
Grammars for Free:

Toward Grammar Inference for Ad Hoc Parsers

Michael Schröder
TU Wien

Vienna, Austria

michael.schroeder@tuwien.ac.at

Jürgen Cito
TU Wien and Meta Platforms, Inc.

Vienna, Austria

juergen.cito@tuwien.ac.at

ABSTRACT

Ad hoc parsers are everywhere: they appear any time a string is

split, looped over, interpreted, transformed, or otherwise processed.

Every ad hoc parser gives rise to a language: the possibly infinite set

of input strings that the program accepts without going wrong. Any

language can be described by a formal grammar: a finite set of rules

that can generate all strings of that language. But programmers do

not write grammars for ad hoc parsers—even though they would

be eminently useful. Grammars can serve as documentation, aid

program comprehension, generate test inputs, and allow reason-

ing about language-theoretic security. We propose an automatic

grammar inference system for ad hoc parsers that would enable all

of these use cases, in addition to opening up new possibilities in

mining software repositories and bi-directional parser synthesis.

ACM Reference Format:

Michael Schröder and Jürgen Cito. 2022. Grammars for Free: Toward Gram-

mar Inference for Ad Hoc Parsers. In New Ideas and Emerging Results (ICSE-

NIER’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,

5 pages. https://doi.org/10.1145/3510455.3512787

1 INTRODUCTION

Parsing is one of the fundamental activities in software engineering.

Following Grune and Jacobs [22], we take parsing to mean “the

process of structuring a linear representation in accordance with

a given grammar,” an activity so common that pretty much every

program performs some kind of parsing at one point or another.

Academically, parsing has been studied since the very early days

of computer science [27] and formal language theory, which has its

origin in linguistics [8], provides the foundation for an impressive

amount of both theoretical results [25] and practical applications

[22]. As part of every-day programming, regular expressions [53]

are probably the biggest and most widely known success story of

applied formal language theory. But apart from regexes, only a

small minority of programs, mainly compilers and some protocol

implementations, make explicit reference to the formal-theoretic

underpinnings of parsing, documenting grammars of their input

languages and making use of formalized parsing techniques such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9224-2/22/05. . . $15.00
https://doi.org/10.1145/3510455.3512787

xs = map(int, s.split(','))

s → int | int , s

int → space∗ siдn? diдit (_? diдit)∗ space∗

diдit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

siдn → + | -

space → ␣ | \t | \n | \v | \f | \r

space

+

-

diдit

_

space

,

Figure 1: An ad hoc parser and its grammar.1

as parser generators [30, 45] or parser combinator frameworks [34].

The vast majority of parsing code in software today is ad hoc.

The Python expression in Figure 1 is a typical example of an ad

hoc parser. It transforms a string s into a list of integers xs. First, the
split function breaks s into its comma-separated substrings, then
the map function applies the int constructor to all substrings, turn-
ing each into a proper integer value. This parser does not use any

particular parsing techniques or frameworks, just ordinary func-

tions manipulating strings and transforming values. A programmer

writing this expression would most likely not think about the fact

that they are writing a parser. Splitting a comma-separated list of

values, just like extracting a command-line argument, reading a

timestamp, or any other minor programming task involving strings,

barely registers as parsing. Commonly, this kind of parsing code is

deeply entangled with application logic—a phenomenon known as

shotgun parsing [42].

Figure 1 also includes a complete grammar for this parser (as-

suming the semantics of Python 3.9). It is not a particularly complex

grammar, but it is perhaps still surprising. Even an experienced

Python programmer might be unaware, for example, that the int
constructor, in addition to allowing an optional leading + or - sign,
also permits leading zeroes, strips surrounding whitespace, and

ignores single _ characters that are used for grouping digits. Look-
ing at the grammar, we can see that the strings "12,304" and

"+01_2,3_0_4␣" will both be accepted by the parser, while the

1The notation used here denotes terminals with typewriter font and uses the com-
mon operators ∗, +, and ? for zero-or-more, one-or-more, and optional occurrences,
respectively. The vertical bar | separates alternative productions, without precedence.
Parentheses are used for grouping in the usual way.

41

2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)
20

22
 IE

EE
/A

C
M

 4
4t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 S
of

tw
ar

e 
En

gi
ne

er
in

g:
 N

ew
 Id

ea
s a

nd
 E

m
er

gi
ng

 R
es

ul
ts

 (I
C

SE
-N

IE
R

) |
 9

78
-1

-6
65

4-
95

96
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
SE

-N
IE

R
55

29
8.

20
22

.9
79

35
23



ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA Michael Schröder and Jürgen Cito

empty input "" will crash the program. That the parser’s language
excludes the empty string is obvious from the grammar, but might

be difficult to work out from looking at the code alone.2

A grammar certainly reveals a great deal about a rather decep-

tively simple looking expression, yet no programmer would actually

write it down. Grammars share the same fate as most other forms

of specification: they are hard to write, can be hard to read, and

seem hardly worth the trouble—especially for ad hoc parsers. If we

are not building whole houses, why should we draw blueprints? [33]

But there is a form of specification, one wildly more successful

than grammars, that we can draw inspiration from: types. Formal

grammars are similar to types, in that a parser without a grammar is

very much like a function without a type signature. Types have one

significant advantage over grammars, however: most type systems

offer a form of type inference, allowing programmers to omit type

annotations because they can be automatically recovered from

the surrounding context.3 If we could infer grammars like we can

infer types, we could reap all the rewards of having a complete

specification of our program’s input language, without burdening

the programmer with the full weight of formal language theory.

In this work, we sketch a possible path towards inferring gram-

mars for ad hoc parsers by combining methods found in refinement

types and string constraint solving. We describe future possibilities

where grammar inference enables, among other things, better pro-

gram comprehension by explicitly documenting a program’s input

space, and bi-directional parser synthesis that helps developers

refine and secure their input validation.

2 THE NEED FOR GRAMMARS

Before we delineate how to statically infer grammars, we want to

briefly motivate why every (ad hoc) parser would greatly benefit

from having a known grammar.

Documentation. A formal grammar is the ideal documenta-

tion for a parser, because it provides a high-level perspective that

focuses on the data as opposed to the code. It allows the program-

mer to grasp the input language as is, without being distracted

by the mechanics of the implementation. There exist numerous

notations for grammars, each suitable for different languages and

in different contexts: regular expressions [53], Chomsky normal

form [9], Augmented Backus-Naur Form (ABNF) [12], parsing ex-

pression grammars (PEGs) [16], etc. Graphic representations, like

finite state machines [25] or railroad diagrams [7] (see Figure 1),

can be particularly helpful in understanding abstract data and align

with developers’ appreciation of sketches and diagrams [5].

Program Comprehension. It is known that providing alterna-

tive representations for a programming task can increase program

comprehension [15, 18]. The example in Figure 1 demonstrates

how a grammar can elucidate the corresponding ad hoc parsing

code, revealing otherwise hidden features and potentially bugs or

security issues. Because a grammar is also a generating device, it is

possible to construct any sentence of its language in a finite number

of steps—manually or in an automated fashion. Generating concrete

2The split function, when applied to an empty string, returns a singleton list also
containing an empty string (rather than an empty list, as one might assume). The int
constructor, applied to this empty string via map, will then throw a runtime exception.
3For a good introduction to type inference and its history, see [37, § 4].

examples of possible inputs further helps in understanding parsing

code, and can be invaluable during testing and debugging.

Fuzzing. We can test programs by bombarding them with (sys-

tematically generated) random inputs and seeing if anything breaks.

This is known as fuzz testing, or fuzzing [39, 56]. Generating good

fuzz inputs is not easy, because in order to penetrate into deep

program states, one generally needs valid or near-valid inputs,

meaning inputs that pass at least the various syntactic checks and

transformations—i.e. ad hoc parsers—scattered throughout a typi-

cal program. One promising approach is grammar-based fuzzing

[4, 24], where valid inputs are specified with the help of language

grammars.

Language-Theoretic Reasoning. As formal descriptions of in-

put languages, grammars allow us to reason about various language-

theoretic properties, such as computability bounds. The language-

theoretic security (LANGSEC) community4 regards such reasoning

as vital in assuring the correctness and safety of input handling rou-

tines. For example, if an input language is recursively enumerable,

we can never guarantee that its parser behaves safely (i.e. halts)

on inputs that are not in the language, because the parser must

be equivalent to a Turing machine. Thus, input languages should

be minimally powerful, and their parsers should match them in

computational power [49]. Ad hoc parsers open themselves up to

attack, because it is not clear what languages they implement, or if

they implement them correctly, and variations among implemen-

tations are easily overlooked [50]. Grammars can help assure us

that our input languages have favorable properties and that their

parsers are implemented correctly.

Automatic Parser Generation. A parser generator is a tool

that synthesizes a parser from a given grammar. Examples include

Yacc [30], ANTLR [45], and OMeta [54]. These tools are common

in certain areas, such as compilers, and are usually invoked during

program build time, generating parsing code that is linked with the

rest of the program. The great advantage of starting with a grammar

and letting the parser implementation be generated automatically

is a high assurance of correctness, as well as easier maintainability.

3 TOWARD GRAMMAR INFERENCE

We hope to realize automatic grammar inference based on the

following intuition: Any parser is essentially amachine in the formal

sense—it is a recognizer for its input language.

3.1 Background: Languages & Machines

Formally, a language L is a possibly infinite set of sentences over
a finite alphabet Σ. We can define languages very abstractly, as in

L = {anbn | n > 0}, a language over the alphabet Σ = {a,b} that
consists of all sentences with at least one a followed by the same
number of bs. Usually, however, we define languages via generative
devices called grammars or recognizing devices called machines.

A grammar G = (V , Σ, P , S) is a finite description of a language
and consists of a set of variables (or nonterminals) V ; a terminal

alphabet Σ; a set of productions P , which are rules of the form α → β
where α and β are from V and/or Σ; and a start symbol S ∈ V . By

4https://langsec.org

42



Grammars for Free: Toward Grammar Inference for Ad Hoc Parsers ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA

Ad Hoc Parser

Source Code

Intermediate

Representation

Language Model

GrammarVisualization

Simplification

Inference

Synthesis

Source Function 
Specifications

Figure 2: Sketch of our grammar inference system.

starting with S and applying a finite number of productions from
P , we can generate sentences over Σ. The language L(G) is the
set of all sentences that can be generated by G. By putting various
constraints on the form of a grammar, such as whether the left-hand

side of a production can only include variables, or the right-hand

side has to include at least one terminal symbol, and so on, we

can limit the grammar’s expressiveness, constraining the family

of languages a grammar of this form can produce. The famous

Chomsky hierarchy [9] partitions languages/grammars into four

increasingly expressive levels: regular, context-free, context-sensitive,

and recursively enumerable. Numerous additional language families

and types of grammars have been discovered, within and beyond the

classic hierarchy: attribute grammars [32], boolean grammars [43,

44], the mildly context-sensitive and sub-regular languages [28],

parsing expression grammars (PEGs) [16], to name just a few.

A machine M , unlike a grammar, does not produce sentences

but consumes them. Taking some sentence as input and moving

through a finite number of internal states, it arrives at some halting

configuration if and only if the sentence is part of the language

L(M). If the sentence is not part of the language, the machine either

runs forever or gets stuck in a non-accepting state. Just like with

grammars, the way that a machine is constructed determines its

expressiveness. There is a natural correspondence between lan-

guages, grammars, and machines: regular languages correspond to

finite state machines, which simply move from one internal state to

another based on the next input character; context-free languages

correspond to finite state machines equipped with a pushdown

stack, also known as pushdown automata; context-sensitive lan-

guages correspond to linearly bounded automata, in essence Turing

machines with a finite tape; and finally the recursively enumer-

able languages correspond to the well-known unbounded Turing

machines. As with grammars, there are numerous additional and

alternative constructions between and beyond these classic ones.

3.2 Intuition: Parsers are Embedded Machines

A parser, like the Python snippet in Figure 1, which expects a string

from some language L1 as input, can be seen as a machine M1

recognizing that language, so that L1 = L(M1). This machine is

however embedded within the more powerful machine M0, the

general-purpose programming language that the parser itself is

written in. Any real world parser will do more than just recognize

a language: it will allocate and transform data types, throw excep-

tions or handle parse errors, or perform side effects unrelated to

the parsing process itself. Nevertheless, the control flow at the core

of a parser will, in our experience, closely match that of the (hy-

pothetical) machineM1. While it is entirely possible that a parser

written in a Turing-complete programming language exhibits ex-

actly those traits that make it equivalent to a Turing machine, even

though it might be parsing a “lesser” language, we think this to be

very unlikely. In almost all practical situations, ad hoc parsing code

will not significantly exceed the “power-level” of the language it

is parsing. For example, unless it has been especially constructed

to be confounding, the loops present in a parser will invariably be

bounded by at most some linear factor of the length of its input,

which corresponds to the expressiveness of a context-sensitive lan-

guage. Thus, we think it is feasible to transform ad hoc parsers into

equivalent machines whose languages can be statically inferred.

3.3 Vision: Automatic Grammar Inference

Figure 2 shows a sketch of the end-to-end grammar inference sys-

tem that we envision. In the first step, ad hoc parsing code is trans-

formed from a Turing-complete source language (e.g. Python) into

an intermediate representation (IR) that is essentially a domain-

specific language for parsing. This transformation can be seen as

a simplification: it removes syntactic sugar, makes control flow

explicit, and throws away all parts of the source code that are not

related to parsing. During this step, known string processing func-

tions are translated into one or more equivalent functions of the IR

that precisely model the semantics of the source. To illustrate, let us

consider a slightly extended version of the example from Figure 1:

1 def vector_length(s):

2 [x,y,z] = map(int , s.split(','))

3 return math.sqrt(x**2 + y**2 + z**3)

The simplification results in roughly the following IR:

1 let parse = λ(s : String {�}).

2 let ν1 = splitpy "," s in

3 let xs = map intpy ν1 in

4 let ν2 = length xs in

5 let ν3 = equals 3 ν2 in

6 assert ν3

Note that this function does not actually return anything. The goal

here is not to run it and obtain a result, but to fill the hole (�) in its

input type by inferring the appropriate string constraints. To this

end, the functions splitpy and intpy precisely model their Python
counterparts and refine their input and output types by imposing

the constraints resulting from their modeled string processing be-

havior. Note also how a remnant of the pattern match [x,y,z]
from the source is present in form of an (indirect) constraint on the

length of the string (lines 4–6 in the IR).

Inferring the type of parse and solving its string constraints
results in a model of the original ad hoc parser’s input language. To

make the resulting grammar traceable to the originating code, the

model also contains rich source location information, which has to

be threaded through both the simplification and inference steps. In

a final step, the language model can then be used to generate the

desired textual, visual, and interactive grammar representations.

4 RELATEDWORK

Grammatical Inference. A related but different problem to our

goal of finding a grammar given a parser is to find a grammar given

43



ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA Michael Schröder and Jürgen Cito

a set of sentences. This is known as grammatical inference or gram-

mar induction. Early results in computational linguistics quickly

established fundamental limits of what could be achieved: it was

shown that not even regular languages can be identified given only

positive examples [20]. Nevertheless, with applications ranging

from speech recognition to computational biology, grammatical

inference is an active and vibrant field [13, 14].

Fuzzing. A big problem in grammar-based fuzzing (cf. § 2) is

obtaining accurate grammars or language models. Black-box ap-

proaches try to infer a language model by poking the program with

seed inputs and monitoring its runtime behavior [6, 19]. This has

some theoretical limits [2, 3] and the amount of necessary poking

(i.e. membership queries) grows exponentially with the size of the

grammar. White-box approaches make use of the program code

and can thus use more sophisticated analysis techniques, e.g. taint

tracking to monitor data flow between variables [26] or tracking

dynamic control flow and observing character accesses of input

strings [21]. These approaches rely on dynamic execution, but can

produce fairly accurate and human-readable grammars, at least in

test settings. They can not, however, provide any guarantees of cor-

rectness, and thus it is not possible to determine how accurate the

resulting grammars really are. In our vision, grammars are statically

inferred from source code and are always sound. By not relying on

dynamic execution of whole programs, grammars can be extracted

from individual functions or even partial programs, and it is not

necessary to generate seed inputs to bootstrap inference.

String Constraint Solving. String constraints are relations de-

fined over string variables and arise out of program statements that

manipulate strings, e.g. concatenation or substring replacement.

Reasoning about strings requires solving combinatorial problems

involving such constraints, which is difficult to do both efficiently

and completely, and a large number of approaches have been devel-

oped [1, 52]. Our problem of grammar inference is in some ways

the inverse: instead of wanting to model all possible strings a func-

tion can return or express, we want to model all possible strings a

function can accept (without throwing an error or getting stuck).

5 NEW POSSIBILITIES

The end-to-end grammar inference system we envision (§ 3) will

not only let us enjoy all the benefits that formal grammars provide

in general (§ 2), it also enables some exciting new possibilities.

Interactive Documentation. A grammar that is automatically

inferred will always be up-to-date—a significant advantage over

manually written documentation, which tends to quickly drift from

the object it documents [35]. Furthermore, an inferred grammar

could be closely linked directly to the underlying source code, mak-

ing productions traceable to their origins. One can imagine an

interactive environment where hovering over parts of a grammar

highlights the corresponding pieces of code—or even allows chang-

ing them by manipulating the high-level representation.

Bi-directional Parser Synthesis. Combining grammar infer-

ence with parser generation enables a framework of bi-directional

parser synthesis. In the most basic case, starting from an existing

complete parser implementation, the synthesizer can be used to

generate different implementations according to certain criteria,

e.g. performance or code style, by transformation via the inferred

grammar—a specialized type of semantic program transformation

[11]. If the initial parser is incomplete, a bi-directional parser syn-

thesizer can be used for program sketching [36, 46, 51], wherein an

initial implementation (a “sketch”) is the basis of an initial grammar

which can be manipulated by the user on a high level—perhaps

graphically—to then in turn synthesize a completed or refined im-

plementation. If the sketch-synth loop can be sufficiently shortened,

it can be the basis for a direct manipulation bi-directional program-

ming system [10, 40], although based on transformations of the

(specification of) inputs to the program rather than its outputs.

Mining & Learning. An inferred grammar abstracts over the

underlying concrete parser implementation and can be viewed as

an equivalence class, allowing us to group together different parser

implementations with similar semantics.5 This opens up new possi-

bilities in mining software repositories, such as grammar-enhanced

semantic code search [17, 41, 47] or detecting code clones [31, 55]

of ad hoc parsers. By automatically inferring grammars for each

code change, it also becomes possible to learn how (implicit) input

specifications evolve over time, enabling a type of grammar-aware

semantic change tracking [23, 48]. Augmenting the code review pro-

cess with current as well as historical grammar information would

allow developers to be alerted when a code change introduces a

perhaps unexpected change in input grammar.

6 FUTURE PLANS

We want to build the grammar inference system described in this

paper and apply it in real-world situations. We plan to realize our

vision in a series of upcoming works:

• We are currently conducting a mining study of ad hoc parsers in

the wild, collecting common coding patterns in order to deter-

mine the possible scope of our system.

• We are currently investigating the use of refinement types [29]

in combination with string constraint solving to realize inference

of a language model from a simplified parsing IR. While we have

seen initial success with smaller examples, we need to expand to

more kinds of parsers to understand our scope and limitations.

• To ensure the validity of our approach, both simplification and in-

ference need to be proven sound. We plan on supplying machine-

checked proofs for both of these steps.

• To ensure the effectiveness of our approach, we plan on evaluat-

ing the system on a corpus of curated ad hoc parser samples from

the real world. We have begun collection of a suitable dataset.

• We plan on conducting a large-scale mining study of inferred

grammars, to demonstrate the usefulness of our system to appli-

cations of code mining and learning.

• We plan on conducting a number of user studies on grammar

comprehension in order to determine the benefits and drawbacks

of different textual and visual grammar representations.

We are excited about the prospects of automated grammar inference

and invite the community to collaborate with us to realize our vision

of “grammars for free”.

5While there are a number of theoretical bounds regarding the decidability of properties
about grammars, it is in fact possible to efficiently decide equivalence for many types
of grammars encountered in practice [38].

44



Grammars for Free: Toward Grammar Inference for Ad Hoc Parsers ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Roberto Amadini. 2021. A Survey on String Constraint Solving.

arXiv:2002.02376 [cs.AI]
[2] Dana Angluin. 1987. Queries and Concept Learning. Mach. Learn. 2, 4 (1987),

319–342.
[3] Dana Angluin and Michael Kharitonov. 1995. When Won’t Membership Queries

Help? J. Comput. System Sci. 50, 2 (1995), 336–355.
[4] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,

Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.

[5] Sebastian Baltes and Stephan Diehl. 2014. Sketches and Diagrams in Practice. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (Hong Kong, China) (FSE 2014). 530–541.

[6] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing
Program Input Grammars. SIGPLAN Not. 52, 6 (June 2017), 95–110.

[7] Lisa M Braz. 1990. Visual syntax diagrams for programming language statements.
ACM SIGDOC Asterisk Journal of Computer Documentation 14, 4 (1990), 23–27.

[8] Noam Chomsky. 1957. Syntactic Structures. Mouton & Co. 117 pages.
[9] Noam Chomsky. 1959. On Certain Formal Properties of Grammars. Information

and Control 2, 2 (1959), 137–167.
[10] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Program-

matic and Direct Manipulation, Together at Last. In Proceedings of the 37th ACM
SIGPLANConference on Programming Language Design and Implementation (Santa
Barbara, CA, USA) (PLDI ’16). 341–354.

[11] Patrick Cousot and Radhia Cousot. 2002. Systematic Design of Program Transfor-
mation Frameworks by Abstract Interpretation. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Portland,
Oregon) (POPL ’02). 178–190.

[12] D. Crocker and P. Overell. 2008. Augmented BNF for Syntax Specifications: ABNF.
STD 68. RFC Editor.

[13] Colin de la Higuera. 2005. A bibliographical study of grammatical inference.
Pattern Recognition 38, 9 (2005), 1332–1348. Grammatical Inference.

[14] Colin de la Higuera. 2010. Grammatical Inference: Learning Automata and Gram-
mars. Cambridge University Press.

[15] M Fitter and TRG Green. 1979. When do diagrams make good computer lan-
guages? International Journal of man-machine studies 11, 2 (1979), 235–261.

[16] Bryan Ford. 2004. Parsing Expression Grammars: A Recognition-Based Syntactic
Foundation. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Venice, Italy) (POPL ’04). 111–122.

[17] Isabel García-Contreras, José F. Morales, and Manuel V. Hermenegildo. 2016.
Semantic code browsing. Theory and Practice of Logic Programming 16, 5-6 (2016),
721–737.

[18] David J. Gilmore and Thomas R. G. Green. 1984. Comprehension and recall of
miniature programs. International Journal of Man-Machine Studies 21, 1 (1984),
31–48.

[19] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn & Fuzz: Machine
Learning for Input Fuzzing. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (Urbana-Champaign, IL, USA)
(ASE 2017). IEEE Press, 50–59.

[20] E Mark Gold. 1967. Language identification in the limit. Information and control
10, 5 (1967), 447–474.

[21] Rahul Gopinath, Björn Mathis, and Andreas Zeller. 2020. Mining Input Grammars
from Dynamic Control Flow. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). 172–183.

[22] Dick Grune and Ceriel J. H. Jacobs. 2008. Parsing Techniques (2nd ed.). Springer,
New York, NY.

[23] Quinn Hanam, Ali Mesbah, and Reid Holmes. 2019. Aiding Code Change Un-
derstanding with Semantic Change Impact Analysis. In 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 202–212.

[24] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In Proceedings of the 21st USENIX Conference on Security Symposium
(Bellevue, WA) (Security’12). USENIX Association, USA, 38.

[25] John Hopcroft and Jeffrey Ullman. 1979. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley.

[26] Matthias Höschele and Andreas Zeller. 2016. Mining Input Grammars from
Dynamic Taints. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (Singapore, Singapore) (ASE 2016). 720–725.

[27] Edgar T. Irons. 1983. A Syntax Directed Compiler for ALGOL 60. Commun. ACM
26, 1 (Jan. 1983), 14–16.

[28] Gerhard Jäger and James Rogers. 2012. Formal language theory: refining the
Chomsky hierarchy. Philosophical Transactions of the Royal Society B: Biological
Sciences 367, 1598 (2012), 1956–1970.

[29] Ranjit Jhala and Niki Vazou. 2020. Refinement Types: A Tutorial. (2020).
arXiv:2010.07763 [cs.PL]

[30] Stephen C Johnson and Ravi Sethi. 1990. Yacc: A Parser Generator. UNIX Vol. II:
Research System (1990), 347–374.

[31] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner.
2009. Do code clones matter?. In 2009 IEEE 31st International Conference on
Software Engineering. 485–495.

[32] Donald E Knuth. 1968. Semantics of context-free languages. Mathematical
systems theory 2, 2 (1968), 127–145.

[33] Leslie Lamport. 2015. Who builds a house without drawing blueprints? Commun.
ACM 58, 4 (2015), 38–41.

[34] Daan Leijen and Erik Meijer. 2001. Parsec: Direct style monadic parser combina-
tors for the real world. (2001).

[35] T.C. Lethbridge, J. Singer, and A. Forward. 2003. How software engineers use
documentation: the state of the practice. IEEE Software 20, 6 (2003), 35–39.

[36] Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program Sketching
with Live Bidirectional Evaluation. Proc. ACM Program. Lang. 4, ICFP, Article
109 (Aug. 2020), 29 pages.

[37] David MacQueen, Robert Harper, and John Reppy. 2020. The History of Standard
ML. Proc. ACM Program. Lang. 4, HOPL, Article 86 (June 2020), 100 pages.

[38] Ravichandhran Madhavan, Mikaël Mayer, Sumit Gulwani, and Viktor Kuncak.
2015. AutomatingGrammar Comparison. In Proceedings of the 2015 ACMSIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (Pittsburgh, PA, USA) (OOPSLA 2015). 183–200.

[39] Valentin J. M. Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2019. The Art, Science, and
Engineering of Fuzzing: A Survey. arXiv:1812.00140 [cs.CR]

[40] Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. 2018. Bidirectional Evaluation
with Direct Manipulation. Proc. ACM Program. Lang. 2, OOPSLA, Article 127
(Oct. 2018), 28 pages.

[41] Alon Mishne, Sharon Shoham, and Eran Yahav. 2012. Typestate-Based Semantic
Code Search over Partial Programs. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications
(Tucson, Arizona, USA) (OOPSLA ’12). 997–1016.

[42] Falcon Darkstar Momot, Sergey Bratus, Sven M Hallberg, and Meredith L Pat-
terson. 2016. The Seven Turrets of Babel: A Taxonomy of LangSec Errors and
How to Expunge Them. In 2016 IEEE Cybersecurity Development (SecDev). IEEE,
45–52.

[43] Alexander Okhotin. 2004. Boolean grammars. Information and Computation 194,
1 (2004), 19–48.

[44] Alexander Okhotin. 2013. Conjunctive and Boolean grammars: the true general
case of the context-free grammars. Computer Science Review 9 (2013), 27–59.

[45] Terence J. Parr and Russell W. Quong. 1995. ANTLR: A predicated-LL (k) parser
generator. Software: Practice and Experience 25, 7 (1995), 789–810.

[46] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program
Synthesis from Polymorphic Refinement Types. In Proceedings of the 37th ACM
SIGPLANConference on Programming Language Design and Implementation (Santa
Barbara, CA, USA) (PLDI ’16). 522–538.

[47] Varot Premtoon, James Koppel, and Armando Solar-Lezama. 2020. Semantic
Code Search via Equational Reasoning. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation (London, UK)
(PLDI 2020). 1066–1082.

[48] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Augustine. 2004. Dex: a
semantic-graph differencing tool for studying changes in large code bases. In
20th IEEE International Conference on Software Maintenance, 2004. Proceedings.
188–197.

[49] Len Sassaman, Meredith L. Patterson, Sergey Bratus, and Michael E. Locasto.
2013. Security Applications of Formal Language Theory. IEEE Systems Journal 7,
3 (2013), 489–500.

[50] Joern Schneeweisz. 2020. How to exploit parser differentials. Retrieved July
16, 2021 from https://about.gitlab.com/blog/2020/03/30/how-to-exploit-parser-
differentials/

[51] Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D. Dissertation.
UC Berkeley.

[52] Caleb Stanford, Margus Veanes, and Nikolaj Bjørner. 2021. Symbolic Boolean
Derivatives for Efficiently Solving Extended Regular Expression Constraints. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (Virtual, Canada) (PLDI 2021). 620–635.

[53] Ken Thompson. 1968. Programming techniques: Regular expression search
algorithm. Commun. ACM 11, 6 (1968), 419–422.

[54] Alessandro Warth and Ian Piumarta. 2007. OMeta: An Object-Oriented Language
for PatternMatching. In Proceedings of the 2007 Symposium onDynamic Languages
(Montreal, Quebec, Canada) (DLS ’07). 11–19.

[55] Hao Yu,Wing Lam, Long Chen, Ge Li, Tao Xie, and QianxiangWang. 2019. Neural
Detection of Semantic Code Clones via Tree-Based Convolution. In Proceedings of
the 27th International Conference on Program Comprehension (Montreal, Quebec,
Canada) (ICPC ’19). IEEE Press, 70–80.

[56] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2021. The Fuzzing Book. CISPA Helmholtz Center for Information Security.
https://www.fuzzingbook.org/ Retrieved 2021-03-12 11:41:11+01:00.

45


