1708.04915v1 [cs.SE] 16 Aug 2017

arxXiv

DARVIZ: Deep Abstract Representation,

Visualization, and Verification of Deep Learning
Models

Anush Sankaran, Rahul Aralikatte, Senthil Mani, Shreya Khare, Naveen Panwar, Neelamadhav Gantayat
IBM Research, India
{anussank, rahul.a.r, sentmani, shkhare4, navpanwa, neelamadhav}@in.ibm.com

Abstract—Traditional software engineering programming
paradigms are mostly object or procedure oriented, driven by
deterministic algorithms. With the advent of deep learning and
cognitive sciences there is an emerging trend for data-driven
programming, creating a shift in the programming paradigm
among the software engineering communities. Visualizing and
interpreting the execution of a current large scale data-driven
software development is challenging. Further, for deep learning
development there are many libraries in multiple programming
languages such as TensorFlow (Python), CAFFE (C++), Theano
(Python), Torch (Lua), and Deeplearning4j (Java), driving a huge
need for interoperability across libraries.

We propose a model driven development based solution frame-
work, that facilitates intuitive designing of deep learning models
in a platform agnostic fashion. This framework could potentially
generate library specific code, perform program translation
across languages, and debug the training process of a deep
learning model from a fault localization and repair perspective.
Further we identify open research problems in this emerging
domain, and discuss some new software tooling requirements to
serve this new age data-driven programming paradigm.

Index Terms—deep learning, software tools, model driven
development, model validation, visualization

I. INTRODUCTION

Deep learning is a branch of machine learning that deals
with extracting features from data in an unsupervised manner.
With the help of deep learning, Al and cognition has pene-
trated a wide variety of applications performing as good as
humans or sometimes even better in some challenging tasks
such as remembering conversations, perceiving speech, and
understanding images [1]]. A deep learning model is essentially
a chain of interconnected and predefined layers, with a set
of manually defined hyper-parameters for each layer (such as
number of nodes, learning rate, size of filters, etc.), and a set
of parameters that are learnt using some provided data (such as
weights) [3]. For example consider GoogLenet, a state-of-the-
art deep learning model built by Google’s DeepMind [7]. This
network consists of 22-layers, where each layer transforms the
input data using a transformation weight matrix to perform
a classification task. Currently, GooglLeNet model can be
implemented and trained in any one of the publicly available
platforms such as TensorFlo Torc or CAFF Despite

Uhttps://www.tensorflow.org/
Zhttp://torch.ch/
3http://caffe.berkeleyvision.org/

Model as a black-box

- Output
Traditional
Binary test deterministic Model
cases program model S > verification
k Output
Deep learning
How to write Probabilistic Model

*verification

model

test cases?

Fig. 1: Comparison of traditional programming and deep
learning model designing from the perspective of software
engineering model verification and validation.

its increasing success, deep learning algorithms encounter
some fundamental software engineering challenges such as
model verification, validation, and interpretation.

Traditional software models are deterministic in nature, and
hence binary test cases can be written for validating them
as shown in Fig. |l However, as data-driven deep learning
models are probabilistic, validating these models becomes
highly challenging. Peter Norvig, a pioneer in the field of
Al is an evangelist for this newly emerging research trend of
Machine Learning Driven Programming (MLDPﬂ and identi-
fies machine learning as an agile tool for software engineer-
ing [2]. The “Software Engineering for Machine Learning”
workshop conducted in NIPS 2014, a premium Al conference,
emphasizes the growing attention and the need for developing
better software engineering tools for proficient development
and testing of machine (or deep) learning, rather than the
inverse thought process of applying machine learning in soft-
ware engineering problems. Inspired from the works of Peter
Norvig [4] and Sculley et al. [5], we identify some open ended
software engineering challenges in this new paradigm. We con-
duct a quantitative user survey from more than 100 software
engineers and machine learning researchers, to understand
and validate these challenges. We propose a Model-Driven
Development (MDD) based solution framework, to serve the
data-driven programming paradigm for abstract representation,
visualization, and verification of deep learning models.

“In this paper, the term machine learning is used as an umbrella phrase to
represent both machine learning and deep learning.


https://www.tensorflow.org/
http://torch.ch/
http://caffe.berkeleyvision.org/

If an easy drag-and-drop based Ul is made available
to construct deep learning models
without the need for any coding, will it be useful?

0%

If interoperability capabilities are provided, such that you can load code
and pre-trained networks from any platform
and execute it in any other platform of your choice, will it be useful?

If a cognitive system exists, that can provide you design
suggestions while constructing deep learning models,

will it be useful to you?
0,

2t m Extremely useful

m Useful
M Sort of useful
Not that useful

| Useless

Fig. 2: A summary of user responses obtained from the conducted quantitative survey.

II. QUANTITATIVE USER SURVEY

An initial pilot study was conducted with six experts in deep
learning with a purpose of perceiving and understanding the
different challenges faced in building deep learning models
from a software tooling perspective. Using the pointers from
this pilot, a quantitative survey was conducted with 113
software engineers and researchers from various organizations
and varying expertise, demographics, gender, and age. 75%
of the responders are good in programming (4 or 5 out of
5) and 92% of them have at least taken a course in deep
learning. The survey form is available live at: https://goo.
gl/forms/DA49kKteRyv3Ztgml| and the results of the survey
responses are summarized at: https:/goo.gl/dwBYAj.

From the pilot study, three different scenarios were identi-
fied and are provided to the users in this survey to understand
and validate the usefulness of the proposed solution frame-
work. The questions corresponding to the three scenarios are:
(1) Design: “How much time does it take for you to implement
a research algorithm using a platform that you are comfortable
with?”, to which almost 83% of the users answered at least a
couple of days including failure to successfully implement the
algorithm, (ii) Interoperability: “Other researchers make their
code and pre-trained models available in a specific platform
they work with (for e.g CAFFE). If you typically work on
a different platform (for e.g TensorFlow), have you felt the
need for the CAFFE trained model and weights to be made
available in TensorFlow as well?”, to which 91% of the users
agreed that this interoperability is needed, and (iii) Debugging:
“Many times we have trained models only to realize that it has
not learnt anything meaningful. Would you agree that it will
be useful to have a system which can predict if a model will
learn something meaningful or not, fairly early in the training
process?”, to which more than 87% of the people agreed.

Interestingly, 86% of the users who have rated themselves
with the highest rating in ‘programming ability’ have re-
sponded that it takes them at least a couple of days to
successfully or unsuccessfully implement an existing deep
learning model. This indicates that the existing deep learn-
ing libraries lack required features for quicker and efficient
implementation and prototyping. As a solution, 72% of the
responders validated the usefulness of an intuitive drag-and-
drop based user interface (Fig. . 92% of the users wanted

interoperability tools, that could convert models from one
implementation platform to another. Finally, 89% of the users
suggested the need of a cognitive system that could suggest
hyper-parameters and assist in deep learning model debugging.

To capture the additional challenges faced by the respon-
ders, an open-ended free form text question was included in the
survey. Some highly valuable feedback were obtained includ-
ing, “the lack of proper documentation”, “training times are
too long”, “Implementation of out-of-the-box deep architec-
tures is quite difficult in the available platforms”, “Input data
processing”, “easy visualization (attention) toolkit for model
outputs”. Augmenting our hypothesis with the user survey
validations, the following software engineering problems in

data-driven programming are identified:

e Model Validation: While constructing the layers of
a model, there are many design and hyper-parameter
choices. Can incorrect design choices be identified and
better hyper-parameters be suggested during designing
the model?

o Fault Detection and Debugging: Due to the large
volumes of training data, training deep learning models
typically take days or even weeks to converge. Re-
searchers often realize that the training was unsuccessful
due to some model fault or incorrect choice of hyper-
parameters, only after the entire training is done. Can we
perform real-time fault detection and provide debugging
capabilities, such that, model faults can be diagnosed
much earlier during training?

o Model Abstraction and Interoperability: Current soft-
ware engineering tools and platforms are ill-suited for
design abstraction and model-driven development of deep
learning models. Can a model that is implemented in
a specific platform (For eg., CAFFE) be abstracted and
realized in another platform (For eg., TensorFlow)?

« Efficient Designer to Improve Productivity: Imple-
menting deep learning algorithms involves a very steep
learning curve and are generally prone to coding and
logical errors. Can we build a design tool that provides
an intuitive Ul for designing deep learning architectures
which can also generate code in any of the realization
platforms?


https://goo.gl/forms/DA49kKteRyv3Ztgm1
https://goo.gl/forms/DA49kKteRyv3Ztgm1
https://goo.gl/dwBYAj

Model Abstraction

Drag-and-drop
based Ul

>

Intuitive
User Interface

—
el
_-__.-_

Interoperability

Run-time
analysis

Fig. 3: The proposed solution framework containing the set of new tools that could cater to the needs of the new age of

data-driven software development.

EE

DARV Iz

Fig. 4: One of the standard deep learning models in computer
vision domain called ‘VGG network’ [6], designed using our
drag-and-drop UI from scratch.

III. PROPOSED SOLUTION FRAMEWORK

In this research, we propose an initial solution framework
called DARVIZ: Deep Abstract Representation, Visualiza-
tion, and Verification and is made available at http://darviz.
mybluemix.net. Fig. [3] shows the three primary aspects of
DARVIZ and are detailed as follows:

1) “No-code” intuitive deep model designing,

2) Model abstraction to provide interoperabilty across plat-

forms, and

3) Model validation features to be able to interpret what

the model has learnt and offer debugging services.
The different features of these three aspects are explained
further in detail.

A. “No-code” Intuitive Designing

Intuitively, deep learning models are graph like structures
having a set of pre-defined layers and hyper-parameters, and
driven by data. Implementing these models using a program-
ming language such as Python, C++, or Lua not only takes
time and has a learning curve, but also is prone to errors.
One feedback received in the user survey is quoted, “Many
times, for newer research problems, model design choice is
not the time consuming part; the formatting and encoding
of input data before being fed into an embedding layer
of the network takes considerable amount of effort”. This

highlights the importance of providing data handling features
as part of the Ul framework, so that developers are able
to seamlessly transition from data munging to deep learning
model designing.

The proposed DARVIZ framework consists of independent
modules for (i) handling data and performing data preprocess-
ing, (i) constructing deep learning models from scratch, and
(iii) a model zoo, which acts a unified public repository of
all the pre-trained models in literature that could be loaded
and reused. Data manipulation features in GUI provide the
capability for loading data of any format and structure, and
performing pre-processing with just a few button clicks. An
intuitive drag-and-drop UI will help in construction of new
deep learning models as well as quick reproduction of existing
models from research papers. For example, consider one of
the benchmark deep learning models used in computer vision
called the VGG network [6]. The TensorFlow implementatiorﬂ
consists of about 400 LOC in Python and typically takes a few
hours to few days of development effort. However, the same
VGG model was constructed using our drag-and-drop UI, as
shown in Fig. @] in just a few minutes by a developer with
minimum domain knowledge. Further, the entire TensorFlow
code (or the code in any library) of the designed model can
be automatically generated and exported with a single button
click.

B. Model Abstraction

The availability of multiple platforms in multiple program-
ming languages has led to a new challenge of model inter-
operability across platforms. Consider an example scenario,
where researchers have proposed a novel text summarization
algorithm using deep learning and have made their code
and pre-trained model available in TensorFlowﬁ However, if
another group of deep learning researchers who are proficient
in Torch want to modify this, currently, it is neither possible to
import the code nor possible to convert the pre-trained model
from TensorFlow to Torch.

Shttps://github.com/machrisaa/tensorflow-vgg/blob/master/vgg19_trainable.

py
Shttps://github.com/tensorflow/models/tree/master/textsum


http://darviz.mybluemix.net
http://darviz.mybluemix.net
https://github.com/machrisaa/tensorflow-vgg/blob/master/vgg19_trainable.py
https://github.com/machrisaa/tensorflow-vgg/blob/master/vgg19_trainable.py
https://github.com/tensorflow/models/tree/master/textsum

TABLE I: A comparison of some popular publicly available deep learning platforms and their features.

Platform Language | Wrapper Visualization Framework | Challenges

TensorFlow | Python Tensorflow-Slim, Keras | TensorBoard High learning curve of tensor operations
CAFFE C++ PyCaffe, MatCaffe NVIDIA DIGITS Native design scope limited to CNN

Torch Lua PyTorch NVIDIA DIGITS Proprietary model and designs

Theano Python Lasagne, Blocks, Keras | - High learning curve of library definitions
DL4J Java - - Poor interoperability with other frameworks

Also, each of these platforms have some advantages and
additional features, that the users would like to exploit while
building deep learning models. For example, one platform
could support more layer definitions while another platform is
optimized in handling tensor operations. To address such chal-
lenges in DARVIZ, we propose a model abstraction module
for both model design and model parameters. Such a module
could promote model driven development, where the models
already implemented in any of the existing platforms could be
converted to the abstract intermediate representation and from
the intermediate representation could be realized in any other
platform of choice.

C. Model Validation and Debugging

One of the most pressing challenges while authoring new
deep learning models, is the manual selection of hyper-
parameter values and the design choices to be made. Cur-
rently, researchers are manually overfitting the model hyper-
parameters for given dataset and problem. To make the trained
models more generic, there is a lack of debugging tools that
could assist in performing root-cause analysis and suggest
better choices of hyper-parameters during training process.
Further, in the deep learning community, researchers have
put in effort to understand how layers work together and
this knowledge can be applied for providing real-time design
suggestions. A cognitive fault detection framework could learn
the same over a period of time and for a given dataset, could
potentially validate the developer’s design and help in quick
development of a fault free deep learning model.

IV. LITERATURE STUDY

There are a few efforts in literature that have, in part,
attempted to address some of the challenges identified in this
research. As shown in Table [} the primary focus has been to
improve the efficiency of deep learning model designing using
GUI frameworks and visualization of some basic parameters
during training, while there has been minimum focus towards
model validation, debugging, and model abstraction.

The NVIDIA DIGITS framework] has been successful in
implementing a “no-code” interface for loading pre-defined
deep learning models. DIGITS also offers visualization of
certain watch variables such as training loss and accuracy in
terms of graphs. However, they support only a few pre-defined
network architectures while designing a model from scratch
is not addressed. Further although they support CAFFE and
Torch frameworks, there is no conversion service provided to
enable interoperability.

"https://developer.nvidia.com/digits

Tensorflow’s Tensorboard provides a GUI dashboard for
visual summarization of the learnings of the model such as
training loss over epochs and the data distribution. They also
provide a sophisticated software tool for graphical visualiza-
tion of pre-defined deep learning models. However, features
such as intuitive designing of a model from scratch, support-
ing models designed using other frameworks, and providing
debugging insights based on the visualizations are lacking.

Aetroﬂ is a platform to quickly design and train deep learn-
ing models from scratch. They provide an intuitive graphical
framework to design a specific class of deep learning models
called Convolution Neural Networks (CNN) which confines to
the “no-code” development strategy. However, it supports only
Keras as an underlying platform and further does not provide
any tools for validating and debugging the model.

V. CONCLUSION

Although there have been a few efforts to provide software
engineering tools to perform efficient deep learning design, in
this work, we identify the lack of a holistic perspective in terms
of a model driven development based solution for data-driven
programming. We highlight the different software engineering
tools envisioned for our DARVIZ framework which could lead
to efficient designing of deep learning models for people with
varied expertise and also can unify the research efforts happen-
ing in the domain of deep learning. An initial version of the
DARVIZ is made available here: https://darviz.mybluemix.net

REFERENCES

[1] 8 inspirational applications of deep learning. http:
//machinelearningmastery.com/inspirational-applications-deep-learning/.
Published: 2016-07-14.

[2] Google ai expert explains the challenge of debugging machine-learning
systems. http://www.networkworld.com/article/30754 13/software/

google-ai-expert-explains-the-challenge- of-debugging-machine-learning- systems.

html. Published: 2016-05-25.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Nature, 521(7553):436-444, 2015.

[4] Peter Norvig. Machine learning for programming. In ACM SIGPLAN
conference on Systems, Programming, and Applications: Software for
Humanity (Companion), pages 3-3, 2014.

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, and Michael Young. Machine learning:
The high interest credit card of technical debt. In SE4ML: Software
Engineering for Machine Learning (NIPS 2014 Workshop), 2014.

[6] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
1-9, 2015.

3

—

Deep learning.

[5

—

[7

—

8http://aetros.com/


https://developer.nvidia.com/digits
https://darviz.mybluemix.net
http://machinelearningmastery.com/inspirational-applications-deep-learning/
http://machinelearningmastery.com/inspirational-applications-deep-learning/
http://www.networkworld.com/article/3075413/software/google-ai-expert-explains-the-challenge-of-debugging-machine-learning-systems.html
http://www.networkworld.com/article/3075413/software/google-ai-expert-explains-the-challenge-of-debugging-machine-learning-systems.html
http://www.networkworld.com/article/3075413/software/google-ai-expert-explains-the-challenge-of-debugging-machine-learning-systems.html
http://aetros.com/

	I Introduction
	II Quantitative User Survey
	III Proposed Solution Framework
	III-A ``No-code" Intuitive Designing
	III-B Model Abstraction
	III-C Model Validation and Debugging

	IV Literature Study
	V Conclusion
	References

