: Strategies, pro-
cesses, factors, and
tools

JSS 2021 38

N. Rios, M.G.
de Mendonça,
N. Rodrigo, O.
Spı́nola

A tertiary study
on Technical Debt:
Types, management
strategies, research
trends, and base
information for
practitioners

IST 2018 13
(sec-
ondary)

T. Besker, A.
Martini, J. Bosch

Managing
architectural
Technical Debt:
A unified model and
systematic literature
review

JSS 2018 42

W. N. Behutiye,
P. Rodriguez, M.
Oivo, A. Tosun

Analyzing the concept
of Technical Debt in
the context of ag-
ile software develop-
ment: A systematic
literature review

IST 2017 38

C. Fernández-
Sánchez, J.
Garbajosa, A.
Yagüe, J. Perez

Identification and
analysis of the
elements required to
manage Technical
Debt by means of a
systematic mapping
study

JSS 2017 63

N. S.R. Alves, T.
S. Mendes, M.
G. de Mendonça,
R. O. Spı́nola, F.
Shull, C. Seaman

Identification and
management of
Technical Debt: A
systematic mapping
study

IST 2016 100

Z. Li, P. Avge-
riou, P. Liang

A systematic mapping
study on Technical
Debt and its manage-
ment

JSS 2015 94

A. Ampatzoglou,
A. Ampatzoglou,
A. Chatzige-
orgiou and P.
Avgeriou

The financial aspect
of managing Techni-
cal Debt: A system-
atic literature review

IST 2015 69



Definitions. Early studies (2010-2015) attempted to provide

a clear definition of Technical Debt according to existing

literature, practitioners’ insights or (empirical) theory building.

Up to that time, the term was rather ambiguous, with different

authors interpreting it flexibly and placing emphasis on diverse

causes and impacts of poor software quality. It is noteworthy

that 107 definitions of Technical Debt were retrieved from the

literature in 2015 [22]. This quest to define Technical Debt

significantly slowed down when the 2016 Dagstuhl seminar

produced a definition that became well accepted in scientific

literature [7]. The Dagstuhl definition is sometimes debated

regarding the semantics of the concepts (see Section II), but

the definition itself has stood the test of time in the research

community and is broadly referenced. In contrast, software

practitioners still embrace a rather loose, and sometimes

ambiguous Technical Debt definition, also often referring to

Cunnigham’s original definition; this is also the case in all

four organizations that are discussed in Section III.

Conceptual Models. Numerous studies have attempted to

provide a conceptual model of the term that explains the main

notions, such as:

• Concepts from the debt metaphor (e.g., principal, interest,

interest probability, value, bankruptcy, investment)

• Causes (e.g., limited budget, lack of system knowledge,

business pressure)

• Benefits (e.g., gain business opportunities, accelerate soft-

ware release)

• Consequences (e.g., risks, reduced development velocity,

increased cost of change, market loss)

• Artifacts of the software development life cycle affected

by debt (e.g., architecture, design, code, test cases, doc-

umentation)

• Symptoms (e.g., code smells or code complexity)

• How it occurs (e.g., intentional vs. inadvertent, prudent

vs. reckless)

While the 2016 Dagstuhl seminar also produced a concep-

tual model with the main relevant notions [7], we have seen

several such models in recent secondary studies that either

extend existing models or specialize them for specific debt

types. Notably, several studies point out the limitations of

the metaphor and particularly how it differs from financial

debt (e.g., Technical Debt interest is not always paid); this

observation has raised community awareness that the debt

analogy is a useful means of communication but should not

be over-extended to all possible related financial concepts and

needs its own software economics model.

Classifications of Debt. Technical Debt has been classified

into different types. While these classifications are not identical

or aligned, some types consistently repeat across studies,

e.g., architecture, design, code, test and documentation debt.

Some types are often misunderstood. For example, “defect

debt” does not refer to the existence of actual defects but to

knowing of defects and deferring their fixing, as explained in

Section II. Similarly, “requirements debt” does not refer to

unimplemented features but unclear, incomplete or inconsis-

tent requirements specifications that adversely affect software

maintenance. The boundaries of several types are often un-

clear; for example, “design debt” is often not differentiated

from “code debt”, simply because its identification is based

on the analysis of source code.

Process of Technical Debt Management. Unlike outcomes

of research on conceptual models or types of Technical Debt,

there is wide consensus on the various activities constituting

Technical Debt management, with the list from Li et al. [23],

being very broadly used: repayment, identification, measure-

ment, monitoring, prioritization, communication, prevention,

representation/documentation. Most of the existing approaches

on Technical Debt management have focused on identifying

and measuring debt, and to a lesser extent on representing,

monitoring, and repaying it. Measurement predominantly con-

cerns the principal, while Technical Debt interest is far more

challenging to measure [24]. Among these approaches, many

propose tools (see Table II) while others suggest practices

(e.g., dedicated code reviews, or including Technical Debt

items in Agile team backlogs). There are several approaches

that utilize economics theory (e.g., cost benefit analysis or

real options) to exploit the metaphor of debt; although the

adoption of such approaches is rather limited in practice, they

have broadly established the idea that Technical Debt is not

only a liability but also an investment that can be of immense

value to an organization.

Despite the sound understanding of the Technical Debt

management process, current research is characterized by an

almost complete absence of work in human and social aspects.

This is a striking paradox, as Technical Debt is, by and large,

the result of human actions and decisions, both deliberately

and inadvertently. Furthermore, Technical Debt needs to be

understood by humans and needs to be discussed and acted

upon by different stakeholders. This has been validated by

both the exploratory research studies regarding the symptoms,

causes and consequences of Technical Debt management, as

well as the industry challenges identified in Section III.

B. Related fields

Despite being a relatively new subfield of software engi-

neering, Technical Debt research has been published in various

journals and conferences. To obtain a representative overview

of the Technical Debt landscape, we analyzed 193 primary

studies from the pool of papers in [21], appearing in at least

two secondary studies. This inclusion criterion was applied

to ensure both the relevance of each primary article to the

field of Technical Debt and the research rigor of the work.

The majority of research papers (24% of the 193 primary

studies) have been published in the International Conference

on Technical Debt (TechDebt) which started in 2018 and

its predecessor, the International Workshop on Managing

Technical Debt (MTD), first organized in 2010. In terms

of publication type (journals/conferences/books), 73% of the

papers on Technical Debt appear in conferences.

Over the years, Technical Debt articles started appearing in

venues associated with neighboring fields, such as the Mining



Software Repositories conference (MSR) and the International

Conference on Software Maintenance and Evolution (ICSME).

In addition to MSR and ICSME, papers related to Technical

Debt now frequently appear in industry and research tracks of

top software engineering conferences such as the International

Conference on Software Engineering (ICSE) and Foundations

on Software Engineering (FSE) as well as topic-specific

conferences such as International Conference on Software

Architecture (ICSA), International Conference on Program

Comprehension (ICPC), Empirical Software Engineering and

Management (ESEM) and International Conference on Soft-

ware Analysis, Evolution and Reengineering (SANER).

Such widespread research publication is reasonable, since

the tools/methods being employed for identifying, measuring,

and repaying debt often fall under the scope of software

analysis and reverse engineering for improving maintainability.

It is also an indication that Technical Debt management has

become mainstream within the software engineering research

community. From the remaining venues that publish Technical

Debt research, it becomes evident that agile, architecture, and

maintenance communities are increasingly concerned with the

long-term impacts of shortcuts taken on software maintenance

and evolution. As a final note, we remind that the primary

focus of our analysis was peer-reviewed publications; with that

said, Technical Debt has become a regular topic in industry

conferences and gray literature.

C. Tools

Many tools measure properties of software and related ar-

tifacts, beginning with early measurement activities character-

ized by work on project management [25]. While a significant

amount of research focused on tools, it was mostly on applying

commercially available tools and analyzing the outcomes for

indications of debt. There has been a lack of agreement about

what distinguishes a ‘Technical Debt tool’ from one which

is a static code analyzer. These static analysis tools are often

erroneously assumed to be a complete solution for Technical

Debt management. Tools which focus specifically on Technical

Debt should have at least the following properties:

• Uses the Technical Debt metaphor and identify a Techni-

cal Debt Index which defines principal (the cost to refac-

tor or repay the initial debt) and/or interest (additional

costs incurred by the project in the presence of Technical

Debt).

• Enables tradeoff assessment for different decisions in

software development.

• Focuses on code, design, tests, or architecture.

• Is commercially relevant.

This is not exhaustive as Technical Debt tools should be able

to perform a variety of tasks, including finding, measuring,

fixing, or prioritizing debt.

This list of properties excludes the plethora of studies that

examine defect prediction, code smell analysis, or refactoring

support. While clearly relevant to identification and manage-

ment, these studies do not explicitly focus on Technical Debt.

Table II lists tools which have features which assist Technical

Debt management based upon these criteria. Note that the table

is not exhaustive and does not reflect our endorsement of any

particular tool.

Tools primarily automate the detection and measurement of

indicators of Technical Debt. Measurement usually takes the

form of either static analysis rules or dependency measures of

source code connections. Less frequently, measurement uses

software process measures (such as commits over time) based

on activity from social coding sites such as Jira or GitHub.

For example, many Java project tools are based on variants of

the original FindBugs Java code quality ruleset8; for Python,

rules might reference the PEP8 formatting standard or other

such ‘linter’ rules.

Some of the existing tools do an excellent job in identifying

rule violations and non-compliance to principles at the code

level, thereby promoting a culture of ’clean code’ within

development teams. However, a significant number of research

has identified the needs of software practitioners in terms of

usable tools that effectively manage Technical Debt and those

needs are largely unmet. Very few tools focus on Technical

Debt in architecture and design (e.g., DV89 and Arcan10),

which has a much larger impact on the software project and

team as compared to downstream code; for example most tools

give little insights other than how problematic big files are.

Furthermore, current tools do not offer enough automation,

and treat Technical Debt management activities as one-off

exercises instead of continuous. Finally, current tools do not

integrate well with other open source tooling and workflows

used in practice.

In many cases, tools are an entry point for a bigger con-

sulting and change management project. Tools such as CAST

or SonarQube are complex enough to require tool experts to

properly configure them (e.g., by choosing what source code

to include in the analysis, which plugins to use, what rulesets

to use). Most such tools permit ruleset customization, and the

SARIF standard 11 aims to make such rulesets interchangeable.

However, rules are not all equal, and tools rarely agree on

the amount of identified debt [26], [27], since the amount of

customization changes—both in which rules to enable, and

how important a violation is. Thus, a Technical Debt Index as

a construct is very difficult to standardize: what constitutes

critical Technical Debt, mostly based on code quality and

related metric threshold violations, for one tool may not

even be highlighted by another. False positives are also not

uncommon, and yet not easily predicted. From a research

perspective, however, some form of agreement is critical if in-

depth analysis of these tools—for example, whether they agree

on total debt for a given software system—is to be useful.

D. Data Sources and Datasets

Studies to date, in particular those proposing Technical Debt

management approaches, have used a variety of data sources,

8https://findbugs.sourceforge.net/bugDescriptions.html
9https://archdia.com
10https://essere.disco.unimib.it/wiki/arcan/
11https://www.oasis-open.org/committees/tc home.php?wg abbrev=sarif

https://findbugs.sourceforge.net/bugDescriptions.html
https://archdia.com
https://essere.disco.unimib.it/wiki/arcan/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sarif


TABLE II
A SUMMARY OF POPULAR TOOLS USED TO MANAGE TECHNICAL DEBT, EXTENDING THE LIST FROM [28]

Tool (date created) Focus Languages Technical Debt Index Definition

CAST (1998) Code, design, architecture Most Violations * rule criticality * effort
SonarGraph (2006) Design, Arch Java, Kotlin, Python, C#. Structural debt index * minutes to fix
NDepend (2007) Code, design, arch .Net frameworks Violations * fix effort
SonarQube (2007) Code Most, with plugins Cost to develop 1 LOCe * Number of lines of code.
SQUORE (2010) Design, code C++, Java, others with plugins N/A
DV8 (2019) Architecture Penalties: additional bugs and/or changes in lines of code.
Silverthread CodeMRI (2013) Design C++, Java, Fortran, Cobol N/A
Symfony Insight (2019) Code and dependencies PHP Number of issues * time needed to remove the issue
CodeScene (2017) Process, code, design Many Development activity + rule violations
Arcan (2015) Architecture Java, C# Severity and extent of architecture smells
Designite (2016) Code and design Java, C# Design rules violated

mining not only source code repositories and bug tracking

systems, but also documentation, design and requirements

specifications, test reports, backlogs, commit data, change/pull

requests, etc. In addition to automated techniques, several stud-

ies use case study as a research strategy to close information

gaps, which exist when only mining the aforementioned data

sources; often practitioners are surveyed in such studies and

their opinions are related to work artifacts.

Most Technical Debt management approaches also use

indicators or symptoms of debt as input, instead of Technical

Debt items per se, since it is sometimes difficult or even

impossible to identify said Technical Debt items. Thus, most

Technical Debt management studies choose to rely on identi-

fying indicators such as code smells, metrics (e.g., coupling,

test coverage), dependencies, code complexity, etc. as a proxy

for Technical Debt items. One exception to only considering

indicators is Technical Debt management procedures focus-

ing on self-admitted debt [29]: problems, inefficiencies and

pending improvements which are explicitly documented by

the development team in source code comments, issue trackers,

pull requests, commit messages, etc. and can be detected using

various methods.

One of the typical goals of most secondary and tertiary

studies is to examine the coverage of different focus areas

over time to identify which areas are under-studied. The

studies agree that code has been extensively researched for

identifying Technical Debt, that of design and architecture has

received some attention, and to a lesser extent that of test and

documentation [21], [30].

When one looks at existing tools to perform Technical

Debt management, the predominant focus is on code. This

comes in stark contrast with the significance of the latter

compared to architecture and design, which is considered the

main pain point in Technical Debt management [31]. While

several primary and secondary studies emphasize the need to

move away from code to study Technical Debt in architecture

[23], [32], [33], [34], the trend shows the opposite: an even

further increase of studies on code and Technical Debt. This is

understandable: code is more concrete; source code is often the

most reliably up-to-date artifact; and perhaps most importantly,

it is far easier to collect data on. Design and architecture

often involve incomplete or out-of-date documentation, poorly

structured design rules, and consequently offer very scarce

data to mine Technical Debt items (and subsequently use in

relevant empirical studies).

Despite challenges, there are some prominent examples of

data used in research that have served as baselines or shared

community infrastructure as representative datasets. As illus-

trative examples, we list some datasets that specifically identify

Technical Debt Index [35] or Technical Debt discussions as the

unit of analysis in Table III. Overall, existing Technical Debt

datasets found in research reveal the following characteristics:

• All datasets focus on open source, often open source

ecosystems (e.g., Apache). In some cases, a paper with a

tool will report on proprietary data but the data are not

broadly shared [36].

• The datasets are nearly all Java-based. While Java is still

a dominant language, particularly in business software,

we have very little insight into tool performance on older

languages (e.g. ADA) or newer languages (e.g. Python,

Go).

• Most papers build their own datasets, making it very dif-

ficult to compare research results. Analyzing open source

projects with tools such as SonarQube or Codescene is

possible with GitHub integration. With tools such as

Sonarlizer [37] and repository API access, building a

dataset is easier in many ways than downloading and

reusing a third-party dataset.

• Datasets are not validated by humans involved in the

projects and so the connection to real, impact-causing

Technical Debt is hard to quantify.

• The underlying approaches to build a Technical Debt

dataset are highly related: rule-based code linters and

software dependency networks based on different notions

of dependency (such as package imports and method

calls). This means that building datasets can be standard-

ized and reused to facilitate researchers and also allow

for evaluating their validity.

• Datasets based on research into code smells or refactoring

detection are highly relevant, but not much used in

Technical Debt studies.

• There is a disconnect between what a tool might identify



TABLE III
REPRESENTATIVE TECHNICAL DEBT DATASETS

Dataset (with hyperlink) Components

PENTACET [39] Labeled SATD code comments from Java
OSS projects

Lefever, tool comparisons [27] Consensus among tools
ATDx [35] Architecture Technical Debt Index
Amanatidis [26] Agreement among tools on a Technical Debt

Index

as a Technical Debt item or Technical Debt Index, and

whether the developers and other stakeholders on the

project would concur with what the tool finds. Some

studies (e.g., [38]) report on human approval of the

approach, but this is different than a tool which makes its

way into the organization’s toolchain (presumably adding

great value).

E. Themes From the Current State of Research

The analysis of the scientific literature, the tools and the

datasets shared in this section reveal a number of common

themes, similar to and overlapping with the industry themes

in Section III:

• Code prioritized above architecture. The proverbial lamp

post research tends to focus on the easy part (code

analysis) rather than the much more valuable but also

challenging part (architecture) to analyze Technical Debt.

• Tools fall short. Tools that are currently used in practice

offer a starting point for discussion, instead of an in-depth

analysis of important Technical Debt items.

• Inadequate datasets. We currently lack standardized

datasets (that allow comparison between tools) and per-

tinent datasets (beyond Java projects and Open Source

systems)

• Unclear scope. There is still use of different Technical

Debt types (e.g. defect debt, requirement debt) in an

ambiguous way, hampering research progress. Also, other

kinds of debt (e.g. security, social or AI debt) are used

without being defined and without clarifying their relation

to Technical Debt, and lead to fragmentation of research.

• Weak validation. Most of the tools and the datasets are

not validated with human subjects, casting doubt about

their validity and their relevance to industry.

• Narrow research. There isn’t sufficient emphasis on the

social side of Technical Debt management, while research

in a number of related fields is mostly isolated.

V. VISION FOR ESSENTIAL TECHNICAL DEBT

MANAGEMENT

We have analyzed the scientific literature, tools for manag-

ing Technical Debt, research datasets, and most importantly

the state of practice perspectives in four representative indus-

trial organizations. These have guided us to derive common

themes both from what the industry needs (end of Section

III) and what the research currently lacks (end of Section

IV). Based on these themes, we next present our vision for

how Technical Debt management should be practiced and

researched in five years from now. This vision consists of a

number of points; Table IV, summarizes these points and how

the themes from industry and research map to them.

Technical Debt as Value Creation

Software teams will learn how to effectively apply emerging

Technical Debt management techniques, tools, and proven

strategies to avoid debt unnecessarily creeping into systems.

Having said that, inherent in the definition of any type of

debt, and specific to Technical Debt as we have defined

it, incurring debt can create value. For this to occur, the

practices and discussion around managing Technical Debt

will shift to conscious value-add tradeoff management, and

will be conducted collaboratively with business stakeholders.

Development teams will be empowered to collaborate by tools

that help them ”translate” Technical Debt and its consequences

into business terms such as ROI.

One of the largest promises of Technical Debt, perhaps

not always well communicated, is that it can and should be

positively applied, to capture value (analogous to a monetary

loan for a useful purchase). It is imperative to raise awareness

among software engineers, architects, and stakeholders of this

shift in the perception of Technical Debt as “bad quality” to a

“value generation and beneficial management” perspective. A

shift to a value creation perspective in managing Technical

Debt [40] will enable more powerful financial models to

emerge from research and practice and assist ROI of taking on,

keeping, and removing Technical Debt decisions. This positive

attitude will help business stakeholders to take co-ownership

of Technical Debt management.

Prioritize Architecture Above Code

Technical Debt management will focus on early devel-

opment decisions, especially architectural ones, that will be

proactively analyzed and managed across the software life

cycle. The priority will shift from low-level code issues

to more expensive (difficult to change) decisions that are

explicitly acknowledged as causes of Technical Debt items and

prominently placed in the backlog. By architecture, we refer

to multiple abstraction levels including system context and

system landscape, as well as tradeoffs among technology and

design choices. Many organizations will have adopted the use

of standardized architecture views, e.g., applying Krutchen’s

4+1 Views [15] and extending to other appropriate ones [41],

leading to more concrete architecture artifacts where tooling

can consistently identify and track Technical Debt items.

Development tools and teams alike will have incorporated

holistic tradeoff analysis into all major and irreversible de-

cision milestones encountered over the system life. Teams

will routinely review, forecast, and identify areas where costly

Technical Debt could occur, and act proactively. Approaches

on mining self-admitted architecture Technical Debt from a

variety of sources such as code comments, issue trackers, pull

https://zenodo.org/record/7757462
https://zenodo.org/record/4588039
https://github.com/S2-group/ATDx_replication_package
https://zenodo.org/record/3979784


requests, and commit messages are complementary to source

code analysis, and will enable Technical Debt detection in

architecture that is not explicit in source code (e.g., poor design

decisions or outdated third-party components). The reactive

recognition and disposition of large Technical Debt items only

after they become too costly to ignore will have become an

unsustainable relic of the past.

Technical Debt Management using Next-Generation

Tools

We currently experience rapid technology advancements

associated with AI-based capabilities and tooling automation.

These revolutionary changes have the potential to make in-

cremental progress in how Technical Debt management is

orchestrated. Advanced tooling will assist with developing

and analyzing code; developers will avoid implementation

mistakes or catch them much sooner. Consequently, effort

spent on managing code Technical Debt will diminish, thereby

providing opportunities to explore more targeted detection

and reduction of more important, architecture Technical Debt.

Tools which automate Technical Debt identification, measure-

ment, documentation, prioritization, monitoring and repayment

activities will be incorporated into developer routine work-

flows.

Increased levels of tool sophistication and automation will

enable common and consistent Technical Debt management

across projects where organizations will use these data to make

informed decisions on where to best apply limited maintenance

budgets. Proactive Technical Debt management will enable

continuous monitoring and scenario analyses that can con-

vey implications of business in Technical Debt management

decision-making.

Current tools which analyze source code files to detect a

limited set of dependency-based architecture smells and other

structures (e.g. DV8 and Arcan) will expand their capabilities

to analyze a broad set of smells and architectural anti-patterns.

They will seamlessly and timely track the evolution of Tech-

nical Debt over time and will enable monitoring of risky and

costly architectural problems.

AI-augmented and other tools, based on generative AI or

other methods alike, will provide features such as: auto-

matically detecting debt in code, comments, issues on the

fly (i.e. as they are written) and documenting the Technical

Debt item (even as simply as tagging an issue as Technical

Debt); preventing debt by prompting the developer whether

it is worth taking the shortcut or whether an alternative good

solution should be considered; helping to prioritize repayment

depending on the available resources and the ROI; (semi-)

automatically repaying debt by following automated program

repair, suggesting refactorings and implementing them. Such

tools will be trained on appropriate code and will not create

additional debt.

Technical Debt Management Reflects Continuous

Practice

Technical Debt management will be fully incorporated into

a continuous software development life cycle. A shift to inten-

tional, data-driven, and well documented Technical Debt will

occur, resulting in concrete discussions around how to react

when the debt stops being of value, what attributes, practices

and tools are needed to monitor it, and in what intervals

to revisit the decisions with ample and domain-specific data

to support the Technical Debt management process. Such

continuous practice will be supported by dashboards for a wide

variety of stakeholders enabling improved insights into system

development and evolution.

Resulting best practices from practitioners for this continu-

ous management will be codified and applied broadly across

industry, similar to other workflows in software engineering

such as continuous integration/continuous deployment. Prin-

ciples of Technical Debt management, such as translating

technical results to business language, will be extended, and

routinely exercised as a core part of disciplined software

engineering further strengthening broadly accepted continuous

management of Technical Debt in software organizations.

Technical Debt Research is Data-driven and Relevant

Sophisticated tools and especially those supporting the

aforementioned continuous practice will have produced rich

industry datasets, expanding on the examples in Table III.

New datasets will not only be readily available, but will

also complement open source code with industrial systems,

in a variety of languages and contexts. They will therefore

represent the complexity of Technical Debt issues in practice,

reflecting the progressive phases that accumulated Technical

Debt items undergo as systems evolve.

In addition, datasets will be curated following empirical

principles and practices while being validated with the help

of practitioners in the field with longitudinal studies. All

datasets will enable transparency and reproducibility by iden-

tifying which practices enabled their collection, as well as

what practices or principles are represented in them at what

point in time. Datasets will represent not only the most

tangible outcome of the cross-pollination between industry

and research, but also the value of incorporating Technical

Debt management to software development and evolution from

cradle to grave.

Going forward, Technical Debt management research will

be cognizant to avoid ‘lamp post research’ and scope work

with awareness of industry challenges. The discussion on

what is and what is not debt will have ceased. The research

community will turn its attention to solving practical problems

negatively impacting industry. Studies classifying types of debt

will simply reflect the artifact being studied in reference to

Technical Debt in a given study. Both researchers and prac-

titioners will systematically put into use the aforementioned

litmus test (see Section II) on whether an item is classified as

Technical Debt: does it incur interest when being changed?



TABLE IV
MAPPING BETWEEN INDUSTRY NEEDS (SECTION III), RESEARCH GAPS (SECTION IV), AND VISION FOR TECHNICAL DEBT MANAGEMENT (SECTION V)

Needs from Industry Research shortcomings Vision

Value generation & ROI Technical Debt as value creation
Architecture in addition to code Code prioritized above architecture Prioritize architecture above code
More capable tools Tools fall short Technical Debt management using next-gen tools
Continuous practice Technical Debt management reflects continuous practice
Common principles and practices Inadequate datasets; weak validation; unclear scope Technical Debt research is data-driven and relevant

Narrow research Technical Debt research is socio-technical and multi-
disciplinary

Technical Debt Research is Socio-Technical and Multi-

disciplinary

Research in Technical Debt will address the social aspects

on equal grounds with the technical ones. The reasons that

software practitioners incur Technical Debt will have become

crystal clear, while supporting both individuals and teams in

preventing, or eventually managing the accumulated debt from

a socio-technical point of view will be the norm. The body of

knowledge in software engineering research regarding human

and social aspects will be well utilized in investigating how

those aspects affect the way Technical Debt is incurred and

eventually managed. New areas of research to understand how

to reduce or eliminate systematic causes of Technical Debt will

emerge.

At the same time, a number of fields will be involved

and contribute, each from its own perspective, to developing

new theory and tools in Technical Debt management: Mining

Software Repositories, Maintenance and Evolution, Empirical

Software Engineering, Program Analysis, Automated Software

Engineering, Software Architecture, Refactoring/Repair, Hu-

man Aspects of Software Engineering, Software Economics.

Research with all those different types of expertise will find

synergy points and attack the problem from their perspective

to innovate in ways that are not possible when working in

isolation.

VI. CONCLUSION

The vision we have put forward is a synthesis of practical

and research challenges for Technical Debt management. What

is unique in the vision is that it challenges the research and

practitioner communities that a shift in perspective is possible.

It is possible to scope research problems to make progress on

the most pervasive issues, extending the focus of Technical

Debt research beyond code. While code-level artifacts can be

accurately analyzed and measured, what really matters in large

and evolving software systems is architecture Technical Debt

and its management, but is more elusive and much harder upon

which to collect data.

Technical Debt is a pervasive phenomenon in software

systems. It always existed in systems, it will continue to

exist in the future. A best path for improved Technical Debt

management involves researchers, practitioners, and tool ven-

dors working collaboratively and aggressively in parallel to

develop tools, empower culture change to embrace practices,

and develop Technical Debt management financial models to

shift the focus on value generation to avoid lamp post research.

ACKNOWLEDGMENT

Copyright 2023 IEEE. Authors Ozkaya and Shull’s con-

tributions to this material is based upon work funded and

supported by the Department of Defense under Contract No.

FA8702-15-D-0002 with Carnegie Mellon University for the

operation of the Software Engineering Institute, a federally

funded research and development center. References herein to

any specific commercial product, process, or service by trade

name, trade mark, manufacturer, or otherwise, does not nec-

essarily constitute or imply its endorsement, recommendation,

or favoring by Carnegie Mellon University or its Software

Engineering Institute. DM23-0979

REFERENCES

[1] E. Poort, “A technical debt fairy tale,”
2023, accessed: 2023-09-12. [Online]. Available:
https://www.linkedin.com/pulse/technical-debt-fairy-tale-eltjo-poort/

[2] W. Cunningham, “The wycash portfolio management system,” in Proc.

OOPSLA Exp. Rep. Vancouver, British Columbia, Canada: ACM, 1992.
[3] D. Soman, G. Ainslie, S. Frederick, X. Li, J. Lynch, P. Moreau,

A. Mitchell, D. Read, A. Sawyer, Y. Trope, K. Wertenbroch, and
G. Zauberman, “The psychology of intertemporal discounting: Why
are distant events valued differently from proximal ones?” Marketing

Letters, vol. 16, no. 3-4, pp. 347–360, Dec. 2005. [Online]. Available:
https://doi.org/10.1007/s11002-005-5897-x

[4] P. Kruchten, R. Nord, and I. Ozkaya, Managing Technical Debt: Reduc-

ing Friction in Software Development. Addison-Wesley Professional,
2019.

[5] C. Jaspan and C. Green, “Defining, measuring, and managing technical
debt,” IEEE Software, vol. 40, no. 3, pp. 15–19, 2023.

[6] W. Trumler and F. Paulisch, “How “specification by example” and test-
driven development help to avoid technial debt,” in 2016 IEEE 8th

International Workshop on Managing Technical Debt (MTD), 2016, pp.
1–8.

[7] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. B. Seaman, “Managing
technical debt in software engineering (dagstuhl seminar 16162),”
Dagstuhl Reports, vol. 6, no. 4, pp. 110–138, 2016. [Online]. Available:
https://doi.org/10.4230/DagRep.6.4.110

[8] P. Avgeriou, P. Kruchten, R. L. Nord, I. Ozkaya, and C. Seaman,
“Reducing friction in software development,” IEEE Software, vol. 33,
no. 01, pp. 66–73, jan 2016.

[9] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In search
of a metric for managing architectural technical debt,” in 2012 Joint

Working IEEE/IFIP Conference on Software Architecture and European

Conference on Software Architecture, 2012, pp. 91–100.
[10] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten,

E. Lim, A. MacCormack, R. L. Nord, I. Ozkaya, R. S. Sangwan,
C. B. Seaman, K. J. Sullivan, and N. Zazworka, “Managing technical
debt in software-reliant systems,” in Proceedings of the Workshop

on Future of Software Engineering Research, FoSER 2010, at the
18th ACM SIGSOFT International Symposium on Foundations of

https://www.linkedin.com/pulse/technical-debt-fairy-tale-eltjo-poort/
https://doi.org/10.1007/s11002-005-5897-x
https://doi.org/10.4230/DagRep.6.4.110


Software Engineering, 2010, Santa Fe, NM, USA, November 7-11,

2010, G. Roman and K. J. Sullivan, Eds. ACM, 2010, pp. 47–52.
[Online]. Available: https://doi.org/10.1145/1882362.1882373

[11] C. Bird, D. Ford, T. Zimmermann, N. Forsgren, E. Kalliamvakou,
T. Lowdermilk, and I. Gazit, “Taking flight with copilot,” Commun.

ACM, vol. 66, no. 6, p. 56–62, may 2023. [Online]. Available:
https://doi.org/10.1145/3589996

[12] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
and A. Shapochka, “A case study in locating the architectural roots of
technical debt,” in 2015 IEEE/ACM 37th IEEE International Conference

on Software Engineering, vol. 2, 2015, pp. 179–188.

[13] National Defense Authorization Act, 2022. Sec. 835. independent study
on technical debt in software-intensive systems. [Online]. Available:
https://www.congress.gov/117/plaws/publ81/PLAW-117publ81.pdf

[14] I. Ozkaya, F. Shull, J. Cohen, and B. O’Hearn, “Report to the congres-
sional defense committees on national defense authorization act (ndaa)
for fiscal year 2022 section 835 independent study on technical debt in
software-intensive systems,” Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2023-TR-003,
2023.

[15] P. Kruchten, “The 4+1 view model of architecture,” IEEE
Softw., vol. 12, no. 6, p. 42–50, nov 1995. [Online]. Available:
https://doi.org/10.1109/52.469759

[16] J. M. McQuade, R. M. Murray, G. Louie, M. Medin,
J. Pahlka, and T. Stephens, “Software is never done:
Refactoring the acquisition code for competitive advantage,”
Defense Innovation Board, Tech. Rep., 2019. [Online]. Available:
https://media.defense.gov/2019/Mar/26/2002105909/-1/-1/0/SWAP.REPORT MAIN.BODY.3.21.19.PDF

[17] Office of the Under Secretary of Defense for Acquisition
and Sustainment, “DOD instruction 5000.87: Operation
of the software acquisition pathway,” US Department
of Defense, Tech. Rep., 2020. [Online]. Available:
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF

[18] Department of Defense Software Strategy Coordinator, “Department
of defense software science and technology strategy,” US
Department of Defense Office of the Undersecretary for
Research and Engineering, Tech. Rep., 2021. [Online]. Available:
https://ac.cto.mil/wp-content/uploads/2022/04/ST-Strategy-Nov2021.pdf

[19] E. R. Poort and H. van Vliet, “RCDA: Architecting as a risk-
and cost management discipline,” Journal of Systems and Software,
vol. 85, no. 9, pp. 1995–2013, Sep. 2012. [Online]. Available:
https://doi.org/10.1016/j.jss.2012.03.071

[20] E. Poort, C. Pautasso, and O. Zimmermann, “Just enough anticipation:
Architect your time dimension,” IEEE Software, vol. 33, no. 6, pp. 11–
15, 2016.

[21] H. J. Junior and G. H. Travassos, “Consolidating a
common perspective on technical debt and its management
through a tertiary study,” Information and Software Tech-

nology, vol. 149, p. 106964, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584922001057

[22] D. Poliakov, “A systematic mapping study on technical debt definition,”
Master’s thesis, Lappeenranta University of Technology, 2015, available
at https://lutpub.lut.fi/handle/10024/104728.

[23] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study
on technical debt and its management,” Journal of Systems

and Software, vol. 101, pp. 193–220, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121214002854

[24] A. Martini and J. Bosch, “The magnificent seven: Towards a
systematic estimation of technical debt interest,” in Proceedings of

the XP2017 Scientific Workshops, ser. XP ’17. New York, NY,
USA: Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3120459.3120467

[25] B. Boehm, Software Engineering Economics, ser. Prentice-Hall advances
in computing science and technology series. Prentice-Hall, 1981. [On-
line]. Available: https://books.google.gr/books?id=mpZQAAAAMAAJ

[26] T. Amanatidis, N. Mittas, A. Moschou, A. Chatzigeorgiou,
A. Ampatzoglou, and L. Angelis, “Evaluating the agreement among
technical debt measurement tools: building an empirical benchmark
of technical debt liabilities,” Empirical Software Engineering,
vol. 25, no. 5, pp. 4161–4204, Aug. 2020. [Online]. Available:
https://doi.org/10.1007/s10664-020-09869-w

[27] J. Lefever, Y. Cai, H. Cervantes, R. Kazman, and H. Fang,
“On the lack of consensus among technical debt detection
tools,” in Proceedings of the 43rd International Conference on

Software Engineering: Software Engineering in Practice, ser. ICSE-
SEIP ’21. IEEE Press, 2021, p. 121–130. [Online]. Available:
https://doi.org/10.1109/ICSE-SEIP52600.2021.00021

[28] P. C. Avgeriou, D. Taibi, A. Ampatzoglou, F. A. Fontana, T. Besker,
A. Chatzigeorgiou, V. Lenarduzzi, A. Martini, A. Moschou, I. Pigazzini,
N. Saarimaki, D. D. Sas, S. S. de Toledo, and A. A. Tsintzira, “An
overview and comparison of technical debt measurement tools,” IEEE

Software, vol. 38, no. 3, pp. 61–71, may 2021. [Online]. Available:
https://doi.org/10.1109%2Fms.2020.3024958

[29] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in 2014 IEEE International Conference on Software

Maintenance and Evolution, 2014, pp. 91–100.
[30] N. Rios, M. G. de Mendonça Neto, and R. O. Spı́nola, “A tertiary

study on technical debt: Types, management strategies, research
trends, and base information for practitioners,” Information and

Software Technology, vol. 102, pp. 117–145, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584918300946

[31] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton,
“Measure it? manage it? ignore it? software practitioners and technical
debt,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. ACM, aug 2015. [Online]. Available:
https://doi.org/10.1145%2F2786805.2786848

[32] N. S. Alves, T. S. Mendes, M. G. de Mendonca, R. O.
Spı́nola, F. Shull, and C. Seaman, “Identification and management
of technical debt: A systematic mapping study,” Information and

Software Technology, vol. 70, pp. 100–121, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584915001743

[33] W. N. Behutiye, P. Rodrı́guez, M. Oivo, and A. Tosun, “Analyzing
the concept of technical debt in the context of agile software
development: A systematic literature review,” Information and

Software Technology, vol. 82, pp. 139–158, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584916302890

[34] T. Besker, A. Martini, and J. Bosch, “Technical debt cripples software
developer productivity: A longitudinal study on developers’ daily
software development work,” in Proceedings of the 2018 International

Conference on Technical Debt, ser. TechDebt ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 105–114.
[Online]. Available: https://doi.org/10.1145/3194164.3194178

[35] R. Verdecchia, I. Malavolta, P. Lago, and I. Ozkaya, “Empirical evalua-
tion of an architectural technical debt index in the context of the apache
and onap ecosystems,” PeerJ Computer Science, vol. 8, p. e833, 2022.

[36] A. Tornhill and M. Borg, “Code red: the business impact of
code quality - a quantitative study of 39 proprietary production
codebases,” in Proceedings of the International Conference

on Technical Debt. ACM, may 2022. [Online]. Available:
https://doi.org/10.1145%2F3524843.3528091

[37] D. Pina, A. Goldman, and C. Seaman, “Sonarlizer xplorer,” in Proceed-

ings of the International Conference on Technical Debt. ACM, may
2022. [Online]. Available: https://doi.org/10.1145%2F3524843.3528098

[38] H. Fang, Y. Cai, R. Kazman, and J. Lefever, “CIDER,” in Proceedings of

the ACM/IEEE 44th International Conference on Software Engineering:

Companion Proceedings. ACM, may 2022. [Online]. Available:
https://doi.org/10.1145%2F3510454.3516861

[39] M. Sridharan, L. Rantala, and M. Mäntylä, “PENTACET data - 23
Million Contextual Code Comments and 500,000 SATD comments,”
Mar. 2023. [Online]. Available: https://doi.org/10.5281/zenodo.7757462

[40] R. Banker, Y. Liang, and N. Ramasubbu, “Technical debt and firm
performance,” Management Science, vol. 67, no. 5, pp. 3174–3194,
May 2021. [Online]. Available: https://doi.org/10.1287/mnsc.2019.3542

[41] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Mer-
son, R. Nord, and J. Stafford, Documenting Software Architectures:

Views and Beyond, 2nd edition, ser. SEI Series in Software Engineering.
Addison-Wesley, 2010.

https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1145/3589996
https://www.congress.gov/117/plaws/publ81/PLAW-117publ81.pdf
https://doi.org/10.1109/52.469759
https://media.defense.gov/2019/Mar/26/2002105909/-1/-1/0/SWAP.REPORT_MAIN.BODY.3.21.19.PDF
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF
https://ac.cto.mil/wp-content/uploads/2022/04/ST-Strategy-Nov2021.pdf
https://doi.org/10.1016/j.jss.2012.03.071
https://www.sciencedirect.com/science/article/pii/S0950584922001057
https://lutpub.lut.fi/handle/10024/104728
https://www.sciencedirect.com/science/article/pii/S0164121214002854
https://doi.org/10.1145/3120459.3120467
https://books.google.gr/books?id=mpZQAAAAMAAJ
https://doi.org/10.1007/s10664-020-09869-w
https://doi.org/10.1109/ICSE-SEIP52600.2021.00021
https://doi.org/10.1109%2Fms.2020.3024958
https://www.sciencedirect.com/science/article/pii/S0950584918300946
https://doi.org/10.1145%2F2786805.2786848
https://www.sciencedirect.com/science/article/pii/S0950584915001743
https://www.sciencedirect.com/science/article/pii/S0950584916302890
https://doi.org/10.1145/3194164.3194178
https://doi.org/10.1145%2F3524843.3528091
https://doi.org/10.1145%2F3524843.3528098
https://doi.org/10.1145%2F3510454.3516861
https://doi.org/10.5281/zenodo.7757462
https://doi.org/10.1287/mnsc.2019.3542

	Introduction
	What is Technical Debt?
	Technical Debt versus Other Debts and Issues
	Technical Debt Research and Practice at An Inflection Point

	Current State of Industry Practice and Challenges
	Technical Debt and Safety Critical Systems
	Technical Debt and Legacy Systems Portfolio Management
	Technical Debt, Speed and Quality For Organizations Developing Custom Software
	Technical Debt Ownership by Business and Architecture in Large Organizations
	Themes from Industry Perspectives

	Reflections from more than a decade of Technical Debt research
	Research Focus Areas in Technical Debt
	Related fields
	Tools
	Data Sources and Datasets
	Themes From the Current State of Research

	Vision for Essential Technical Debt Management
	Conclusion
	References

