
EMaaS: Energy Measurements as a Service for
Mobile Applications

Luis Cruz
University of Porto

INESC-TEC
Porto, Portugal

luiscruz@fe.up.pt

Rui Abreu
Instituto Superior Técnico, University of Lisbon

INESC-ID
Lisbon, Portugal

rui@computer.org

Abstract—Measuring energy consumption is a challenging task
faced by developers when building mobile apps. This paper
presents EMaaS: a system that provides reliable energy mea-
surements for mobile applications, without requiring a complex
setup. It combines estimations from an energy model with —
typically more reliable, but also expensive — hardware-based
measurements. On a per scenario basis, it decides whether the
energy model is able to provide a reliable estimation of energy
consumption. Otherwise, hardware-based measurements are pro-
vided. In addition, the system is accessible to the community
of mobile software practitioners/researchers in the form of a
Software as a Service. With this service, we aim at solving current
problems in the field of energy efficiency in mobile software
engineering: the complexity of hardware-based power monitor
tools, the reliability of energy models, and the continuous need
of data to build energy models.

Index Terms—Mobile Applications; Mobile Testing; Energy
Consumption.

I. INTRODUCTION

One of the main problems mobile developers face when
building apps is the need to run tests under a number of
different settings (e.g., mobile device models, operative system
version) [1, 2]. For instance, the appearance of the user
interface may change in devices with different screen sizes and
resolutions. This problem is also evident when testing energy
consumption.

Moreover, measuring energy consumption with power tools
is a cumbersome task. Developers need to create a setup that
often requires disassembling the device and acquire specialized
power tools, as shown in Fig. 1. Such setup is expensive,
time-consuming and requires skills out of the domain of most
practitioners. Nevertheless, this setup ends up being unused
most of the time, since developers do not need to run energy
measurements continuously during development.

To overcome these issues, tools have been proposed to mea-
sure energy consumption using software-based estimators [3–6].
These tools are able to provide accurate estimations within the
context in which they were trained [7]. However, when they
are used against new settings — for instance, different devices,
operative system (OS) versions, or API methods — one cannot
be sure about the reliability of those measurements. Thus, there
is a need to continuously collect energy measurement data in
order to have accurate energy models.

Fig. 1. Monsoon power monitor connected to the Nexus 5X smartphone.

Although energy models are very handy, practitioners cannot
be sure of whether a model is trained for a given use case.
A developer should not rely on a model that was trained for
different scenarios. However, this information is not always
accessible to developers. This is critical when developers need
to make design decisions based on the energy efficiency of
their code.

There is a tradeoff between using hardware and software-
based energy estimators. None of these approaches is ready to
be adopted by the community of mobile developers on a global
scale. In this paper, we address the aforementioned issues by
proposing a hybrid system that provides the best of these two
approaches. The system provides energy measurements as a
service and is able to switch between software and hardware-
based measurements, depending on the app under test and its
running environment.

In this paper, we propose EMaaS, a peer-to-peer cloud-
based system that delivers energy measurements as a service
for mobile applications. In particular, the system addresses the
following issues:

1) Power monitor tools are complex and impractical in a
real mobile development scenario.

2) Reliable energy models need to be continuously updated
with new data, collected using hardware-based power
monitors.

3) The context in which a given energy model can provide
reliable measurements is not always clear.

ar
X

iv
:1

90
2.

02
60

5v
2 

 [
cs

.S
E

] 
 2

8 
Fe

b 
20

19

luiscruz@fe.up.pt
rui@computer.org


II. THE VISION

We envisage a crowd-sourced system to deliver lightweight
energy tests as a service. It combines energy models with
power monitors to provide the most accurate energy measure-
ments without requiring a cumbersome setup of power tools.
Moreover, the system allows developers to measure their apps
in mobile devices from different manufacturers.

Developers only need to provide an executable package
with (1) the application build (e.g. an APK1 in the case of
the Android OS) and (2) the instrumentation build with the
test cases to be measured (e.g., the instrumentation APK for
Espresso test cases on Android).

Fig. 2 outlines the high-level architecture of the system. It
features three types of users:

• Developers use the system to collect energy consumption
measurements for their apps.

• Providers allow other users to use their mobile devices to
run energy measurements. In this case, energy consump-
tion is estimated using an energy model.

• Super-Providers are special providers that provide en-
ergy measurements using a hardware-based power monitor.

The same user can act as a developer, provider, or super-
provider, simultaneously. When super-providers are not avail-
able to run a given measurement, providers take their place
using energy models.

As an example, Fig. 2 highlights three connected peers,
marked with green thick lines: one developer, one provider,
and one super-provider. The same developer asks the system
to run energy tests in two different device models, X and
Y. The system assigns a super-provider for device model X
but no super-provider was available for device Y. Although a
super-provider for Y exists in the system, it is busy dealing
with another measurement task. Thus, since the system had a
reliable energy estimator for device model Y, it assigned the
task to a provider, as depicted in the illustration. If the system
did not have a suitable energy model for the given scenario,
the task would wait until a super-provider for model Y would
become available.

In this setting, the developer does not own any mobile device
or power monitor tool. They are being provided by other users
in the system. With this approach, it delivers 1) a better use of
resources, 2) access to a bigger set of devices and tools, and
3) a simple/affordable setup to measure energy consumption.

Under the hood, the system integrates two modules to bring
the best of both hardware and software-based power monitors:
the Energy Model and the Reliability Consultant.

The Energy Model is based on approaches from previous
work, which uses data collected from hardware-based power
monitors to train models of power consumption. The main
limitation of current state-of-the-art solutions is the lack of
data to train energy models [5]. We mitigate this limitation
by continuously updating models using data collected from
hardware-based power monitors (i.e., super-providers). Thus,

1APK is the package file format used by the Android OS for distribution
and installation of mobile apps and middleware.

Energy Measurements

Super Provider

Measurement Setup

0010101011100010

1001001011001010

0011110101001001

10111001

Developer

Workstation

0010101011100010

1001001011001010

0011110101001001

10111001

Developer

Workstation

0010101011100010

1001001011001010

0011110101001001

10111001

Developer

Workstation

Super Provider

Measurement Setup

EMaaS

Provider

Mobile Device

Provider

Mobile Device

!

"

"

!

!

"

"

Busy

Y

X

Y

X

Fig. 2. High-level vision of the system for energy measurements as a service.

in this solution, providers always estimate energy consumption
using up-to-date energy models.

Another limitation is the fact that these solutions rely on in-
vitro data to train their models. Extrapolating these estimators to
different devices can compromise measurements. On contrary,
this solution can virtually scope any execution environment,
given that it is available from a super-provider. In addition,
since the power model is continuously improving every time
developers run their energy tests, it is able to adapt to new
paradigms, devices, or OS versions when they come to market.
Going back to the example given by Fig. 2, if a reliable energy
model for the given test cases was not available for device Y,
the system would collect data from super-providers over time.
Eventually, the system would have enough data to learn a new
energy model that could provide reliable estimations for the
new scenario.

Although energy models can provide very accurate estima-
tions, one needs to assess whether they are ready to be used
in a given context. I.e., a given energy model might not be
ready yet to measure the energy consumption of apps that use
specific libraries. The system needs to assess whether, for a
given developer request, it is acceptable to return an energy
estimation. If not, the system has to alert the developer or wait
for a super-provider to be available. We propose the module
Reliability Consultant to solve this problem.

In parallel with the Energy Model, the Reliability Consul-
tant module will inspect the reliability of the estimator. Super-
providers will run simultaneously hardware and software-based
measurements. The reliability of energy models is assessed
using results from hardware as ground-truth. We then construct



reliability as a metric that is negatively correlated to the power
error (ε), given by the following equation:

ε =
Emeasured − Eestimated

∆t
(1)

where Emeasured and Eestimated are the energy consumption
measured by the power monitor and the estimator, respectively,
and ∆t is the duration of execution of the energy test. For
high reliability, ε should be close to zero.

In addition, we use static analysis to collect data regarding
the app and its execution environment — for instance, frequency
of library/API calls, complexity metrics, framework, API level,
OS version, etc. This data will be used to train a regression
model that estimates the power error of the software-based
estimator.

As a side contribution we propose to answer the following
research questions:

RQ1: Can static analysis be used to assess the reliability
of energy models for different running environments?

RQ2: What is the improvement of using hybrid energy
measurements over software-based measurements?

RQ3: What is the proportion of software vs. hardware
measurements?

The combination of the modules Reliability Consultant,
Energy Model, and Hardware-based Power Monitor is
depicted in Fig. 3. Upon a measurement request from the
developer, the system asks the Reliability Consultant whether
the measurement needs to use a Hardware-based Power
Monitor. If not, the estimation provided by the Energy Model
is returned to the developer. On contrary, if the Reliability
Consultant does not consider the Energy Model reliable for
the given mobile app, an hardware-based measurement is
provided, and the Energy Model and Reliability Consultant
are updated with new data.

III. WHY IS IT NEW?

Very interesting tools have been proposed by researchers
to measure energy consumption. However, given the ever-
changing nature of the mobile application world, keeping them
up-to-date and ready to use for developers can be challenging.
This system is able to be continuously updated and to adapt
its energy model to new settings.

Moreover, this will help researchers having more valuable
contributions in the field of energy efficiency of mobile
applications. Recent contributions are using energy models
to estimate energy consumption [8–11]. However, the validity
of these measurements is not easily assessed. In addition, most
contributions have their experiments limited to a small set of
environments, providing a relevant threat to the validity.

Is the use case 

suitable for the 

energy Model?

Hardware-based 

power monitor

Update Energy Model, 

and Reliability 

Consultant

Yes No

Energy Measurement Request

EMaaS

Return Energy 

Consumption Results

Mobile Developer

0010101011100010

1001001011001010

0011110101001001

10111001

Reliability

Consultant

Energy

Model

Fig. 3. How a normal energy measurement request is processed, starting from
the perspective of a developer.

This work bridges the gap between industry and academia
in terms of energy measurements for mobile applications. To
the best of our knowledge, this is the first time reliable energy
measurements can be deployed to the industry without requiring
an expensive setup. Furthermore, no prior work has leveraged
a tool to assess the compatibility between an energy model
and its running environment.

IV. RISKS

The main risks that can affect this system are related to
Security and Privacy.

a) Security: The system has to account for malware
mobile software that can affect the devices of providers.

b) Privacy: Developers do not want to disclosure their
apps before deployment. Mechanisms need to be deployed to
prevent mobile applications from being collected by malicious
providers or super-providers. Furthermore, the mobile devices
available in the system need to be protected from mal-intended
developers. The data stored in the devices should not be
accessed by the system or the mobile application under test.

c) Measurement best practices: Typically, energy mea-
surements require rigorous approaches to mitigate potential
bias on measurements. For instance, the app under analysis
should be running in isolation on the phone while no other
apps are running in parallel [12].



To address these issues, energy tests have to be executed in a
closed environment, instantiated in the mobile device. In some
cases, the device may have to be restored. Thus, providers
may not be able to use their own personal devices. For safety
reasons, the system may be limited to devices exclusively
acquired for app development.

V. NEXT STEPS

In this paper, we present the idea of using peer-to-peer
cloud computing to deliver reliable energy measurements as a
service. We are interested in improving the way researchers
and developers are profiling the energy consumption of their
mobile software. By making it available as service, we aim to
help developers make informed design decisions regarding the
energy efficiency of their code.

In the early stages, EMaaS will require a considerable soft-
ware development effort. Thus, we divide the implementation
into three steps. In the first step, we will be interested in
delivering a system that yields hardware-based measurements.
This will serve as a base system to add more sophisticated
energy measurement techniques in the following steps.

The second step will consist of including the Energy Model.
In particular, we will be looking at how to improve existing
models for energy estimation. One big advantage of our
approach is the access to real measurement data collected
from a wide variety of devices and OSs.

Finally, in the third step, we will be adding the Reliability
Consultant. We will use measurements collected from both
energy models and power monitors to train a regression model
of the reliability of energy estimators in a particular execution
scenario.

For an initial proof-of-concept, the system will support
Android apps instrumented with Espresso test cases, since
it has been the most suitable UI test framework for energy
measurements [13, 14]. In order to initially avoid privacy and
security risks, the system will be exclusively available to invited
users.

VI. ACKNOWLEDGMENTS

Luis Cruz is sponsored by the ERDF – European Regional
Development Fund through the Operational Programme for
Competitiveness and Internationalisation - COMPETE 2020
Programme and by National Funds through the Portuguese
funding agency, FCT – Fundao para a Ciłncia e a Tecnologia,
within project POCI-01-0145-FEDER-016718, and by the FCT
scholarship grant number PD/BD/52237/2013.

Rui Abreu is sponsored by the ERDF through the
COMPETE 2020 Program and by National Funds through
the Portuguese funding agency FCT with reference
UID/CEC/50021/2019, and within the project FaultLockerRef
(PTDC/CCI-COM/29300/2017).

REFERENCES

[1] K. Moran, M. L. Vásquez, and D. Poshyvanyk, “Auto-
mated GUI testing of android apps: from research to
practice,” in ICSE 2017 - Companion Volume, 2017, pp.
505–506.

[2] H. Muccini, A. D. Francesco, and P. Esposito, “Software
testing of mobile applications: Challenges and future
research directions,” in 7th International Workshop on
Automation of Software Test, AST 2012, 2012, pp. 29–35.

[3] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan,
“Estimating mobile application energy consumption using
program analysis,” in 35th International Conference on
Software Engineering, ICSE ’13, 2013, pp. 92–101.

[4] D. D. Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaid-
man, and A. D. Lucia, “Petra: a software-based tool for
estimating the energy profile of android applications,” in
ICSE 2017 - Companion Volume, 2017, pp. 3–6.

[5] S. Chowdhury, S. Borle, S. Romansky, and A. Hindle,
“Greenscaler: training software energy models with auto-
matic test generation,” Empirical Software Engineering,
Jul 2018.

[6] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.
Mao, and L. Yang, “Accurate online power estimation and
automatic battery behavior based power model generation
for smartphones,” in Proceedings of the 8th International
Conference on Hardware/Software Codesign and System
Synthesis, 2010, pp. 105–114.

[7] D. D. Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaid-
man, and A. D. Lucia, “Software-based energy profiling of
android apps: Simple, efficient and reliable?” in IEEE 24th
International Conference on Software Analysis, Evolution
and Reengineering, 2017, pp. 103–114.

[8] D. Li, S. Hao, J. Gui, and W. G. J. Halfond, “An
empirical study of the energy consumption of android
applications,” in 30th IEEE International Conference on
Software Maintenance and Evolution, 2014, pp. 121–130.

[9] D. Li and W. G. J. Halfond, “Optimizing energy of HTTP
requests in android applications,” in Proceedings of the
3rd International Workshop on Software Development
Lifecycle for Mobile, DeMobile 2015, 2015, pp. 25–28.

[10] C. Sahin, L. L. Pollock, and J. Clause, “How do code
refactorings affect energy usage?” in 2014 ACM-IEEE
International Symposium on Empirical Software Engineer-
ing and Measurement, ESEM ’14, 2014, pp. 36:1–36:10.

[11] S. A. Chowdhury, S. D. Nardo, A. Hindle, and Z. M. J.
Jiang, “An exploratory study on assessing the energy
impact of logging on android applications,” Empirical
Software Engineering, vol. 23, no. 3, pp. 1422–1456,
2018.

[12] L. Cruz and R. Abreu, “Performance-based guidelines
for energy efficient mobile applications,” in IEEE/ACM
International Conference on Mobile Software Engineering
and Systems, MobileSoft 2017, 2017, pp. 46–57.

[13] ——, “Measuring the energy footprint of mobile testing
frameworks,” in Proceedings of the 40th International
Conference on Software Engineering: Companion Pro-
ceeedings, ser. ICSE ’18. New York, NY, USA: ACM,
2018, pp. 400–401.

[14] L. Cruz, R. Abreu, and D. Lo, “To the attention of
mobile software developers: Guess what, test your app!”
Empirical Software Engineering, Feb 2019.


	I Introduction
	II The Vision
	III Why is it New?
	IV Risks
	V Next Steps
	VI Acknowledgments

