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Abstract—Background: Risk-taking is prevalent in a host of
activities performed by software engineers on a daily basis, yet
there is scant research on it. Aims and Method: We study if
software engineers’ risk-taking is affected by framing effects and
by software engineers’ personality. To this end, we perform a
survey experiment with 124 software engineers. Results: We find
that framing substantially affects their risk-taking. None of the
“Big Five” personality traits are related to risk-taking in software
engineers after correcting for multiple testing. Conclusions:
Software engineers and their managers must be aware of framing
effects and account for them properly.

Index Terms—Risk-taking, framing, personality, five-factor
model, Big Five

I. INTRODUCTION

Risk-taking is prevalent in a great variety of decisions.

People take risks when deciding which mating partners to

choose, how to finance their homes, or which food to eat.

Consequently, it is not surprising that risk-taking is one of the

most extensively studied topics in a great many academic dis-

ciplines, including psychology, economics, and medicine [1].

Notably, risk-taking is also fundamental to many decisions

software engineers make on a daily basis. These can be “big”

decisions like choosing a software architecture or deciding

which programming language to use, or “small” decisions on

how well to document a minor change in code or whether to

skip a test. Imagine, for instance, a software engineer who

has the choice between two different libraries to accomplish a

given programming task. One library has precisely the needed

functionality but has not seen a new release in a while and

it is unclear when and if updates and patches will become

available. The other library has only limited functionality

but a clear roadmap for future releases. Both options have

advantages and disadvantages, but choosing the first option is

likely riskier than opting for the second one.

However, there is little systematic research on what deter-

mines software engineers’ risk-taking. A lot of research has

focused on the management of risk, often at the project or

organizational level [2], but there is hardly any work on the

willingness of individual software engineers to take on risk.

This is surprising given how consequential choices by software

engineers can be and that a certain level of risk-taking has even

been described as a desirable quality in software engineers [3].

In this paper, we attempt to remedy this shortcoming by

studying two especially interesting antecedents of risk-taking.

For one, we consider an external factor, i.e., the “framing” of a

decision that may influence risk-taking. For another, we study

a potentially critical internal factor, i.e., the software engineer’s

personality. This duality of internal and external factors is

particularly reasonable to consider because psychology re-

search repeatedly demonstrated that individuals’ decisions are

determined both by the situation they find themselves in as

well as their individual predispositions [4].
We thus attempt to answer the following research questions:

• RQ1: Does framing affect software engineers’ risk-

taking?

• RQ2: Does software engineers’ personality affect their

risk-taking?

II. THEORETICAL BACKGROUND AND RELATED WORK

A. Framing and Risk-Taking

It has long been known that how choices are presented

to individuals greatly influences the decisions they make.

A particularly influential paradigm in this regard has been

developed in the so-called “heuristics and biases” literature.

Specifically, Tversky and Kahneman introduced the idea that

the “framing” of a choice, i.e., whether it is worded in terms of

potential gains or losses (while remaining logically the exact

same choice), has a profound implication on respondents’ level

of risk-taking [5]. They studied different wordings (with the

same expected outcome) and found that choices described

as losses induce higher risk-taking than choices described

as gains. These results have since been replicated in various

studies [6]–[10].
The software engineering literature includes substantial

work on heuristics and biases in general. Researchers have,

for instance, found that developers are susceptible to temporal

discounting [11], [12]. Other scholars found proof that devel-

opers can be substantially biased by anchoring effects [13] and

that selection bias leads to project overruns [14].
Yet, there is little framing-specific research. A recent map-

ping study on biases in software engineering identified only

three studies on framing [15]. However, they either only

cursorily treat the subject or they take a much looser defi-

nition of framing, allowing for substantive differences in task

descriptions (e.g., labeling desired system properties as either

“requirements” or “ideas”). Further, a recent qualitative field-

study on biases in software development in general mentioned
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framing. However, it lumped the specific effect of framing

into a larger category of biases caused by superficial thinking,

neglecting the fact that framing effects tend to persist even

in situations where individuals fully reason through their

choices [16]. In another recent qualitative study of biases and

architectural technical debt, which is closely related to risk-

taking, framing was mentioned as a potential influence factor,

although it was the least frequently mentioned one [17].

The most closely related work to ours is probably a study of

student decision-makers who had to make requirement selec-

tion decisions. They were susceptible to a framing effect and

became more risk-seeking when choosing between require-

ments formulated in terms of cost, compared to when choosing

between requirements formulated in terms of revenue [18].

B. Personality and Risk-Taking

Although there are many different personality models in the

psychology literature, the currently dominant one is arguably

the five-factor model [19], [20]. As the name suggests, it

comprises five personality traits, frequently also referred to as

the “Big Five”. These are openness to experience, conscien-

tiousness, extraversion, agreeableness, and emotional stability

(sometimes also referred to as its inverse, neuroticism).

Psychologists have repeatedly linked these personality traits

to risk-taking, although with partially inconsistent findings.

Some scholars, for instance, found that high extraversion and

openness, combined with low neuroticism, agreeableness, and

conscientiousness, is particularly predictive of risk-taking [21].

Other researchers found extraversion and agreeableness to be

the key predictors of risk-taking [22].

Empirical software engineering also already has a rich

tradition of studying the personality of people involved in

software engineering [20], [23]. Scholars have, for exam-

ple, used the Big Five personality framework to study the

effect of developers’ personality on the likelihood of pull-

request acceptance [24]. Similarly, other studies found that

committers’ personality is linked to their behavior in FLOSS

projects [25]. In addition, research has found that developers

higher in openness to experience make more contributions to

open source software projects [26]. Finally, there is extant

research linking personality to programming styles [27].

At the same time, there is no research that we are aware of

that explicitly attempts to link personality and risk-taking in a

software engineering context.

III. EMPIRICAL SETUP

A. Stimulus Material and Measures

We took inspiration from Tversky and Kahneman’s original

so-called “Asian disease” problem [5], an implementation of

a framing study that has been frequently used in subsequent

research. To create ecological validity for our context, we

adjusted the stimulus material’s wording to relate it to a

common software engineering problem, i.e., project delays.

Participants were randomly assigned to one of two condi-

tions. In both conditions, participants had to make a choice

between two options. The two options were substantively

the same across conditions. The conditions only differed in

how these options were described, or “framed”. In the first

condition, the options were framed as “gains”, i.e., participants

read about their chance of recovering time. Participants in this

gain condition read the following text:

Imagine that you are working on a software project

with a deadline. You just realized that some re-

quirements were implemented incorrectly, and you

estimate that this will make you miss the deadline

by 6 weeks. You think about potential remedies, and

you come up with two options. You can only choose

one.

(A) If you reduce non-essential features, you will

recover 2 weeks.

(B) If you simplify the software architecture, there

is a 1/3 chance that you will recover the full 6

weeks, and there is a 2/3 chance that the simplified

architecture will lead to performance problems and

you will not recover any time at all.

Which option do you choose?

In the second condition, the options were described in

terms of “losses”, i.e., participants read about the delay with

which they would finish the project. In this loss condition, the

participants were given the following options:

(A) If you reduce non-essential features, you will

finish with a delay of 4 weeks.

(B) If you simplify the software architecture, there

is a 1/3 chance that you will finish the project

with no delay at all, and there is a 2/3 chance that

the simplified architecture will lead to performance

problems and you will finish with a delay of 6

weeks.

After participants made their choice, they were forwarded to

further screens on which they were asked for demographic and

personality information. We captured programming experience

by asking for respondents’ number of years of experience [28].

We employed the widely used Ten-Item Personality Measure

(TIPI) to capture respondents’ personality [29]. Since this mea-

sure has been used extensively across different populations, we

have no reason to doubt its suitability to assess the personality

of software engineers.

B. Power Analysis and Participant Recruitment

We performed a power analysis using G*Power 3 [30]

to avoid false positives and false negatives in the analysis

of framing (RQ1) due to a potentially underpowered study.

Specifically, we performed a power analysis for a z-test for

proportions. We assume the relevant proportions of respon-

dents choosing the risk-taking option to be 0.1 in the gain

condition and 0.3 in the loss condition based on introspection

and the stereotype that software developers overall might be



fairly risk-averse, as well as a presumed limited strength of

our stimulus material. This translates into a medium effect

size of h = .52 [31]. Conservatively specifying a two-tailed

test, and setting desired alpha to 0.05 and desired power to

0.80, we obtain a critical z-value of -1.96. Further assuming

an even split of participants between conditions, this implies

that a sample of 124 participants is needed. Given the number

of assumptions needed for a probit (or logit) power analysis,

which would be needed for our analysis of personality (RQ2),

and the limited empirical grounds we have to make them, we

opted not to perform one.

To recruit participants, we obtained the contact information

of all developers who made at least one commit to one of

the 29 Apache open source projects that are part of the

“Technical Debt Dataset” in version 2 [32]. We then identified

all individuals listed as “authors” in the resulting data, and

manually cleaned the data to remove duplicates and merge

records for individuals who used different names (but the

same email address) or different email addresses (but the same

or an extremely similar name) for different commits. This

required occasional judgment, and decisions about the identity

of authors were made as conservatively as possible. In the end,

we had a list of 1,555 unique individuals and one or more

corresponding email addresses. To avoid excessive spam, we

selected only one email address per person, preferring personal

email addresses over professional email addresses to maximize

the chance that the email address was still valid despite

the person’s contribution(s) to the projects being potentially

already several years old. We invited all 1,555 developers

to participate in our survey experiment (which was part of

a larger data collection effort for multiple studies).

We assured the developers that their data would be treated

confidentially and not be shared with third parties, and we

pledged to donate US$ 2 per completed response to the United

Nations World Food Programme [33]. We sent two reminders

to reach developers that were busy at the time of the initial

mailing or who had started but not completed the survey [33],

including a link to an official university page confirming the

authenticity of the survey because some developers responded

to the initial invitation, voicing concerns about it being a scam.

In total, 165 emails bounced, allowing us to reach 1,390

developers (89.4% deliverable emails). Of this group, 194

developers started the survey, and 124 completed it. Our

response rate was thus 8.9%, which is in line with that of

prior studies surveying developers on GitHub. Graziotin et al.,

for example, reported a 7% response rate and a share of 96.6%

of deliverable emails [34].

Given that our ultimate number of participants surprisingly

corresponds exactly our calculated sample size and the ran-

domized assignment of participants to conditions lets us expect

an approximately even distribution between them, we conclude

that our experimental study is sufficiently powered.

IV. DATA ANALYSIS AND RESULTS

We first turn to the analysis for RQ1. To study whether

framing had an effect on risk-taking, we compare the share of

risk-taking responses between the gain and the loss condition.

To this end, we employ a two-sample test for proportions

(prtest in Stata 17.0). Out of 63 respondents in the gain

condition, 7 chose the risk-taking option. Out of 61 respon-

dents in the loss condition, 19 chose the risk-taking option.

The results of the test for proportions are shown in Table I and

indicate that risk-taking is statistically significantly (p < 0.01)

higher in the loss condition. An unreported probit regression

with a binary indicator of framing, as well as a two-sample

Wilcoxon rank-sum test corroborate this result.

TABLE I
TWO-SAMPLE TEST FOR PROPORTIONS

Framing Observations Mean choice z p

Gain 63 .111
Loss 61 .311

Difference -.200 -2.740 0.006∗∗

Risk-averse choice coded as 0, risk-taking choice coded as 1.
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01

To answer RQ2, we performed a probit regression. Aside

from a binary indicator of the task framing, we included

our measure of programming experience and all Big Five

personality traits as independent variables. Our dependent

variable was a binary indicator of whether the participant’s

choice was risk-taking (1) or not (0). The results are shown in

Table II. The indicator for loss framing is highly significant,

again confirming our earlier findings. The coefficient of pro-

gramming experience is not significant. More importantly, the

coefficient for conscientiousness is negative and statistically

significant (p < .05) and the coefficient for emotional stability

is positive and marginally significant (p < .1). However, if

we (despite considerable disagreement in the applied litera-

ture as to its necessity [35]–[37]) perform a Westfall-Young

correction for multiple testing (which is more efficient that

the Bonferroni method [38]) to limit the family-wise error

rate (using Stata’s wyoung [39]), all coefficients for Big Five

traits become insignificant (the smallest p-value being that for

conscientiousness at .168).

TABLE II
PROBIT REGRESSION

Variable Coeff. Std. err. z p

Loss framing .835 .291 2.87 .004∗∗

Programming experience .141 .108 1.31 .190
Openness to experience .116 .142 0.81 .415
Conscientiousness -.292 .130 -2.24 .025∗

Extraversion -.092 .102 -0.91 .364
Agreeableness -.177 .128 -1.38 .168

Emotional stability .191 .113 1.69 .092+

Constant .119 .264 -0.96 .339

Dependent variable: Indicator of risk-aversion (0) or risk-taking (1).
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01



V. DISCUSSION

Software engineers overall appear to be highly risk-averse.

Across conditions, only 21.0% of software engineers made a

risk-taking choice despite it having the same expected outcome

as the risk-averse choice. This corroborates the common

stereotype of risk-averse programmers. At the same time,

our results show clearly that software engineers are highly

susceptible to framing effects, suggesting that the possible

perception of programmers as particularly rational individuals

may be misguided.

A. Implications for Research

There are several implications for research. First, we showed

a framing effect for a scenario related to project delays. This

raises the question for which other types of decisions or risks

framing effects might exist in software engineering, and for

which there might be no such effects. Similarly, our findings

also raise the question if such effects are stronger or weaker

for different types of roles in software development teams.

In fact, one might suspect, for instance, that there could be

interactive effects between task type and decision-maker role.

Second, one might wonder how to attenuate framing effects.

Since the influence of framing can be considered a bias,

future researchers might wish to study the effectiveness of

so-called debiasing interventions in software engineers. Given

that biases are mutual properties of people and tasks [40], there

are two avenues for debiasing. On the one hand, one might

attempt to debias individuals themselves, as has for instance

been proven effective with software engineers regarding the

anchoring bias [13]. On the other hand, one might study

external influences as debiasing interventions. Prior research in

other disciplines has, for example, found that strong warning

messages may attenuate framing effects [41].

B. Implications for Practice

1) Developers: The key implication for individual devel-

opers is to realize that there might be different perspectives to

take on any given situation. Explicitly constructing alternative

formulations of a choice might help reach more balanced

decisions that are less strongly affected by framing.

2) Managers: Managers of software projects may want to

consciously consider framing in their communication with

software developers. On the one hand, this is so they do

not inadvertently trigger risk-taking or risk-averse behavior

in developers. They may, for instance, do so by providing

multiple alternative formulations of tasks or requests. On the

other hand, they might use framing purposefully as a technique

to increase or decrease developers’ risk-taking. Further, project

managers might wish to consider the idea of assigning roles

to individual developers when important decisions are to be

made. They might, for instance, ask one developer to think

about a task in terms of gains and one in terms of losses. A

discussion between the two might lead to the best outcome.

As the results for personality were not significant after

correcting for multiple testing, we are hesitant to infer any

implications, e.g., for team composition, from them.

VI. THREATS TO VALIDITY

A. Construct Validity

As one may challenge the accuracy of our measurements,

we highlight that all of our measures are established and

validated scales. At the same time, we recognize that the nature

of short scales like the TIPI potentially introduces substantial

noise into our measurement, which might also explain why

our results are not significant with regard to personality.1

B. Internal Validity

While we contend that our experimental study has high

internal validity, our analysis on personality may suffer from

deficiencies. Critically, personality is of course not randomly

assigned to participants, making it possible that we missed

relevant control variables that would confound our results.

In addition, the number of participants is somewhat low for

a regression analysis with as many predictors as we include.

Our conclusions of no personality effects might thus also be

driven by low sample size and therefore be overly conser-

vative, even though others have also reported null findings

regarding developer personality [26].

C. External Validity

There is a risk that our findings may not generalize to other

contexts. We studied developers involved in a limited number

of large open source Java projects, with a limited response

rate to our survey. Our sample is thus likely not representative

of all software engineers [33]. However, we also highlight

that this is possibly only a minor issue for our experimental

research design, which pits one group of randomly assigned

developers against another group. While these findings may

thus not strictly generalize to all developers, we are neverthe-

less able to provide internally valid results from a sample of

experienced programmers [33]. This is of course not the case

for our analysis of personality, where external validity is more

substantially limited.

Additionally, one might challenge whether our experiment

task has external validity. For one, although this is not typically

considered very problematic [43], the decision is of course

hypothetical. For another, some have argued that developers

make many kinds of decisions, but rarely specifically decide

between two options, as they had to do in our study [44].

D. Reliability

Since we provide the stimulus material and there is no

human judgment involved in data analysis, our research should

be highly replicable. All data to repeat the analyses of the ex-

periment is provided in this article. As we explicitly promised

all participants that their data would not be shared with third

parties, we can unfortunately not release the personality data.

1Note that the TIPI is designed to capture all facets of the Big Five with
content and criterion validity with one item each, making reliability measures
like Cronbach’s α uninformative [42]. We thus do not report any.



VII. FUTURE PLANS

We plan to extend our work in various directions. First,

we aim to collect a larger and more representative sample to

replicate the study on personality effects to establish whether

our null finding holds. Second, we intend to use different

framing scenarios addressing different types of risky decisions

software engineers may be making during their work, be it in

requirements engineering, programming, testing, or other ac-

tivities. Third, we strive to increase external validity by moving

beyond survey experiments in favor of lab or field experiments.

Specifically, we aim to study software engineering students

in actual software engineering situations. Fourth, we wish to

study the true interactive effects of framing and personality as

well as software engineering roles to understand which kinds

of software engineers are more or less susceptible to framing-

induced risk-taking and which contingencies exist. Finally, we

consider further extending the scope of our research by using

other data collection methods such as face-to-face interviews,

and by studying further influencing factors, either related

to the individual developer (e.g., educational background or

gender) or going beyond characteristics of the individual (e.g.,

organizational culture).

VIII. CONCLUSION

This study provides novel evidence on two types of an-

tecedents of risk-taking in software engineers. Specifically, we

show that framing has a strong influence on the risk-taking of

software engineers, but we did not find reliable support for

an effect of personality. We encourage future studies into the

critical notion of risk-taking by software engineers.
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F. Restrepo-Calle, “Finding relationships between socio-technical as-
pects and personality traits by mining developer e-mails,” in Proceedings

of the 9th International Workshop on Cooperative and Human Aspects

of Software Engineering. New York, NY, USA: ACM, 2016, pp. 8–14.
[26] F. Calefato, F. Lanubile, and B. Vasilescu, “A large-scale, in-depth anal-

ysis of developers’ personalities in the apache ecosystem,” Information
and Software Technology, vol. 114, pp. 1–20, 2019.

[27] Z. Karimi, A. Baraani-Dastjerdi, N. Ghasem-Aghaee, and S. Wagner,
“Links between the personalities, styles and performance in computer
programming,” Journal of Systems and Software, vol. 111, pp. 228–241,
2016.

[28] J. Feigenspan, C. Kastner, J. Liebig, S. Apel, and S. Hanenberg,
“Measuring programming experience,” in 2012 20th IEEE International

Conference on Program Comprehension (ICPC). IEEE, 2012, pp. 73–
82.

[29] S. D. Gosling, P. J. Rentfrow, and W. B. Swann, “A very brief measure
of the big-five personality domains,” Journal of Research in Personality,
vol. 37, no. 6, pp. 504–528, 2003.



[30] F. Faul, E. Erdfelder, A.-G. Lang, and A. Buchner, “G*power 3: a
flexible statistical power analysis program for the social, behavioral,
and biomedical sciences,” Behavior research methods, vol. 39, no. 2,
pp. 175–191, 2007.

[31] J. Cohen, Statistical power analysis for the behavioral sciences, 2nd ed.
Hillsdale, N.J.: L. Erlbaum Associates, 1988.
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