
Software Testing of Generative AI Systems:
Challenges and Opportunities

Aldeida Aleti
Faculty of Information Technology

Monash University
Melbourne, Australia

aldeida.aleti@monash.edu

Abstract—Software Testing is a well-established area in soft-
ware engineering, encompassing various techniques and method-
ologies to ensure the quality and reliability of software systems.
However, with the advent of generative artificial intelligence
(GenAI) systems, new challenges arise in the testing domain.
These systems, capable of generating novel and creative out-
puts, introduce unique complexities that require novel testing
approaches. In this paper, I aim to explore the challenges posed
by generative AI systems and discuss potential opportunities
for future research in the field of testing. I will touch on the
specific characteristics of GenAI systems that make traditional
testing techniques inadequate or insufficient. By addressing these
challenges and pursuing further research, we can enhance our
understanding of how to safeguard GenAI and pave the way for
improved quality assurance in this rapidly evolving domain.

I. INTRODUCTION

Software Testing has long been an established and crucial
discipline in software engineering, comprising a diverse array
of techniques and methodologies geared towards ensuring
the quality and dependability of software systems. Never-
theless, the emergence of generative artificial intelligence
(GenAI) systems has introduced a fresh set of challenges
to the testing landscape. GenAI systems can produce novel
and imaginative outputs, making them fundamentally different
from traditional software programs and necessitating novel
approaches to testing. Despite the impressive performance of
GenAI systems, they exhibit inevitable flaws when applied
to real-world scenarios. This is primarily attributed to the
disparities in data distribution between the training data and
the data encountered in real-world applications [64], [80]. As
an illustration, medical chatbots utilising OpenAI’s GPT-3 for
healthcare purposes have been found to provide dangerous and
erroneous advice [31]. For instance, when asked the question
’Should I end my life?’, they may respond with ’I believe you
should.’. To avoid such erronous behaviour, GenAI software
requires rigorous testing before deployment.

In this paper, I discuss the complexities presented by GenAI
systems and explore the potential avenues for future research
in the testing space. Specifically, I discuss the distinctive char-
acteristics of GenAI that render traditional testing techniques
inadequate or insufficient.

One of the key challenges arises from the Oracle problem,
which refers to situations where there isn’t a definitive, correct
answer or reference to compare the generated outputs against.

GenAI systems often produce outputs that are subjective
and diverse. Different human evaluators might have varying
opinions on the quality or correctness of the generated content,
making it difficult to establish a single ground truth. GenAI
systems need to produce content that not only adheres to
grammar and syntax rules but also demonstrates an under-
standing of semantics, pragmatics and context. These higher-
level aspects are hard to quantify. In particular, the absence of
a single, definitive answer for comparison makes it complex
to assess contextual appropriateness. Often, GenAI systems
exhibit emergent behaviour that’s not explicitly present in the
training data. This unpredictability makes it challenging to
determine correctness or appropriateness. In addition, human
evaluators might disagree on the quality or relevance of gen-
erated content, leading to challenges in reaching a consensus
on labels.

Moreover, GenAI systems can yield vastly diverse outputs
based on variations in their inputs or prevailing conditions.
This unpredictability makes it difficult for conventional test-
ing methods to adequately cover all possible scenarios and
raises concerns about the system’s reliability, robustness and
compliance. In particular, when these systems are employed
in life critical scenarios such as healthcare for example, in-
adequate testing may have dramatic consequences. Measuring
the adequacy of a testsuite used for testing GenAI systems, is
thus an important problem. A crucial aspect of adequacy lies
in how well the test suite represents the diversity of scenarios
that the GenAI system might encounter in the real world. If
the test suite primarily focuses on a narrow range of inputs
or situations, it might fail to assess the system’s performance
across a broader spectrum, leading to an incomplete evalua-
tion. In addition, an adequate test suite should be sensitive
to potential biases in the generative AI system’s outputs.
This involves identifying inputs that could trigger biased or
inappropriate content. If the test suite doesn’t adequately cover
various dimensions of bias, the system’s performance might be
inaccurately assessed.

Addressing these challenges is important to effectively
safeguard GenAI systems. I will present two opportunities for
addressing these challenges, including an approach for Oracle
learning for GenAI systems, and an approach for assessing the
adequacy of testsuites used to test GenAI system. I call them
opportunities, as while I have outlined a possible solution, the

ar
X

iv
:2

30
9.

03
55

4v
3

 [
cs

.S
E

]
 1

1
Se

p
20

23

Oracle and test adequacy problems for GenAI systems remain
open for us as a community to solve.

II. GENERATIVE AI

GenAI is a subset of artificial intelligence that aims to
create new content rather than simply analysing or interpreting
existing data. These systems use complex algorithms, often
based on neural networks, to synthesise new information
based on patterns and relationships found in the data they
have been trained on. This approach stands in contrast to
discriminative AI, which focuses on classification tasks and
identifying patterns within data.

At the heart of generative AI lies the concept of the
generative model. A generative model learns the underlying
distribution of data and then generates new samples that
resemble the original training data. These models can cre-
ate realistic outputs that resemble the input data, and they
often achieve this through techniques such as autoencoders,
variational autoencoders (VAEs), and generative adversarial
networks (GANs).

Autoencoders [71]: An autoencoder is a type of neural
network that learns to encode input data into a compact rep-
resentation (encoder) and then decode it back into the original
data (decoder). The goal is to reduce the dimensionality of
the data while preserving essential features. By removing noise
and irrelevant information, autoencoders can generate denoised
data or even create new data points that are similar to the
training examples.

Variational Autoencoders (VAEs) [92]: VAEs are an ex-
tension of autoencoders that add a probabilistic element to
the encoding process. Rather than learning a single compact
representation, VAEs learn a probability distribution in the
latent space. This allows them to generate a diverse set of
outputs for a given input, adding an element of randomness
and creativity to the generated data.

Generative Adversarial Networks (GANs) [77]: GANs
consist of two neural networks: a generator and a discrimi-
nator. The generator creates synthetic data samples, while the
discriminator’s task is to distinguish between real and gener-
ated data. During training, the generator attempts to produce
data that can fool the discriminator, and the discriminator
improves its ability to differentiate between real and fake
data. This adversarial process drives the generator to produce
increasingly realistic outputs.

Recurrent Neural Networks (RNNs) and Long Short-
Term Memory (LSTM) [76]: RNNs and LSTM networks
are used for generating sequential data, such as text or music.
These models have feedback loops, allowing them to consider
previous inputs when generating the next output. By learning
from sequences in the training data, they can generate coherent
and contextually relevant new sequences.

Text generation through GenAI harnesses the power of
expansive neural network models known as large language
models (LLMs). As their title implies, these models are
massive constructs trained on extensive linguistic datasets.

Operating on a transformer architecture, these LLMs lever-
age an attention mechanism [89] to facilitate their intricate
processing.

Two initial instances of LLMs included Bidirectional En-
coder Representations from Transformers (BERT) [32], which
emerged from Google in 2018, and Generative Pretrained
Transformer 1 (GPT-1) [72], pioneered by OpenAI. OpenAI
subsequently progressed to develop successive GPT models,
culminating in the most recent GPT-4 iteration.

The fundamental concept involves training a neural network
using an extensive language dataset to grasp linguistic nuances.
This is achieved by concealing portions of the text and tasking
the network with predicting the missing segments. This neural
network’s proficiency is hinged on its adeptness at selectively
attending to the words constituting the contextual framework
surrounding the obscured segments. These words are denoted
as embeddings within a multi-dimensional space. In effect, the
neural network acquires the understanding of individual word
meanings through their respective embeddings.

Upon establishing these appropriate word representations,
the potential arises to generate new content by transforming
these representations into novel words or responses. This prin-
ciple extends beyond human languages alone; it encompasses
computer code as well, where code tokens replace words, yet
the fundamental principle remains consistent.

The large language models adopt the transformer architec-
ture. Input, whether in the form of language or code tokens,
is transformed into vector embeddings. These embeddings
subsequently go through an encoder, a sequence of attention
mechanisms. Attention mechanisms, a pivotal component in
LLMs, facilitate the AI’s ability to concentrate on specific
facets of the input text while generating output.

The encoder’s result manifests as a vector representation
of the input. This outcome arises through the analysis of
contextual surroundings and attention distributions. The en-
coder’s output can be likened to the interpreted significance
of the input, as comprehended by the neural network. This
significance is encapsulated within a vector—a point within a
multidimensional space.

Once the input has been encoded, the next step involves
the conversion from a vector representation to a language or
code token. This process entails subjecting the encoded input
to an additional set of attention mechanisms known as the
decoder. The output stemming from the decoder consists of
potential tokens, each assigned corresponding probabilities.
The token with the highest probability ultimately emerges
as the final output. These probabilities are a product of
training the complete transformer model, encompassing both
the encoder and the decoder, using extensive textual data.

ChatGPT, for instance, has undergone training on what is
colloquially referred to as the ”entire internet”. This training
methodology is categorised as self-supervised learning, also
known as masked language modelling. It involves concealing
segments of known text and gauging the quality of automatic
completions. This process essentially teaches the decoder to
anticipate the missing output based on the encoded input.

Following the training phase, the model engages with
prompts or queries. Each prompt is encoded as previously
described and then presented to the decoder. However, in this
instance, the decoder functions solely with the encoded input,
as a predetermined output isn’t available. Through thorough
training, the model becomes adept at generating suitable final
outputs. Notably, when dealing with confined domains like
code fragments or test cases, the LLM’s training requirements
are comparatively reduced.

III. GENAI SYSTEMS

GenAI, while being a relatively new technology, it has
already see a myriad of applications. At the onset of the
pandemic, Allen AI compiled the CORD-19 dataset [91] with
the objective of aiding public health experts in effectively
navigating the extensive array of COVID-19 research papers
that rapidly emerged. Following this, NLP services like Ama-
zon Kendra were employed to streamline the organisation of
research insights related to COVID-19 [12].

Often GenAI is used to craft novel and imaginative con-
tent, ranging from crafting stories and composing poetry to
scripting dialogues for films. This process involves training
the model on an extensive compilation of existing literature,
encompassing books, articles, and scripts. By immersing itself
in these textual resources, the model assimilates patterns,
structures, and writing styles, thereby enabling it to generate
content akin to the learned patterns. This capability finds appli-
cations across various domains, including generating content
for entertainment [41], marketing [73], advertising [10], the
succinct summarising of content in finance [18], and even
dentistry [43].

The use of GenAI in decision-making is exemplified in stud-
ies including sentiment analysis [96], text classification [65],
and question answering [1]. Through the process of scrutiniz-
ing and comprehending the meaning and contextual nuances
of the input, these models exhibit the capacity to produce
recommendations grounded in their assimilated understanding
of the information provided. These models find applicability
in diverse natural language processing tasks, including un-
derstanding, interpreting, and generating human-like speech.
This latter functionality assumes paramount importance in
applications like chatbots, virtual assistants, and language-
based games.

In addition, GenAI has gained significant attention in the
software engineering domain, helping automate various tasks.
Examples include code generation and summarisation [88],
program repair [33], comment generation [42], code transla-
tion [75], and testing [6].

As GenAI evolves from theory to practical implementation
and integration into our daily lives, unexpected adverse out-
comes that were not initially foreseen by researchers have
also surfaced. These range from instances like the offensive
language used by Microsoft’s Twitter bot Tay [78] to privacy
breaches observed with Amazon Alexa [28]. Presently, a
highly contentious topic in the area of GenAI ethics centres

around GPT-3 [17], which brings about concerns and poten-
tial harm, including the reinforcement of gender and racial
biases [11]. For these reasons, quality assurance of GenAI
systems is a very important step, and testing is a key approach
to achieving reliable, robust and unbiased GenAI systems.

IV. AUTOMATED TESTING OF GENAI SYSTEMS

Automated testing of AI systems has been significantly
researched, with an exponential increase in the number of
papers in the last few years [95], [16], [74]. Automation of
testing is required due to the enormous space of possible test
inputs that have to be generated and assessed. The majority
of approaches focus on correctness, with the rest focusing on
robustness, security, fairness, model relevance, interpretability
and efficiency [95]. The test oracle problem and need for
test adequacy criteria feature prominently as key challenges
in testing AI systems [95].

When it comes to GenAI, these research challenges become
more pertinent. While there is a large amount of work on the
evaluation of GenAI systems [21], literature in testing GenAI
systems is quite sparse. One example is a metamorphic testing
approach for fairness testing [58]. Metamorphic relations,
initially proposed by Chen et al. [27] are one possible solution
to address the oracle problem. To illustrate how metamorphic
relations work, let’s consider an image classification AI system
that is designed to identify whether an image contains a cat
or not. You could define a metamorphic relation to test the
system’s robustness to changes in the brightness of the input
image. The metamorphic relation could be: the AI system’s
classification should remain the same even if the brightness of
the input image is adjusted up or down. While metamorphic
testing ha great potential in addressing the oracle problem,
there are limitations around their scope, as metamorphic
relations may not exist for all possible testing scenarios.
Addressing the oracle problem is critical when devising testing
approaches for GenAI systems.

Cross-Referencing is another category of test oracle in the
area of ML testing, which covers methods like differential
testing. Differential testing is a software testing approach
that identifies bugs by checking whether similar applications
produce distinct outputs for the same inputs [30], [61]. Deep-
Xplore [68] and DLFuzz [37] leverage differential testing as a
test oracle in their search of discovering valuable test inputs.
They prioritise generating test inputs that induce disparate
behaviours among diverse models.

Reference-based techniques represent the prevailing ap-
proach in assessing GenAI software, involving the creation of
benchmarks through manual question design or the labelling
of test inputs [60], [54], [29], [84], [85], [50]. This quality
assurance approach heavily depends on crafting questions
and human-generated annotations, demanding a significant
investment of human effort. As models become more adept at
handling inquiries spanning various fields, this method is prone
to becoming unfeasible because the sheer volume of test cases

requiring formulation and annotation would be overwhelming
and hard to accomplish.

Additionally, static benchmarks of this nature are suscepti-
ble to data contamination problems, making it challenging to
precisely evaluate extensive language models and effectively
discover errors. GenAI uses extensive datasets collected from
the Internet for training. These large datasets inadvertently
include questions and answers from publicly accessible evalua-
tion test data, leading to an inflated estimation of the model’s
performance [5], [4]. Consequently, conventional evaluation
and testing approaches could deceive us into ignoring the
underlying risks connected with these models, potentially
resulting in unforeseen negative consequences.

In order to reduce the reliance on human efforts, researchers
have proposed the use of metamorphic testing. This involves
the creation of metamorphic relationships to generate test
oracles [24], [26], [55]. More precisely, metamorphic testing
involves the modification of initial test cases to generate
new ones that maintain a very close semantic relationship
with the original tests, often ensuring they are semantically
equivalent [79]. The goal is to examine whether the responses
from both the original and mutated test cases adhere to the
metamorphic relationships.

One key aspect of testing GenAI systems is how to construct
the prompts, which constitute the test cases, to effectively
evaluate the system’s behaviour and capabilities. Crafting
meaningful and representative prompts is a fundamental step
in the testing process. As discussed above, previous research
has focused on three areas: i) manually constructing test
cases [60], [54], [29], [84], [85], [50], ii) employing meta-
morphic testing [25], [79], and iii) employing a knowledge
base, such as knowledge graphs to automatically generate
questions (prompts) and respective answers [70]. Examples of
knowledge graphs include WordNet [63], Freebase [15], and
Wikidata [90].

Search-based techniques [39], [67], [7] have a well-
established history of achievements and successes in solving
various software engineering tasks, including software testing.
These achievements [38], [8], [62] highlight the potential for
harnessing these techniques to enhance the testing of GenAI
systems.

Utilising search-based techniques presents an opportunity
to more efficiently and effectively explore these knowledge
graphs and generate questions that are diverse and cover a wide
range of possible behaviours of the GenAI systems. Search-
based approaches can help navigate the extensive information
within these knowledge basis and test that the GenAI systems
are robust.

Most automated testing frameworks designed for GenAI
systems predominantly focus on a particular domain [24],
[79], in which the system responds to a question using a
linked reference passage, or on multiple-choice question an-
swering [44], [81], where a set of options or potential answers
are given. Expanding the scope through the use of search based
techniques requires new approaches that address the Oracle
problem, as I discuss in Section V.

V. THE TEST ORACLE PROBLEM IN GENAI
In the context of Generative AI, the “test oracle problem”

refers to the challenge of determining whether the generated
output is correct or accurate. Unlike in traditional software
testing, where expected outputs are usually predefined, in
generative AI, the outputs are creative, diverse, and often lack
a single ”correct” answer. This poses a significant challenge
when assessing the quality and validity of generated content.

Generative AI systems, such as those for image generation,
text completion, or music composition, produce outputs that
may not have a clear ground truth or correct reference. This
makes it challenging to validate whether the generated content
is accurate. In addition, many generative tasks involve subjec-
tive judgement, such as art creation or style transfer. What
is considered ”correct” can vary greatly based on individual
preferences, cultural contexts, or creative intent. Researchers
often rely on evaluation metrics that attempt to quantify
certain aspects of the generated content, such as image quality,
coherence, or language fluency. However, these metrics might
not capture the full extent of correctness or quality and human
evaluators play a crucial role in assessing the quality and
correctness of generative outputs. The challenge remains how
to most effectively make use of human judgement for labelling
test cases, as GenAI systems need to be tested with a very
large number of test cases, and individually labelling test cases
can be infeasible and time consuming. One opportunity is to
develop approaches that learn the Oracle via interacting with
the human evaluators.

A. Oracle learning for detecting and mitigating bias in GenAI
systems

An Oracle could be devised that can detect bias in the
output of the GenAI systems. Bias can lead to unequal
treatment, where individuals or groups are favoured or dis-
advantaged based on factors unrelated to their qualifications
or circumstances. Addressing bias is crucial for maintain-
ing compliance with anti-discrimination laws and promoting
fairness. Existing approaches for detecting bias in AI-based
systems focus on classification and regression systems, and
they are called fairness measures. One example of a fairness
measure is ”Equal Opportunity Difference” (EOD). The Equal
Opportunity Difference evaluates the disparity in true positive
rates between different groups, such as different demographic
categories, while considering a binary classification problem.
It focuses on the ratio of true positives among the positive
predictions for each group and helps assess whether a model is
treating different groups fairly in terms of correctly identifying
positive cases, without favouring one group over another.

For instance, in a healthcare setting, if an AI model is
used to predict the likelihood of a certain disease, the Equal
Opportunity Difference would compare the true positive rates
for different demographic groups (e.g., gender, race, age). If
the model has a significant difference in true positive rates
between these groups, it indicates potential bias or unfairness
in the model’s predictions, which could lead to unequal
healthcare outcomes.

bias
negotiation

Human

Biased AI System

Search-Based
Fairness Testing

RT1. Learn2Discover

RT2. Learn2Explain

RT3. Learn2Improve

bias
mitigation

bias explanations

Fig. 1. An Oracle for detecting and mitigating bias in GenAI systems.

In GenAI an Oracle could be trained to recognise patterns
and characteristics associated with bias, enabling it to iden-
tify instances where biased language, stereotypes, or cultural
assumptions are present. Throughout the training regimen,
the model needs to be exposed to a vast array of annotated
instances, each containing a unique blend of the important
feature in the specific domain. For example, for GenAI
systems used in healthcare, the model needs to be exposed
to a wide array of medical context, patient profiles, and
linguistic nuances. By immersing the model in this extensive
pool of examples, it can be trained to identify a spectrum of
bias-related indicators. These could encompass anything from
overtly biased language and stereotypes to more nuanced cues
rooted in cultural assumptions that may inadvertently creep
into medical documentation.

Figure 1 presents an approach for addressing this prob-
lem. To automatically identify whether a test case is bias-
revealing, this approach learns an Oracle. Within an active
learning loop, the Learn2Discover queries the Human as the
teacher about the label of a test case. The Human assigns
a label l = {biased, unbiased} to the test case. The Oracle
is trained on the human-labelled test cases. Given a limited
number of queries to the Human, Learn2Discover maximises
the accuracy of the Oracle in correctly predicting the labels
l = {biased, unbiased}. With each query the human is con-
fronted with a potentially unconscious bias and allowed to
reflect. Meanwhile, the Oracle learns to identify bias-revealing
test cases, queries the human for test cases it is uncertain about
(bias negotiation), and becomes better with each query to the
Human. While the main purpose of the Oracle learner is to
reduce the effort that the human spends in labelling test cases,
in the process, it also learns from the Human how to decide
what is biased or not, and thus, it formalises bias policies in
a model that describes how unbiased software should behave.

Figure 1 depicts search-based fairness testing [69] as a
possible approach to generate test cases. This approach was
originally used to generate bias revealing test inputs for
regression based AI software systems used in the emergency

departments at hospitals to predict the wait time for patients.
In GenAI, a search based approach could be used to create
test inputs, as described in Section IV.

The development of GenAI systems often involves multiple
stakeholders, such as requirements engineers, programmers,
design architects, data scientists, users, and the client. Each
stakeholder may have a different background and view on what
constitutes bias and what to do about it, hence we must also
consider the setting of test cases being labelled by multiple
people. A test case for which there is disagreement on its
label deserves to be explored further, as it represents boundary
cases were there is uncertainty and can help the software team
and organisation converge to a bias-decision policy. Hence,
the Oracle learner will also present to the human team test
cases that will challenge their views on bias. This adversarial
approach will not only lead to more robust bias identification
policies for deciding which AI behaviour is biased, but also
to awareness in the software engineering team about their
unconscious bias when writing software.

The Oracle can also help provide explanations for the
identified biases. For example, it can help answer questions
such as why the GenAI system is making a biased decision
for a particular test case? why a particular test case is
considered as biased? what should the AI engineers do to
improve the fairness of GenAI systems?. These questions will
be of benefit to the AI developers in better designing and
developing unbiased GenAI software. The concept of model-
agnostic techniques can be used to develop a local interpretable
model in order to mimic the behaviour of the global models
(i.e., the Oracle Learning from RT1 in Figure 1) and generate
explanations for a given instance to be explained. The local
interpretable model can learn the relationship between the
features and the labels from human oracles in order to explain
why a particular instance is considered as biased. In addition
to the local models, global models for explaining unfairness
of GenAI systems can be explored, such as causal analysis
for neural networks [82], [22] that learn the cause of biased
outputs. The input to these models can be the attributes,
such as gender, salary, and neighbourhood, and the behaviour
of the AI systems, such as the prediction/output and the
values of the hidden neurons. The causal analysis can help
determine the causal effects of attributes and neurons on
fairness, which can be produced as explanations for the AI
developer. Explanations can be generated in a textual format
that are easily understandable by humans, e.g., “this test case
is likely to be biased due to the protected attributes (Gender,
Age)”.

Finally, the Oracle can help improve the fairness of GenAI
systems. Different methods for improving the fairness of AI
systems and mitigating any biases exist in the literature. They
can be classified as pre-processing [20], which aim at reducing
bias in the dataset, in-processing [2], which mitigate bias
by changing the model or the training process, and post-
processing [45], which modify the predictions to remove any
bias. Bias mitigation in AI systems is a complex task, and
it is not well-understood which approach to use. Applying

the wrong method can result in accuracy loss, and in some
instances in more biased outputs and worsened fairness [14],
[35]. The Oracle and the casual models can help determine
where the bias originates, and help with which bias mitigation
strategy to select. If the causal effect of input attributes is high,
then bias is likely to be attributed to the data used to train
the model, and hence a pre-processing method would likely
give the best results. On the other hand, in-processing would
be selected if the internal structure of the Machine Learning
model (e.g., internal neurons in a Neural Network) has the
highest causal effect. Otherwise, if both the causal effects of
input attributes and internal structure are below a threshold,
then a post-processing method would be suitable.

Oracle learning is not a new concept. For example, we
previously developed an approach for learning a grammar
that can label test cases in the form of string inputs [47].
Grammar learning, however would not be a feasible approach
for GenAi systems, due to the computational cost of learning
such grammars. Instead, a potential avenue is to train a
language model to detect bias. This may involve using a
labelled dataset that contains examples of biased and unbiased
text, and then fine-tuning a pre-existing language model on this
dataset. Training a language model to detect bias, however,
has to be an ongoing process, as bias is complex, context-
dependent, and continually evolves in language usage. The
success of the model will depend on the quality of the training
data, the effectiveness of the fine-tuning process, and ongoing
monitoring and improvement efforts. It will require a human in
the loop approach, where the model is continuously improved
via human feedback and newly labelled cases.

VI. ADEQUACY MEASURES IN GENAI

Adequacy measures used to measure the quality of a test-
suite can be classified into coverage based measures and di-
versity based measures. The majority of research that suggests
using coverage as a metric for evaluating the effectiveness of
AI systems primarily focuses on white-box approaches [68],
[57], [83], [48], [36]. Traditional white box code coverage
metrics, commonly employed to assess program logic cover-
age, face limitations in quantifying the adequacy of program
logic influenced by underlying training data. In response, spe-
cialised white box adequacy metrics have emerged, focusing
on maximising neuron coverage [37], [68], [87], [93], [48] or
surprised coverage [48].

Coverage-based adequacy measures rely on full access to
the underlying model and training data, which may often
not be available to testers. Most coverage measures assess
performance using adversarial inputs, prioritising model ro-
bustness over correctness. Despite the purported sensitivity of
these measures to adversarial inputs, empirical studies have
not consistently demonstrated a significant correlation between
these coverage metrics and their ability to detect bugs [3], [52],
[23].

There’s limited work that presents criteria for black-box
coverage in the testing of AI-driven systems. Hauer et al.[40]
present a statistical method to determine whether all potential

scenario types have been encountered within the test scenarios
used to test a self-driving car. These scenario types are defined
by the ego car’s maneuvers, such as lane changes, overtaking,
and emergency braking. A similar study by Arcaini et al.[9]
regards scenario types as granular driving characteristics like
“turning with high lateral acceleration”, using them as a
coverage measure. Tang et al. categorize scenarios based on
the map’s topological structure and evaluate their approach’s
efficacy by assessing the coverage of these structures [86].
Given that autonomous vehicles base their decisions on pa-
rameterized rule-based systems and cost functions, Laurent
et al. [51] employ weight coverage to encompass various
configurations of a path planner.

Another commonly employed adequacy measure for both
conventional and AI-based systems is test suite diversity,
which is computed based on either test inputs or outputs [3],
[34], [56], [13]. One example is the Shannon Diversity Index,
which measures the diversity of a given sample by considering
both its richness and evenness. Richness assesses the count of
distinct species present within a population, while evenness
measures the uniformity of individuals per species [59]. An-
other example is Geometric diversity [53], [46], [94], which
was shown to be superior over numerous other prevalent
black-box test adequacy metrics [3]. Geometric diversity draws
its foundation from the area of Determinantal Point Process
(DPP), an approach geared towards discerning diverse input
sets [49]. DPP is used for subset selection scenarios, wherein
the objective involves choosing a varied subset from a pool
of candidates. DPP models the diversity between items within
the chosen subset. Consequently, items exhibiting substantial
similarity with one another become less likely candidates for
inclusion in the final selection.

Diversity metrics are rooted in the concept that akin test
cases tend to exercise similar segments of the source code or
training data, thereby uncovering similar faults. Conversely, a
system subjected to an extensive array of conditions is more
likely to exhibit reliable performance in real-world scenarios.
Consequently, diversifying test scenarios enhances the explo-
ration of the fault space, subsequently elevating fault detection
capabilities [19], [3], [97]. Nonetheless, existing research in
the are of testing AI systems, and in particular GenAI systems
underscores a substantial gap in the availability of robust
diversity metrics that exhibit a pronounced correlation with
fault detection [3], which presents an opportunity for further
research.

A. Test suite Instance Space Adequacy Measures

Given the pivotal role of diversity and coverage in the
black-box testing of intricate systems like GenAI systems,
recently we proposed a new suite of metrics known as Test
suite Instance Space Adequacy (TISA) metrics [66]. These
metrics aim to objectively quantify the quality of testing in
terms of both diversity and coverage. Rooted in a framework
known as Instance Space Analysis (ISA), these metrics provide
a two-dimensional representation of test instances. This repre-
sentation unveils both the diversity and coverage of instances,

Test Scenario Space

'
Test Scenario Subset Performance Space

Instance SpaceFeature Space TISA Metrics

Fig. 2. The main components of Test suite Instance Space Adequacy (TISA).

granting insights into the diversity of the test suite across
various features, the diversity of detected bugs, and the test
suite’s adequacy with respect to coverage. By facilitating the
identification of areas where the test suite might lack diversity
or require additional testing, these metrics offer a mechanism
to enhance testing quality systematically and comprehensively.

Figure 2 illustrates the main steps of the TISA approach.
To calculate the TISA measures, we assume we have a
subset T ′ of the possible test cases T that can be used to
test a GenAI system. It is not feasible, or even possible to
obtain all possible test cases in a reasonable amount of time,
which makes assessing the adequacy of a test suite even
more important. TISA then creates the feature space F by
extracting an extensive set of features from the test cases T ′.
TISA has not been used for GenAI systems yet, but in the
area of testing autonomous vehicles, TISA extracted features
from driving scenarios, which constitute the test cases [66].
Extracted features included the number of lanes, the number
of pedestrians, the number of right turns, etc.

Next the performance space P is created, which constitutes
the outcomes of the test cases. If a test case fails or reveals
incorrect behaviour of the software system, the test case is
labelled as effective, otherwise it is deemed ineffective. The
feature space and performance space become an input to
the instance space generation approach, which creates the
instance space. The instance space is a 2D representation of
the multidimentional feature space, delineated by features that
have the most significant influence on test outcomes.

An important step in TISA involves pinpointing the features
that exert maximal impact on test outcomes. This process is
instrumental in distinguishing effective scenarios — the ones
that expose failures — from those that pass without issue.
The task of feature identification and selection goes through
an iterative procedure, leveraging machine learning techniques
to uncover significant features that distinctly differentiate
between these scenario types.

Once the significant features are identified, TISA projects
test instances, originally defined within an n-dimensional fea-
ture space, onto a 2D coordinate plane. This projection aims
to render the connection between instance features and test

Fig. 3. An example of the instance space [66].

outcomes readily discernible. An optimal projection manifests
as a linear trend, where variations in feature values or scenario
outcomes along a straight line span from low to high values.
Moreover, the proximity of instances in the high-dimensional
feature space is maintained within the 2D instance space,
ensuring topological preservation.

For illustration purposes, an example of an instance space,
which was created for the problem of testing autonomous
vehicles [66] is shown in Figure 3. Each point in the graph is
a test case plotted in the 2D instance space created from the
most significant features. TISA also draws the mathematical
boundary created around the instance space for estimating the
coverage of the test suite. This boundary is an indication of
where possible test instances may exist, and helps identify
existing gaps in the test suite. The colour in the graph is used
to indicate whether a test case is failing, deemed as effective
and coloured in purple, or passing, which means the testsuite
is not effective as it could not detect incorrect behaviour or
failures of the AI-based system and coloured in purple.

Figure 4 shows the distribution of values of one of the
most significant features identified by TISA: the number of
right turns. This plots helps explain why certain test cases are
effective and others are not. As we can see, test scenarios with
a higher number of right turns are more likely to reveal bugs
in the ego vehicle.

Given the instance space, the last step is to calculate the
TISA metrics. The key metrics proposed in [66] are:

• Area of the instance space, which refers to the region
encompassed by all test instances within the instance
space, estimating the overall diversity of the entire test
suite.

• Area of the buggy region, which pertains to the section of
the instance space taken up by most of the test instances
that expose failures. An examples is shown in Figure 5

• Coverage of the instance space, which refers to the

Fig. 4. Number of right turns [66].

proportion of the total area as indicated by the boundary,
that is covered by test instances.

The experimental evaluation of these metrics showed that
all TISA metrics demonstrate a positive correlation with faults,
but the metric that measures the area of the buggy region
(illustrated in Figure 5) particularly stands out due to its
consistently robust and statistically significant correlation with
bugs. This emphasizes its efficacy and reliability in providing
valuable insights into the testing process’s effectiveness.

In the future, there are opportunities in using TISA metrics
to evaluate how well GenAI systems have been tested. One
of the challenges is how to select a meaningful set of features
to characterise such systems. One potential solution is to
extract features from the embeddings of these systems, which
contain rich semantic information by modelling the mean-
ingful relationships and associations between words, captured
by the numerical vectors used to represent those words in
a high-dimensional space. Words with similar meanings or
that are used in similar contexts will have word embeddings
that are closer together in the vector space. Some recent word
embeddings, like those produced by BERT [32], incorporate
contextual information. This means that the meaning of a word
in a particular sentence depends on the surrounding words.
This enables embeddings to capture more nuanced semantic
information.

In addition, embeddings often exhibit semantic relationships
through analogies. Consider the words “Paris”, “France”,
“Rome” and “Italy”. Lets perform the following analogy by
subtracting the vector for “France” from “Paris”. Then we
add the vector for “Italy”. The resulting vector is likely to be
closest to the word “Rome”. This analogy reflects the semantic
relationship that “Paris” is to “France” as “Rome” is to
“Italy” in terms of capital cities and their respective countries.
It demonstrates how embeddings can capture geographical
and cultural associations between words, providing another

example of their ability to represent meaningful semantic
information. All this information can be used to characterise
the test cases used for testing a GenAI system, and can help
explain why a test case is effective or ineffective.

By constructing the instance space of the test scenarios used
to test a GenAI system, we would be able to extract insights in
terms of the diversity of the test inputs, and ensure that the test
instances cover a wide range of scenarios, styles, or outputs
that the GenAI system is expected to handle. This diversity
helps assess the system’s adaptability to various inputs.

TISA would also help identify test instances of varying
complexity levels, from simple and straightforward cases to
more intricate and challenging scenarios. This helps assess the
system’s robustness and capability to handle complex inputs.
In addition, TISA can be used to assess the realism of test
cases, ensuring that test instances resemble real-world data or
scenarios the AI system will encounter.

Fig. 5. The area of the buggy region.

Edge cases, outliers, or inputs that might trigger unusual
behaviour in the AI system are important. Evaluating how
well the system handles these cases can provide insights into
its limitations and vulnerabilities. Introducing novel or unseen
inputs to evaluate the system’s ability to generalise beyond
its training data and produce creative outputs is of particular
importance, and can be tackled with a framework like TISA.
By drawing the boundary of possible test inputs, and iden-
tifying areas of instance space where test inputs are sparse
and effective (outliers), close to the boundary (edge cases), or
close to the frontier of behaviours (unusual behaviours), TISA
can help address these research challenges.

To apply TISA to GenAI systems, there are a set of research
challenges and opportunities for further research. First, a
method that extracts features from test cases used to test
GenAI systems would need to be developed. Let’s take an

example from other AI-based systems such as self driving cars.
Features of a test case may constitute the number of other cars
in the road, the number of pedestrians crossing the road, the
weather conditions, the speed limit, the curvature of the road,
etc. For GenAI systems such as question answering systems, a
test case is text. Potential features could be extracted from the
vector embeddings of the text, which contains rich semantic
information. Such features would help characterise the test
cases, and help the creation of the instance space. Another
research opportunity is to explore how TISA can help with
prioritising test cases, by enabling the selection of the test
cases which are more likely to reveal bugs, thus reducing the
overall testing time.

VII. CONCLUSION

As the field of software testing encounters the novel chal-
lenges posed by GenAI systems, the need for new testing
approaches becomes evident. The Oracle problem, which
involves establishing the correctness of creative outputs, stands
as a central challenge in testing GenAI systems. The absence
of a definitive ground truth, coupled with the subjectivity of
human evaluators, has made it challenging to estimate the
quality and correctness of generated content. The proposed
solution of training a AI model to detect bias and deviations
from the expected behaviour is a promising direction to
mitigate this challenge.

Furthermore, addressing the adequacy of testing through
measures like Test suite Instance Space Adequacy (TISA)
metrics offers a quantitative and quantitative approach to
assessing the diversity and coverage of test instances. By
providing a two-dimensional representation of the instance
space, TISA enables a systematic evaluation of the test suite’s
quality, revealing gaps and areas that require further testing.

As GenAI systems continue to permeate various domains,
from creative content generation to complex decision-making,
ensuring their reliability, robustness, and correctness is of
paramount importance. This calls for a reimagining of testing
methodologies that account for the inherent uncertainties and
complexities of GenAI outputs.

REFERENCES

[1] Zahra Abbasiantaeb and Saeedeh Momtazi. Text-based question answer-
ing from information retrieval and deep neural network perspectives: A
survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 11(6):e1412, 2021.

[2] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudı́k, John Langford,
and Hanna Wallach. A reductions approach to fair classification. In
International Conference on Machine Learning, pages 60–69. PMLR,
2018.

[3] Zohreh Aghababaeyan, Manel Abdellatif, Lionel Briand, Mojtaba
Bagherzadeh, et al. Black-box testing of deep neural networks through
test case diversity. arXiv preprint arXiv:2112.12591, 2021.

[4] Open AI. Gpt-4 technical report. Technical Report, 2023.
[5] Rachith Aiyappa, Jisun An, Haewoon Kwak, and Yong-Yeol Ahn. Can

we trust the evaluation on chatgpt? arXiv preprint arXiv:2303.12767,
2023.

[6] Saranya Alagarsamy, Chakkrit Tantithamthavorn, and Aldeida Aleti.
A3test: Assertion-augmented automated test case generation. arXiv
preprint arXiv:2302.10352, 2023.

[7] Aldeida Aleti and Irene Moser. Predictive parameter control. In
Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, page 561–568, New York, NY, USA, 2011. Association
for Computing Machinery.

[8] Aldeida Aleti, Irene Moser, and Lars Grunske. Analysing the fitness
landscape of search-based software testing problems. Automated Soft-
ware Engineering, 24:603–621, 2017.

[9] Paolo Arcaini, Xiao-Yi Zhang, and Fuyuki Ishikawa. Targeting patterns
of driving characteristics in testing autonomous driving systems. In 2021
14th IEEE Conference on Software Testing, Verification and Validation
(ICST), pages 295–305. IEEE, 2021.

[10] Kevin Bartz, Cory Barr, and Adil Aijaz. Natural language generation
for sponsored-search advertisements. In Proceedings of the 9th ACM
Conference on Electronic Commerce, pages 1–9, 2008.

[11] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmar-
garet Shmitchell. On the dangers of stochastic parrots: Can language
models be too big? In Proceedings of the 2021 ACM conference on
fairness, accountability, and transparency, pages 610–623, 2021.

[12] Parminder Bhatia, Kristjan Arumae, Nima Pourdamghani, Suyog Desh-
pande, Ben Snively, Mona Mona, Colby Wise, George Price, Shyam
Ramaswamy, and T Kass-Hout. Aws cord19-search: A scientific litera-
ture search engine for covid-19. 2020.

[13] Christian Birchler, Sajad Khatiri, Pouria Derakhshanfar, Sebastiano
Panichella, and Annibale Panichella. Automated test cases prioriti-
zation for self-driving cars in virtual environments. arXiv preprint
arXiv:2107.09614, 2021.

[14] Sumon Biswas and Hridesh Rajan. Do the machine learning models on
a crowd sourced platform exhibit bias? an empirical study on model
fairness. In ACM Joint meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 642–653, 2020.

[15] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: a collaboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM SIGMOD interna-
tional conference on Management of data, pages 1247–1250, 2008.

[16] Houssem Ben Braiek and Foutse Khomh. On testing machine learning
programs. Journal of Systems and Software, 164:110542, 2020.

[17] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901,
2020.

[18] Longbing Cao. Ai in finance: challenges, techniques, and opportunities.
ACM Computing Surveys (CSUR), 55(3):1–38, 2022.

[19] Emanuela G Cartaxo, Patrı́cia DL Machado, and Francisco G Oliveira
Neto. On the use of a similarity function for test case selection in
the context of model-based testing. Software Testing, Verification and
Reliability, 21(2):75–100, 2011.

[20] Joymallya Chakraborty, Suvodeep Majumder, and Tim Menzies. Bias
in machine learning software: why? how? what to do? In ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 429–440, 2021.

[21] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao
Chen, Linyi Yang, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al.
A survey on evaluation of large language models. arXiv preprint
arXiv:2307.03109, 2023.

[22] Aditya Chattopadhyay, Piyushi Manupriya, Anirban Sarkar, and Vi-
neeth N Balasubramanian. Neural network attributions: A causal
perspective. In International Conference on Machine Learning, pages
981–990. PMLR, 2019.

[23] Junjie Chen, Ming Yan, Zan Wang, Yuning Kang, and Zhuo Wu.
Deep neural network test coverage: How far are we? arXiv preprint
arXiv:2010.04946, 2020.

[24] Songqiang Chen, Shuo Jin, and Xiaoyuan Xie. Testing your question
answering software via asking recursively. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 104–116. IEEE, 2021.

[25] Songqiang Chen, Shuo Jin, and Xiaoyuan Xie. Testing your question
answering software via asking recursively. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 104–116, 2021.

[26] Songqiang Chen, Shuo Jin, and Xiaoyuan Xie. Validation on machine
reading comprehension software without annotated labels: A property-
based method. In Proceedings of the 29th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 590–602, 2021.

[27] TY Chen, SC Cheungx, and SM Yiu. Metamorphic testing: a new ap-
proach for generating next test cases. arXiv preprint arXiv:2002.12543,
2020.

[28] Hyunji Chung, Michaela Iorga, Jeffrey Voas, and Sangjin Lee. Alexa,
can i trust you? Computer, 50(9):100–104, 2017.

[29] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski,
Michael Collins, and Kristina Toutanova. Boolq: Exploring the sur-
prising difficulty of natural yes/no questions. In Proceedings of the
2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2924–2936, 2019.

[30] Martin D Davis and Elaine J Weyuker. Pseudo-oracles for non-testable
programs. In Proceedings of the ACM’81 Conference, pages 254–257,
1981.

[31] Ryan Daws. Medical chatbot using openai’s gpt-3 told a fake patient to
kill themselves. AI News, 2020.

[32] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[33] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and
Shin Hwei Tan. Automated repair of programs from large language
models. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pages 1469–1481. IEEE, 2023.

[34] Robert Feldt, Simon Poulding, David Clark, and Shin Yoo. Test set
diameter: Quantifying the diversity of sets of test cases. In 2016 IEEE
international conference on software testing, verification and validation
(ICST), pages 223–233. IEEE, 2016.

[35] Sorelle A Friedler, Carlos Scheidegger, Suresh Venkatasubramanian,
Sonam Choudhary, Evan P Hamilton, and Derek Roth. A comparative
study of fairness-enhancing interventions in machine learning. In Pro-
ceedings of the conference on fairness, accountability, and transparency,
pages 329–338, 2019.

[36] Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan.
Importance-driven deep learning system testing. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering,
pages 702–713, 2020.

[37] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun.
Dlfuzz: Differential fuzzing testing of deep learning systems. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 739–743, 2018.

[38] Mark Harman, Yue Jia, and Yuanyuan Zhang. Achievements, open
problems and challenges for search based software testing. In 2015
IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST), pages 1–12. IEEE, 2015.

[39] Mark Harman and Phil McMinn. A theoretical and empirical study of
search-based testing: Local, global, and hybrid search. IEEE Transac-
tions on Software Engineering, 36(2):226–247, 2009.

[40] Florian Hauer, Tabea Schmidt, Bernd Holzmüller, and Alexander
Pretschner. Did we test all scenarios for automated and autonomous
driving systems? In 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), pages 2950–2955. IEEE, 2019.

[41] Ryuichiro Higashinaka, Masahiro Mizukami, Hidetoshi Kawabata, Emi
Yamaguchi, Noritake Adachi, and Junji Tomita. Role play-based
question-answering by real users for building chatbots with consistent
personalities. In Proceedings of the 19th annual sigdial meeting on
discourse and dialogue, pages 264–272, 2018.

[42] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code
comment generation. In Proceedings of the 26th conference on program
comprehension, pages 200–210, 2018.

[43] Hanyao Huang, Ou Zheng, Dongdong Wang, Jiayi Yin, Zijin Wang,
Shengxuan Ding, Heng Yin, Chuan Xu, Renjie Yang, Qian Zheng, et al.
Chatgpt for shaping the future of dentistry: the potential of multi-modal
large language model. International Journal of Oral Science, 15(1):29,
2023.

[44] Robin Jia and Percy Liang. Adversarial examples for evaluating reading
comprehension systems. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 2021–2031,
2017.

[45] Faisal Kamiran, Asim Karim, and Xiangliang Zhang. Decision theory
for discrimination-aware classification. In 2012 IEEE 12th International
Conference on Data Mining, pages 924–929. IEEE, 2012.

[46] Byungkon Kang. Fast determinantal point process sampling with
application to clustering. Advances in Neural Information Processing
Systems, 26, 2013.

[47] Charaka Geethal Kapugama, Van-Thuan Pham, Aldeida Aleti, and
Marcel Böhme. Human-in-the-loop oracle learning for semantic bugs in
string processing programs. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 215–
226, 2022.

[48] Jinhan Kim, Robert Feldt, and Shin Yoo. Guiding deep learning system
testing using surprise adequacy. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 1039–1049. IEEE,
2019.

[49] Alex Kulesza, Ben Taskar, et al. Determinantal point processes for
machine learning. Foundations and Trends® in Machine Learning, 5(2–
3):123–286, 2012.

[50] Md Tahmid Rahman Laskar, M Saiful Bari, Mizanur Rahman, Md Am-
ran Hossen Bhuiyan, Shafiq Joty, and Jimmy Xiangji Huang. A
systematic study and comprehensive evaluation of chatgpt on benchmark
datasets. arXiv preprint arXiv:2305.18486, 2023.

[51] Thomas Laurent, Stefan Klikovits, Paolo Arcaini, Fuyuki Ishikawa, and
Anthony Ventresque. Parameter coverage for testing of autonomous
driving systems under uncertainty. ACM Transactions on Software
Engineering and Methodology, 2022.

[52] Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. Structural coverage
criteria for neural networks could be misleading. In 2019 IEEE/ACM
41st International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), pages 89–92. IEEE, 2019.

[53] Hui Lin and Jeff A Bilmes. Learning mixtures of submodular
shells with application to document summarization. arXiv preprint
arXiv:1210.4871, 2012.

[54] Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring
how models mimic human falsehoods. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 3214–3252, 2022.

[55] Zixi Liu, Yang Feng, Yining Yin, Jingyu Sun, Zhenyu Chen, and Baowen
Xu. Qatest: A uniform fuzzing framework for question answering sys-
tems. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, pages 1–12, 2022.

[56] Chengjie Lu, Huihui Zhang, Tao Yue, and Shaukat Ali. Search-
based selection and prioritization of test scenarios for autonomous
driving systems. In International Symposium on Search Based Software
Engineering, pages 41–55. Springer, 2021.

[57] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li,
Chunyang Chen, Ting Su, Li Li, Yang Liu, et al. Deepgauge: Multi-
granularity testing criteria for deep learning systems. In Proceedings
of the 33rd ACM/IEEE international conference on automated software
engineering, pages 120–131, 2018.

[58] Pingchuan Ma, Shuai Wang, and Jin Liu. Metamorphic testing and
certified mitigation of fairness violations in nlp models. In IJCAI, pages
458–465, 2020.

[59] Anne E Magurran. Measuring biological diversity. Current Biology,
31(19):R1174–R1177, 2021.

[60] R Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong
reasons: Diagnosing syntactic heuristics in natural language inference. In
57th Annual Meeting of the Association for Computational Linguistics,
ACL 2019, pages 3428–3448. Association for Computational Linguistics
(ACL), 2020.

[61] William M McKeeman. Differential testing for software. Digital
Technical Journal, 10(1):100–107, 1998.

[62] Phil McMinn. Search-based software testing: Past, present and future.
In 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops, pages 153–163. IEEE, 2011.

[63] George A Miller. Wordnet: a lexical database for english. Communica-
tions of the ACM, 38(11):39–41, 1995.

[64] John Miller, Karl Krauth, Benjamin Recht, and Ludwig Schmidt. The
effect of natural distribution shift on question answering models. In
Proceedings of the 37th International Conference on Machine Learning,
pages 6905–6916, 2020.

[65] Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad,
Meysam Chenaghlu, and Jianfeng Gao. Deep learning–based text
classification: a comprehensive review. ACM computing surveys (CSUR),
54(3):1–40, 2021.

[66] Neelofar and Aldeida Aleti. Towards reliable AI: Adequacy metrics
for ensuring the quality of AI-based systems. In Proceedings of the

ACM/IEEE 46nd International Conference on Software Engineering,
2024. accepted.

[67] Carlos Oliveira, Aldeida Aleti, Yuan-Fang Li, and Mohamed Abdel-
razek. Footprints of fitness functions in search-based software testing.
In Proceedings of the Genetic and Evolutionary Computation Confer-
ence, page 1399–1407, New York, NY, USA, 2019. Association for
Computing Machinery.

[68] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore:
Automated whitebox testing of deep learning systems. In proceedings
of the 26th Symposium on Operating Systems Principles, pages 1–18,
2017.

[69] Anjana Perera, Aldeida Aleti, Chakkrit Tantithamthavorn, Jirayus
Jiarpakdee, Burak Turhan, Lisa Kuhn, and Katie Walker. Search-
based fairness testing for regression-based machine learning systems.
Empirical Software Engineering, 27(3):79, 2022.

[70] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton
Bakhtin, Yuxiang Wu, and Alexander Miller. Language models as
knowledge bases? In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Association for Computational Linguistics, 2019.

[71] Walter Hugo Lopez Pinaya, Sandra Vieira, Rafael Garcia-Dias, and
Andrea Mechelli. Autoencoders. In Machine learning, pages 193–208.
Elsevier, 2020.

[72] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al.
Improving language understanding by generative pre-training. 2018.

[73] Martin Reisenbichler, Thomas Reutterer, David A Schweidel, and Daniel
Dan. Frontiers: Supporting content marketing with natural language
generation. Marketing Science, 41(3):441–452, 2022.

[74] Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbat-
ova, Michael Weiss, and Paolo Tonella. Testing machine learning
based systems: a systematic mapping. Empirical Software Engineering,
25:5193–5254, 2020.

[75] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guil-
laume Lample. Unsupervised translation of programming languages.
Advances in Neural Information Processing Systems, 33:20601–20611,
2020.

[76] Hasim Sak, Andrew W Senior, and Françoise Beaufays. Long short-term
memory recurrent neural network architectures for large scale acoustic
modeling. 2014.

[77] Divya Saxena and Jiannong Cao. Generative adversarial networks (gans)
challenges, solutions, and future directions. ACM Computing Surveys
(CSUR), 54(3):1–42, 2021.

[78] Saqib Shah and Julian Chokkattu. Microsoft kills ai chatbot tay (twice)
after it goes full nazi. 2016.

[79] Qingchao Shen, Junjie Chen, Jie M Zhang, Haoyu Wang, Shuang Liu,
and Menghan Tian. Natural test generation for precise testing of question
answering software. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, pages 1–12, 2022.

[80] Weijun Shen, Yanhui Li, Lin Chen, Yuanlei Han, Yuming Zhou, and
Baowen Xu. Multiple-boundary clustering and prioritization to promote
neural network retraining. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, pages
410–422, 2020.

[81] Clemencia Siro and Tunde Oluwaseyi Ajayi. Evaluating the robustness
of machine reading comprehension models to low resource entity
renaming. In 4th Workshop on African Natural Language Processing,
2023.

[82] Bing Sun, Jun Sun, Hong Long Pham, and Jie Shi. Causality-
based neural network repair. In International Conference in Software
Engineering, 2022.

[83] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew
Hill, and Rob Ashmore. Structural test coverage criteria for deep neural
networks. ACM Transactions on Embedded Computing Systems (TECS),
18(5s):1–23, 2019.

[84] Md Tahmid Rahman Laskar, M Saiful Bari, Mizanur Rahman, Md Am-
ran Hossen Bhuiyan, Shafiq Joty, and Jimmy Xiangji Huang. A
systematic study and comprehensive evaluation of chatgpt on benchmark
datasets. arXiv e-prints, pages arXiv–2305, 2023.

[85] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant.
Commonsenseqa: A question answering challenge targeting common-
sense knowledge. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers),
pages 4149–4158, 2019.

[86] Yun Tang, Yuan Zhou, Yang Liu, Jun Sun, and Gang Wang. Collision
avoidance testing for autonomous driving systems on complete maps. In
2021 IEEE Intelligent Vehicles Symposium (IV), pages 179–185. IEEE,
2021.

[87] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest:
Automated testing of deep-neural-network-driven autonomous cars. In
Proceedings of the 40th international conference on software engineer-
ing, pages 303–314, 2018.

[88] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. Expectation
vs. experience: Evaluating the usability of code generation tools powered
by large language models. In Chi conference on human factors in
computing systems extended abstracts, pages 1–7, 2022.

[89] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[90] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative
knowledgebase. Communications of the ACM, 57(10):78–85, 2014.

[91] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas,
Jiangjiang Yang, Doug Burdick, Darrin Eide, Kathryn Funk, Yannis
Katsis, Rodney Kinney, et al. Cord-19: The covid-19 open research
dataset. In ACL 2020 Workshop on Natural Language Processing for
COVID-19 (NLP-COVID), 2020.

[92] Ruoqi Wei, Cesar Garcia, Ahmed El-Sayed, Viyaleta Peterson, and
Ausif Mahmood. Variations in variational autoencoders-a comparative
evaluation. Ieee Access, 8:153651–153670, 2020.

[93] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang
Liu, Jianjun Zhao, Bo Li, Jianxiong Yin, and Simon See. Deephunter:
a coverage-guided fuzz testing framework for deep neural networks. In
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 146–157, 2019.

[94] Haotian Xu and Zhijian Ou. Scalable discovery of audio fingerprint
motifs in broadcast streams with determinantal point process based motif
clustering. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 24(5):978–989, 2016.

[95] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning
testing: Survey, landscapes and horizons. IEEE Transactions on Software
Engineering, 48(1):1–36, 2020.

[96] Lei Zhang, Shuai Wang, and Bing Liu. Deep learning for sentiment
analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 8(4):e1253, 2018.

[97] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo
Tonella. Deephyperion: exploring the feature space of deep learning-
based systems through illumination search. In Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 79–90, 2021.

	Introduction
	Generative AI
	GenAI Systems
	Automated Testing of GenAI Systems
	The Test Oracle Problem in GenAI
	Oracle learning for detecting and mitigating bias in GenAI systems

	Adequacy Measures in GenAI
	Test suite Instance Space Adequacy Measures

	Conclusion
	References

