
On Testing Quantum Programs
Andriy Miranskyy and Lei Zhang

Department of Computer Science, Ryerson University, Toronto, Canada
{avm, leizhang}@ryerson.ca

Abstract—A quantum computer (QC) can solve many compu-
tational problems more efficiently than a classic one. The field of
QCs is growing: companies (such as DWave, IBM, Google, and
Microsoft) are building QC offerings. We position that software
engineers should look into defining a set of software engineering
practices that apply to QC’s software. To start this process, we
give examples of challenges associated with testing such software
and sketch potential solutions to some of these challenges.

I. INTRODUCTION

A quantum computer (QC) can efficiently solve various
problems that a classical computer (CC) cannot [1]; this is
known as the quantum supremacy [2]. Examples of such
problems (originating in various fields of science) are scal-
able simulations of quantum systems in physics [1], efficient
modelling of chemical reactions [3], and fast breaking of
encryption codes1 in cryptography [6].

1) QC underlying principles: A CC operates on a sequence
of bits taking the values of 0 or 1. A QC operated on quantum
bits (hereon qubits), which are two-state quantum-mechanical
systems [7]. Unlike the bit, the qubit is represented by a
superposition of two states, inducing a probability distribution
of the qubit’s outcome being 0 or 1 upon measurement [7].
Essentially, the qubit is a stochastic system: every time we
take a measurement on a given qubit, the probability of the
outcome (0 or 1) would change. The beauty of the qubits lies in
the fact that qubits can be entangled, meaning that the number
of states that a QC can represent is proportional to 2q , where
q is the number of qubits, whereas a CC operating on q bits
would be able to represent at most q states [7].

2) QC applicability: Not every problem can benefit from
the QC architecture: those problems falling under the bounded
error quantum polynomial time (BQP) class defined in com-
putational complexity theory will [7]. The time complexity of
algorithms, which solve BQP class problems, grows polyno-
mially with the increase of the input size on a QC. On the
contrary, the time complexity of the algorithms solving the
same problems on a CC is not bounded above by a polynomial
function and may grow faster (e.g., exponentially) with the
increase of the size of the input.

Formally, it was shown that the relations between BQP
and other popular complexity classes are as follows: P ⊆
BPP ⊆ BQP ⊆ P#P ⊆ PSPACE, where P is a polynomial

1 These encryption codes are based on integer factorization. Multiple QC-
resistant encryption methods have been proposed [4], but their implementation
will require significant changes to various software: web browsers and web
servers, mail and hard drive encryptors, etc. We conjecture that the amount
of work necessary to introduce these changes into legacy software may be
similar to that of the Y2K problem [5].

time complexity class, BPP is a bounded-error probabilistic
polynomial time class, P#P is P with #P oracle class (#P
is a set of counting problems, and is a class of function
problems rather than decision problems), and PSPACE is a
polynomial space class, see [8] for details. Currently, the
consensus (although not formally proved) is that some of the
nondeterministic polynomial time (NP) problems do belong to
the BQP set; however, BQP and NP-complete sets of problems
do not overlap (see [8], [7] for review), i.e., a QC will not be
able to solve an NP-complete problem.

3) QC timeline: The field of quantum computing is young:
Feynman introduced the idea of quantum computing in
1982 [1]; Shor proposed the first practically relevant algorithm
(for breaking encryption protocols based on integer factoriza-
tion) that can be efficiently computed on a QC in 1994 [6].

A QC can be simulated on a CC [9], [10]. A quantum
simulator interprets a mathematical function as part of a
physical model [11]; however, it will not yield performance
improvement that a QC would provide, as the underlying host
system of the simulator is still based on bits rather than qubits.
Thus, one needs a real QC to reap performance benefits.

It took a while to implement an actual QC. A partnership
between academia and IBM created the first working 2-qubit
QC in 1998 [12], but it took the company 18 years to make a
5-qubit QC accessible to the public in 2016 [13].

At present, a few QCs are commercially available. DWave
started selling adiabatic QC in 2011 (although debate about
adiabatic QC being a “true” QC is ongoing2 [15]) with the
current offerings having > 2000 qubits. IBM gave access to
20- and 50-qubit gate-based superconducting QCs to academic
and industrial partners to explore practical applications in
2017 [16].

For non-commercial use, IBM offers 5- and 16-qubit QCs
via IBM Q Experience online platform based on IBM Cloud
(along with local- and Cloud-based simulators) [9]. Microsoft
provides access to a simulator of a topological QC via Mi-
crosoft Quantum Development Kit [10] (and is planning to
give access to an actual QC in the future). Google built 72-
qubit gate-based superconducting QC in 2018 [17], but it is
not publicly accessible at the time of writing.

4) QC performance: When discussing the performance of
the abovementioned QCs, we have to be mindful of the fact
that the performance of the QCs (which are based on different
architectures) cannot be compared merely based on the number

2A hybrid of adiabatic and gate-based QC is promising [14], but no
commercial implementation is available.

ar
X

iv
:1

81
2.

09
26

1v
1

 [
cs

.S
E

]
 2

1
D

ec
 2

01
8

of qubits that each QC has. Conceptually, it is similar to
the fact that we cannot compare the performance of CC
central processing unit (CPU) based solely on the number
of CPU cores and the cores’ frequency. Standardization of
benchmarks for QC is currently in the works by an IEEE
Working Group [18].

5) QC adoption: Given that P ⊆ BQP [8], one may argue
that QC will replace CC at some point in time. However,
we conjecture that QC will not replace CC in the short run.
Rather, QCs will be integrated into a System of Systems
(SoS), where QC-based components will solve BQP problems
(that CC cannot solve), while the solution will be passed to
CC components for post-processing. Let us elaborate on this
conjecture.

Example I.1. Suppose that we need to create a software-as-
a-service for factoring large integers. The time complexity
of the best algorithms available for a CC in the family of
general number field sieves) is sub-exponential [19]. Thus,
these algorithms will be ineffective for large integers. Instead,
we will build a software component running Shor’s algorithm
on a QC, which will be more efficient for large integers,
because Shor’s algorithm computation time (as other BQP
class algorithms) will grow polynomially with the growth of
the input integer N (when executed on a QC). The rest of
the components, such as user interface (UI) and application
program interface (API) for obtaining input (i.e., the value
of N) to be passed to the QC component and to return the
vector of factors ~L back to the user will be implemented on
a CC, as depicted in Figure 1. This is similar in nature to
the existing Cloud solution for online access to IBM QCs [9],
where a Cloud-based interface for writing programs for a QC
is running on a CC, while the program is then passed to the
QC for execution.

Why cannot we implement all of this functionality on a
QC? In the distant future, as equipment becomes cheaper to
procure and operate, and the higher-level languages for QC
are created, the replacement of CC with QC will become
more probable. However, we hypothesize that it is not going
to happen soon. Let us elaborate on the rationale for this
statement. First, the QCs are expensive: e.g., DWave QC is
valued at $15 million [21]. While other companies do not
disclose their prices, we conjecture that the price tags of other
QCs (magnitude-wise) are similar. Moreover, the operation of
these computers requires cryogenic equipment (operated by
highly qualified personnel), which further contributes to the
costs.

Second, modern QC programming languages, such as IBM
QisKit Python package [9] and Microsoft Q# language [22],
operate at the level of qubits and quantum circuits. Creation
of a UI and API in such a language would be very time-
consuming and expensive.

Notwithstanding, these languages integrate nicely into CC
domain, simplifying the creation of SoS. IBM QisKit is
implemented as a Python library, running on a CC. Once trans-
lated to QC machine language (via Open Quantum Assembly

Language [20]), the code is passed to the QC for execution (the
complexities of the call are encapsulated in the library’s code).
Microsoft Q# behaviour is similar: the code is developed on
a CC and then passed to a QC for execution.

6) Our position: Based on the above, QCs are becoming
more mainstream; and we are not the only one making this
claim, e.g., see [23]. Thus, we position that the Software Engi-
neering (SE) community should start thinking about bringing
SE practices into the domain of QCs. To do this, we need
to answer some research questions. To name a few: which of
the SE practices that we use in the CC domain can be ported
to the QC domain; which of the practices are not applicable;
and which novel practices should be created to address QC
domain challenges?

In this paper, to start the discussion, we focus on testing
software created for QC. Due to a lack of space, we arbitrarily
selected two topics related to testing activities: white- and
black-box testing, discussed in Section II, and verification and
validation, discussed in Section III. Section IV concludes the
paper.

II. WHITE- AND BLACK-BOX TESTING

Two widespread methods of testing are white-box and
black-box testing. The former method tests internal data
structures and program flow. The latter method tests the
functionality, ignoring the inner workings of the software,
answering the following question: will I get an expected output
for a given input?

We can perform all of the standard white-box activities on
the code listing, such as code reviews and code inspections.
However, interactive debugging (another popular white-box
activity) is challenging, because a QC is a black-box, by
construction. Based on the classic quantum mechanics3, we
cannot observe the inner working of a program (executed on
a QC) without altering the program’s state and the final result,
as measuring a qubit destroys superposition [24].

This implies that, currently, we cannot perform interactive
debugging of a program running on a QC, as we have to stop
the program and take the measurements. Thus, we have to re-
sort to black-box testing when dealing with a program running
on an actual QC. Note that we can do white-box testing in QC
simulators (e.g., we can use xUnit test framework to test Q#
programs [22]).

III. VERIFICATION AND VALIDATION

When testing the programs, how can we ensure that our code
follows the design document and that the QC is doing what it
is supposed to do? And even if our code reflects the design,
how can we make certain that the output of the program
delivers what a user needs? The former will be discussed in
Section III-A, the latter — in Section III-B.

3Recently, Vijay et al. [24] have invented a clever way of measuring a qubit
state without ending superposition. It remains to be seen if this technology
can be transferred to a QC.

Control sequence
Return qubits’ state

QASM

Return ~L

N

Return ~L

N

Return ~L

user: WebApp’s UI WebApp’s Backend QC’s Controller QC’s Core

WebApp QC

Fig. 1. Sequence diagram for Example I.1. A user submits the value of integer N for factorization via UI of a Web App, which passes N to the WebApp’s
backend. At the backend where the value of N is passed to, Shor’s algorithm is implemented using, say QisKit library [9]. The library translates QisKit
code into Open Quantum Assembly Language (QASM) [20] and passes QASM listing to the Controller of a QC. The Controller, which initializes the QC
Core based on the QASM code, triggers its execution and measures the values of the qubits once execution ends. The Controller converts the measurements
into the elements of ~L. These values are then returned to the Backend, UI, and, finally, the user. The sequence is depicted as synchronous, but can be made
asynchronous if required by a use case. Note that the WebApp UI and Backend, as well as the QC Controller, are running on CCs. The QC Core represents
the “true” QC. However, the QC Controller and the QC Core can be thought of as one QC system from practical perspective.

A. Verification

As discussed in Section II, we can apply the full spectra of
verification techniques on the code listings, but verification of
a running program on an actual QC is more challenging, as
we cannot use interactive debugger. To verify the correctness,
we can try to run and debug our program in a local or online
simulator, such as [9], [10]. However, as the simulators run
on CC, we will have to limit the complexity of our test cases
to obtain results within a reasonable amount of time. This
will help us to eliminate some of the defects (a taxonomy of
QC bugs is being developed [25]), but does not guarantee that
no other defects will be encountered while solving production-
scale problems. The same issue, conceptually, arises with CCs
too, e.g., when dealing with buffer-overrun- and resource-leak-
related defects.

The above test assumes that a simulator correctly and
accurately resembles the actual QC, which is not always the
case. Thus, a more definitive verification of correctness should
be done on the the actual QC. Given the probabilistic nature
of QC, we may have to execute the same code multiple
times to increase the accuracy of our answer using Chernoff
bound [7] (which is similar to probabilistic algorithms in
BPP class running on CC [7]). This repeating functionality
is built into packages like QisKit, but it requires a higher
amount of computing resources (proportional to the number
of repetitions).

The above approach assumes that the QC hardware, its
operating system, and the compiler/translator of our program
are running correctly, which is not always the case. To verify
their correctness, we may need to execute the same program
on multiple QCs (preferably from different manufacturers) and
compare the results. If results differ significantly — it may
be a sign that there is an issue with one or more QCs under
test. This is akin to correctness testing of a database engine by
running the same query against different database engines [26].

A novel award-winning protocol, verifying QC computa-
tions with the help of a CC has been proposed [27]. It

requires a significant amount of computational resources and,
probably, will not be implemented shortly. However, as the
computing power of QCs will increase, this protocol will
become implementable in practice.

However, even if all of the above tests pass, it does not
guarantee that the actual results returned by the QC are correct.
This is where validation comes into play.

B. Validation

When doing the validation, we need to make sure that the
output of the algorithm satisfies the conditions provided in
the requirements document (assuming that requirements were
captured correctly). In other words, validation of a program
running on a QC is similar to that of a program executed by
a CC. Essentially, the ease of validation will depend on the
difficulty of implementing a program for validating the results
and the time needed4 to execute the validation.

Before implementing a program, we need to estimate how
long the validation process would take. To do so, we can resort
to complexity analysis. Say, if the execution time of the vali-
dation5 program would belong to O(1), the validation process
(given that it is easy to code up) would be straightforward.
However, if the execution time would belong, say, to O(n!),
where n would be proportionate to the length of input into
the validation process (and to the length of the solution), then
the validation process for a significantly large n would be
formidable.

For simplicity, we can split the complexity of validation
into two classes: polynomial time P bounded by O(nk)
(i.e., validation time is bounded above asymptotically by
nk, where k > 0) and super-polynomial time PC, which is
complementary to P, bounded by ω(nk) (i.e., validation time

4As discussed in Section I, many problems in BQP are solved efficiently
on a QC, but are challenging to solve on a CC. However, the time needed to
solve a problem is independent of the time needed to validate this solution.

5In the algorithm-related literature, the term verification rather than valida-
tion is used. We will use the term validation for consistency with the name
of this section.

dominates asymptotically the nk). We will look at examples of
the algorithms belonging to these classes in subsections below.

Where should we implement the validation program: on
a CC or a QC? In the program belongs to P class, it can
be implemented on either one, as P ⊆ BQP. However, as
discussed in Section I, it is challenging to program a QC
as we are dealing with low-level programming language.
Moreover, the cost of running a QC in comparison with a CC
is high. Thus, it is simpler and more economically feasible to
implement a validation program on a CC, if possible.

In the case of PC class, the answer is less straightforward. If
the size of the input into validation program is small, we may
be able to still leverage a CC (especially if we can parallelize
the validation on a CC cluster). However, we may have to
resort to a QC for larger problems. If the validation program
belongs to classes which are a subset of BQP, such as BPP
class, then QC is a good match. However, if the validation
belongs to a “harder” class, such as NP-complete, then QC
may also fail to deliver timely results. In this case, we may
have to resort to a heuristic that tries to roughly validate the
solution, but does not guarantee that solution is correct.

Let us look at one example of algorithms from both classes
and ways to run the validation.

1) Polynomial P: Shor’s integer factoring algorithm takes
integer N as input and returns a vector of prime factors ~L
for N [6]. The solution runs on a QC in polynomial time,
O((logN)2(log logN)(log log logN)) to be specific [6]. The
validation complexity is independent of the solution complex-
ity, growing linearly with the number of elements in ~L, deemed
l, as we simply need to multiply the elements in ~L to do
the validation. That is, the complexity of validation of Shor’s
algorithm is O(l). Thus, we can easily6 perform validation on
a CC. Note that validation of Shor’s algorithm can be carried
on a QC, but this is economically inferior, as discussed above.

2) Super-Polynomial PC: Boson sampling is a good ex-
ample of a problem that is challenging to verify. Yet, the
algorithm is crucial7. Experimentally, the algorithm is typi-
cally implemented using photons (belonging to the family of
boson particles [7]). To implement the algorithm, we need a
linear-optical circuit with m modes that is injected with h
individual photons (m > h) [29]. In this implementation, the
boson sampling task reduces to creating a sample from the
probability distribution of individual photon measurements at
the circuit’s output.

This algorithm cannot be computed on a CC for large values
of m and h, as it requires computing a permanent of a matrix
which is a #P-hard problem [28], [30]. At best, it requires
O(h2h +mh2) computations [31].

However, the problem does fall [28] into PostBQP class
(BQP class with post-selection), which can be efficiently
computed on a QC. Validation of the results on a CC is also a
#P-hard problem, as we again need to compute the permanent

6Although we may have to leverage existing libraries for multiplication of
integers with arbitrary precision, such as Java BigInteger.

7It may lead to the implementation of a non-universal QC, which will still
be more efficient than CC for some tasks, see [28] for details.

of a matrix. However, one may adopt a heuristic to estimate
goodness of findings (essentially, performing approximate
validation) using machine learning approach [29].

In the above example, to perform an accurate validation,
we need to do it on a QC. Ideally, this should be done on a
different QC to simultaneously check the correctness of the
computer itself (as was discussed in Section III-A). The code
of the validation software would be similar to the one of the
solution software. Thus, if resources permit, one may want to
create the validation code from scratch (rather than reusing
the existing code from the solution) to avoid migration of the
defects from the solution code into validation code.

IV. CONCLUSIONS

QCs are becoming more mainstream. Thus, we position
that software engineers should start the process of bringing
SE practices into the domain of QCs. To do this, we need
to identify which existing methods are transferable from the
domain of CCs, which have to be altered, and which have to
be created.

To start the discussion on this matter, we list a number of
challenges associated with white- and black-box testing as well
as verification and validation of programs running on a QC.
We then list some of the existing SE practices that are readily
transferable to the QC domain (e.g., code review), some that
are difficultly transferable (e.g., interactive debugging), and
some that have to be introduced (e.g., complexity-dependent
placement of a validation program).

We hope that this paper will catalyze the process of defining
SE practices for QCs and that SE specialists in academia and
industry will start exploring this fascinating area of computing,
expanding our work to other areas of testing and the remaining
phases of the software development life cycle.

REFERENCES

[1] R. P. Feynman, “Simulating physics with computers,” International
journal of theoretical physics, vol. 21, no. 6-7, pp. 467–488, 1982.

[2] J. Preskill, “Quantum computing and the entanglement frontier,” arXiv
preprint arXiv:1203.5813, 2012.

[3] A. Aspuru-Guzik, A. D. Dutoi et al., “Simulated quantum computation
of molecular energies,” Science, vol. 309, no. 5741, pp. 1704–1707,
2005.

[4] D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds., Post-Quantum
Cryptography. Berlin Heidelberg: Springer-Verlag, 2009.

[5] “Y2K bug — Definition, Hysteria, & Facts — Britannica.com,”
accessed on 2018-09-25. [Online]. Available: https://www.britannica.
com/technology/Y2K-bug

[6] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput.,
vol. 26, no. 5, pp. 1484–1509, Oct. 1997. [Online]. Available:
http://dx.doi.org/10.1137/S0097539795293172

[7] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge Univ. Press, 2010.

[8] U. Vazirani, “A survey of quantum complexity theory,” in Proceedings
of Symposia in Applied Mathematics, vol. 58, 2002, pp. 193–220.

[9] “IBM Q Experience,” accessed on 2018-09-25. [Online]. Available:
https://quantumexperience.ng.bluemix.net/qx/experience

[10] “Quantum computing | Microsoft,” accessed on 2018-09-25. [Online].
Available: https://www.microsoft.com/en-us/quantum/

[11] T. H. Johnson, S. R. Clark, and D. Jaksch, “What is a quantum
simulator?” EPJ Quantum Technology, vol. 1, no. 1, p. 10, Jul 2014.

https://www.britannica.com/technology/Y2K-bug
https://www.britannica.com/technology/Y2K-bug
http://dx.doi.org/10.1137/S0097539795293172
https://quantumexperience.ng.bluemix.net/qx/experience
https://www.microsoft.com/en-us/quantum/

[12] I. L. Chuang, N. Gershenfeld, and M. Kubinec, “Experimental
implementation of fast quantum searching,” Phys. Rev. Lett., vol. 80,
pp. 3408–3411, Apr 1998. [Online]. Available: https://link.aps.org/doi/
10.1103/PhysRevLett.80.3408

[13] “IBM News room - 2016-05-04 IBM Makes Quantum Computing
Available on IBM Cloud to Accelerate Innovation - United States,”
accessed on 2018-09-25. [Online]. Available: https://www-03.ibm.com/
press/us/en/pressrelease/49661.wss

[14] R. Barends, A. Shabani et al., “Digitized adiabatic quantum computing
with a superconducting circuit,” Nature, vol. 534, pp. 222–226, Jun.
2016. [Online]. Available: http://dx.doi.org/10.1038/nature17658

[15] T. Albash, V. Martin-Mayor, and I. Hen, “Temperature scaling
law for quantum annealing optimizers,” Phys. Rev. Lett., vol.
119, pp. 110 502:1–110 502:7, Sep 2017. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevLett.119.110502

[16] “IBM Announces Collaboration with Leading Fortune 500 Companies,
Academic Institutions and National Research Labs to Accelerate
Quantum Computing - Dec 13, 2017,” accessed on 2018-09-25.
[Online]. Available: https://newsroom.ibm.com/2017-12-13-IBM-
Announces-Collaboration-with-Leading-Fortune-500-Companies-
Academic-Institutions-and-National-Research-Labs-to-Accelerate-
Quantum-Computing

[17] “Google AI Blog: A Preview of Bristlecone, Google’s New Quantum
Processor,” accessed on 2018-09-25. [Online]. Available: https://ai.
googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html

[18] “P7131 - Standard for Quantum Computing Performance Metrics
& Performance Benchmarking,” accessed on 2018-09-25. [Online].
Available: https://standards.ieee.org/project/7131.html

[19] C. Pomerance, “A tale of two sieves,” Notices Amer. Math. Soc, vol. 43,
pp. 1473–1485, 1996.

[20] A. W. Cross, L. S. Bishop et al., “Open quantum assembly language,”
arXiv preprint arXiv:1707.03429, 2017.

[21] “D-Wave 2000Q goes on sale — WIRED UK,” accessed on 2018-09-
25. [Online]. Available: https://www.wired.co.uk/article/d-wave-2000q-
quantum-computer

[22] K. Svore, A. Geller et al., “Q#: Enabling Scalable Quantum Computing
and Development with a High-level DSL,” in Proceedings of the Real
World Domain Specific Languages Workshop 2018, ser. RWDSL2018.
New York, NY, USA: ACM, 2018, pp. 7:1–7:10. [Online]. Available:
http://doi.acm.org/10.1145/3183895.3183901

[23] D. Castelvecchi, “Quantum computers ready to leap out of the lab in
2017,” Nature News, vol. 541, no. 7635, pp. 9–10, 2017.

[24] R. Vijay, C. Macklin et al., “Stabilizing Rabi oscillations in a supercon-
ducting qubit using quantum feedback,” Nature, vol. 490, pp. 77–80,
2012.

[25] Y. Huang and M. Martonosi, “QDB: from quantum algorithms towards
correct quantum programs,” arXiv preprint arXiv:1811.05447, 2018.

[26] E. Cialini, A. Loreto, and D. Godwin, “Method, system, and program
for determining discrepancies between database management systems,”
2007, US Patent App. US20070100783A1.

[27] U. Mahadev, “Classical verification of quantum computations,” in 2018
IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), Oct 2018, pp. 259–267.

[28] S. Aaronson and A. Arkhipov, “The computational complexity of linear
optics,” in Proceedings of the Forty-third Annual ACM Symposium on
Theory of Computing, ser. STOC ’11. ACM, 2011, pp. 333–342.
[Online]. Available: http://doi.acm.org/10.1145/1993636.1993682

[29] T. Giordani, F. Flamini et al., “Experimental statistical signature of
many-body quantum interference,” Nature Photonics, vol. 12, no. 3,
pp. 173–178, Mar. 2018. [Online]. Available: https://doi.org/10.1038/
s41566-018-0097-4

[30] L. Valiant, “The complexity of computing the permanent,”
Theoretical Computer Science, vol. 8, no. 2, pp. 189 – 201,
1979. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0304397579900446

[31] P. Clifford and R. Clifford, “The classical complexity of boson
sampling,” in Proceedings of the 29th Annual ACM-SIAM Symposium
on Discrete Algorithms, ser. SODA ’18, 2018, pp. 146–155. [Online].
Available: http://dl.acm.org/citation.cfm?id=3174304.3175276

https://link.aps.org/doi/10.1103/PhysRevLett.80.3408
https://link.aps.org/doi/10.1103/PhysRevLett.80.3408
https://www-03.ibm.com/press/us/en/pressrelease/49661.wss
https://www-03.ibm.com/press/us/en/pressrelease/49661.wss
http://dx.doi.org/10.1038/nature17658
https://link.aps.org/doi/10.1103/PhysRevLett.119.110502
https://link.aps.org/doi/10.1103/PhysRevLett.119.110502
https://newsroom.ibm.com/2017-12-13-IBM-Announces-Collaboration-with-Leading-Fortune-500-Companies-Academic-Institutions-and-National-Research-Labs-to-Accelerate-Quantum-Computing
https://newsroom.ibm.com/2017-12-13-IBM-Announces-Collaboration-with-Leading-Fortune-500-Companies-Academic-Institutions-and-National-Research-Labs-to-Accelerate-Quantum-Computing
https://newsroom.ibm.com/2017-12-13-IBM-Announces-Collaboration-with-Leading-Fortune-500-Companies-Academic-Institutions-and-National-Research-Labs-to-Accelerate-Quantum-Computing
https://newsroom.ibm.com/2017-12-13-IBM-Announces-Collaboration-with-Leading-Fortune-500-Companies-Academic-Institutions-and-National-Research-Labs-to-Accelerate-Quantum-Computing
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://standards.ieee.org/project/7131.html
https://www.wired.co.uk/article/d-wave-2000q-quantum-computer
https://www.wired.co.uk/article/d-wave-2000q-quantum-computer
http://doi.acm.org/10.1145/3183895.3183901
http://doi.acm.org/10.1145/1993636.1993682
https://doi.org/10.1038/s41566-018-0097-4
https://doi.org/10.1038/s41566-018-0097-4
http://www.sciencedirect.com/science/article/pii/0304397579900446
http://www.sciencedirect.com/science/article/pii/0304397579900446
http://dl.acm.org/citation.cfm?id=3174304.3175276

	I Introduction
	I-1 QC underlying principles
	I-2 QC applicability
	I-3 QC timeline
	I-4 QC performance
	I-5 QC adoption
	I-6 Our position

	II White- and black-box testing
	III Verification and Validation
	III-A Verification
	III-B Validation
	III-B1 Polynomial ¶
	III-B2 Super-Polynomial ¶C

	IV Conclusions
	References

