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Abstract—Deep Neural Networks (DNN) are nowadays largely
adopted in many application domains thanks to their human-like,
or even superhuman, performance in specific tasks. However, due
to unpredictable/unconsidered operating conditions, unexpected
failures show up on field, making the performance of a DNN in
operation very different from the one estimated prior to release.

In the life cycle of DNN systems, the assessment of accuracy
is typically addressed in two ways: offline, via sampling of
operational inputs, or online, via pseudo-oracles. The former is
considered more expensive due to the need for manual labeling
of the sampled inputs. The latter is automatic but less accurate.

We believe that emerging iterative industrial-strength life cycle
models for Machine Learning systems, like MLOps, offer the
possibility to leverage inputs observed in operation not only to
provide faithful estimates of a DNN accuracy, but also to improve
it through remodeling/retraining actions.

We propose DAIC (DNN Assessment and Improvement Cycle),
an approach which combines ‘“low-cost”” online pseudo-oracles
and ‘high-cost” offline sampling techniques to estimate and
improve the operational accuracy of a DNN in the iterations of
its life cycle. Preliminary results show the benefits of combining
the two approaches and integrating them in the DNN life cycle.

Index Terms—Deep Neural Networks, Accuracy assessment,
Accuracy improvement

I. INTRODUCTION

Nowadays, Machine Learning (ML) finds large adoption in
various application domains. This trend is due to the ability of
ML, in particular of Deep Neural Networks (DNN), to reach
human beings’ effectiveness in many tasks [1]-[3].

The reliability of ML systems is usually measured in terms
of accuracy. In the case of classification, the accuracy is
computed as the number of correctly classified examples out of
the total. The difficulty to automate the assessment of DNN
accuracy still represents a threat to their application also in
critical domains.

The main activities related to evaluating the accuracy and
consequently improving the DNN are typically executed be-
fore its release in the execution environment. Metamorphic
testing [4] and mutation testing [5], [6] represent the most
common strategies to evaluate the robustness of the DNN and
to forecast the reliability of these systems in the operational
environment.

However, the accuracy estimated before release can sub-
stantially diverge from the one obtained during operation
(operational accuracy). Retch et al. demonstrated how the
accuracy scores of classifiers can significantly drop when
completely new data are submitted [7]. This problem grows

up when unexpected phenomena occur in operation, such as
distribution shift or label shift [8].

Tterative life cycles specific for DNN - such as MLOps [9],
[10] - have been envisaged by companies like Google. In these
DNN life cycle models, development and operational stages
are linked in a loop [11], aiming to assess and improve the
accuracy the DNN according to the operating conditions. In
particular, they may exploit operational data for remodeling
and/or retraining the DNN before the new deployment (exper-
imental stage), and for both the automatic evaluation of the
accuracy and the automatic re-training of the models on the
field (deployment stage).

The true label of operational data collected by monitoring
the DNN is generally unknown. This is a general issue in
software testing, known as the oracle problem [12]. For ML
systems, according to Murphy et al., “there is no reliable
test oracle to indicate what the correct output should be for
arbitrary input” [13]. The problem clearly affects also DNN
accuracy estimation [14].

Two approaches to assess DNN operational accuracy are:

i) to automatically evaluate the correct classification of op-
erational inputs by means of pseudo-oracles (often in turn
based on ML models), which may detect mispredictions
based on various sources of knowledge;

ii) to reduce the size of the operational dataset to be labelled,
by proper statistical sampling of few representative in-
puts.

Pseudo-oracles do not need human intervention; however,
they typically suffer from a high number of false positives
[15], due to the probabilistic nature of the knowledge used
to evaluate the output of the DNN under assessment. Sam-
pling techniques may reduce but not avoid costly and time-
consuming feedback from a human oracle; however, they avoid
false positives, and provide more faithful estimates of the DNN
operational accuracy.

This paper proposes the DNN Assessment and Improvement
Cycle (DAIC), integrating automatic assessment via pseudo-
oracles and assessment via sampling. Its objectives are to
provide faithful estimates of the operational accuracy of a
DNN while reducing the cost of manual intervention, and to
exploit the new labeled examples to take remodeling/retraining
actions to improve the DNN accuracy.

The preliminary results of experiments with the MNIST
handwritten digits dataset [16] show that DAIC is effective in



providing DNN accuracy estimates, by leveraging automatic
pseudo-oracles to follow the accuracy of the DNN with un-
labeled samples, and triggering the high-cost sampling-based
assessment only when necessary to update estimates. Collected
operational samples are then further exploited to improve the
accuracy of the DNN in an iteration cycle. DAIC is robust to
phenomena like label shift.

The paper is structured as follows. Section II describes the
techniques for the operational accuracy assessment of DNN.
Section III introduces the DNN Assessment and Improvement
Cycle; Section IV presents the preliminary results. Section V
describes future plans; Section VI presents the conclusions.

II. OPERATIONAL ACCURACY ASSESSMENT OF DNN
A. Assessment via pseudo-oracles

Automatic pseudo-oracles are typically built using cross
referencing [17]-[19] based on the knowledge encoded into
the training set. This knowledge is extracted through multiple
implementations — diverse from each other (e.g., different
ML models, or same ML model but different architectures)
- to perform a majority voting. These techniques are strictly
affected by biases in the training set. When training data are
not representative of the operational environment, performance
of that oracles degrades significantly.

Other techniques have been proposed to extract knowledge
from the training data to build automatic oracles, for instance,
by using dedicated networks (ConfidNet [20] and autoencoders
[21]) or exploiting features of the system under assessment
itself (e.g. the output of internal layers [22]).

Techniques considering only the training dataset and the
DNN as knowledge to build a pseudo-oracle are particularly
sensitive to deviations of the operational context from the
pre-deployment one. Therefore, they are expected to poorly
perform in presence of phenomena like label shift [8], [23].
Supervised DNN algorithms face a label shift when the distri-
bution of the labels of inputs changes with respect to training,
despite everything else remains unchanged: in practice, when
unlabeled operational inputs are similar to training examples,
thus are classified by the DNN as per training, yet their actual
class is different from the one learnt during training.

For image classification problems, the ICOS oracle surro-
gate has been proposed to assess the accuracy of Convolutional
Neural Networks after their release in operation [24]. ICOS
extracts invariants form different sources of knowledge to
evaluate unlabeled operational examples.

Similarly to ICOS, we consider a pseudo-oracle — hereafter
called DNN-OS - which exploits three different sources of
knowledge (the operational domain, training data, and the
DNN) to define three set of invariants (domain, data, model),
used to automatically evaluate the output of the DNN under
assessment.

An example of domain invariant for an autonomous driv-
ing vehicle, assuming a street with a speed limit of 50
km/h, is: fail :- speed_limit = 50 km/h,accelerate =
true, current_speed = 50 km/h. Such domain invariants
allow the oracle to detect failures looking at the output of

the DNN and at its effect on the whole system. The usage of
domain invariants makes DNN-OS robust against unexpected
phenomena in operation with respect to the state-of-the-art
techniques.

Data and model invariants can be automatically extracted
from the training and validation datasets with a ML algorithm.
These invariants look for patterns in the input data and the
DNN, respectively, such as a subset of pixels (for data) or
neurons (for the model) that always assume specific values
when a failure occurs.

For its characteristics, the assessment via pseudo-oracle
can be performed online, namely when the system is in
operation. The automated oracle computes the accuracy on
actual inputs. This estimate can be used to suggest to the
testers if correcting/improving actions are needed.

The online assessment is characterized by a fixed cost
for the “knowledge extraction” and parameters tuning of the
pseudo-oracle algorithm, which occur una tantum.

B. Assessment via sampling

The usage of sampling to reduce the cost of the manual
labeling of operational examples has been explored in the
recent literature [25]-[28]. Some techniques are used to select
a small data sample that accurately represents the population
[25]-[27] to obtain a faithful estimate of the accuracy provided
during operation. A representative sample would roughly con-
tain the same proportion of examples causing misprediction
as the operational dataset.

However, the mere imitation of the expected input can be
inefficient, especially with very accurate DNN, because of the
great effort to manually label correctly classified examples
to get an acceptable estimate of the operational accuracy.
This cost makes it evident that maximizing the sampling
of examples related to wrong outputs, while still getting an
unbiased estimate of the operational accuracy, is preferable.

With DeepEST, Guerriero et al. [28] aim to both provide
faithful estimates of the operational accuracy, but trying to
sample more failures examples (e.g. misclassifications) and
balancing the unequal sampling during the estimation process.

This assessment strategy can be performed offline, namely
when the monitored operational data are available together
with the outputs of the DNN. With this data, an estimate
of the accuracy can be computed via sampling and manual
labeling. The high cost of manual labeling the operational
input is balanced by the possibility to use the labeled examples
to take improving actions for the DNN under assessment.

III. DNN ASSESSMENT AND IMPROVEMENT CYCLE

A way to reduce the cost of applying and maximize the
benefit is to combine the online and offline assessment in
a cycle, called DNN Assessment and Improvement Cycle
(DAIC). The idea is to have at each cycle a “low-cost” estimate
of the accuracy provided through a pseudo-oracle, and to
trigger a “high-cost” (but more faithful) offline sampling-based
estimate only when the operational accuracy estimated by the
automatic pseudo-oracle drops under a given threshold.
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Fig. 1. The proposed MLOps-like DNN Assessment and Improvement Cycle (DAIC)

Like MLOps, DAIC entails an experimental and a deploy-
ment stage, with the following phases (Figure 1):

1) Data Preprocessing: in the starting phase of a cycle,
the training and the verification datasets are updated
considering new labeled examples (if available) and
based on the accuracy estimate computed in the pre-
vious iteration. This phase updates the training set so
as to better represent the operating conditions actually
observed.

2) Remodeling and Retraining: the model is trained
from scratch (first iteration or in case of re-modeling),
or re-trained with the training set output of the Data
Processing phase.

3) Model verification: the accuracy of the trained DNN is
computed prior to release (verification accuracy) on the
verification dataset generated by the Data Preprocessing
phase.

4) Deploy: the DNN is deployed into the execution envi-
ronment, and put in operation.

5) Monitoring: (unlabeled) inputs to the DNN and the
corresponding DNN outcomes are collected; additional
information on operating conditions (input sources, user
typologies, operational profile, etc.) may be collected, if
available, to build domain invariants.

6) Assessment via pseudo-oracle: an automatic pseudo-
oracle is used to classify each output of the DNN as
Pass or Fail. The oracle predictions are used to compute
an estimate of the DNN accuracy in operation, called
predicted accuracy.

7) Evaluation: when the predicted and the verification
accuracy diverge, an offline assessment session is trig-
gered (8); otherwise, the sampling-based assessment is
skipped.

8) Assessment via sampling: a set of inputs is sampled and
(manually) labeled, and an estimate of the operational
accuracy is computed.

The idea is to consider the pseudo-oracle for a continuous
evaluation of the operational accuracy provided by the DNN to
reduce the cost of manual labeling, retraining, and remodeling,
performing them only when required.

1V. EXPERIMENTS
A. Accuracy assessment algorithms, datasets, open artifacts

DAIC experiments have been conducted with two pseudo-
oracles and one sampling accuracy assessment algorithms.

The two pseudo-oracles are SelfChecker [22] (the automatic
oracle that exploits the features of the DNN under test itself
to evaluate the predictions), and DNN-OS.

The sampling-based assessment algorithm is DeepEST [28];
it considers auxiliary variables, such as the confidence of DNN
predictions, to guide the sampling through as much as possible
failing examples and to balance the unequal sampling in the
estimation.

The dataset considered for the preliminary experiments is
MNIST [16], a famous dataset for handwritten digits classifica-
tion. In particular, 1,000 examples are considered for training,
500 for the verification set, and 1,000 unlabeled inputs (for
each cycle) as the operational dataset.

DNN-OS invariants are obtained as follows:

e Domain invariants: defined by domain experts about the
input sources of the DNN. In particular, for MNIST,
we assume that users insert input into three different
forms requiring respectively digits without straight lines
{0, 3, 6, 8, 9}, digits with straight lines {1, 4, 7} only,
and remaining digits {2, 5}. We define an invariant for
each form. The output provided by the DNN for each
operational input is checked against the set of possible
digits expected for the source form.

e Data invariants: automatically extracted from the training
data in form of decision rules (C4.5 algorithm [29]) and
filtered based on their confidence (C' > 0.99) and support
(S > 10).
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Fig. 2. DAIC results with the SelfChecker pseudo-oracle
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Fig. 3. DAIC results with the DNN-OS pseudo-oracle

TABLE 1 TABLE II
DAIC DETAILED RESULTS WITH THE SELFCHECKER PSEUDO-ORACLE DAIC DETAILED RESULTS WITH THE DNN-OS PSEUDO-ORACLE
verification actual predicted acc. | estimated acc. verification actual predicted acc. | estimated acc.
cycle accuracy accuracy | (SelfChecker) (DeepEST) cycle accuracy accuracy (DNN-OS) (DeepEST)
1 0.861 0.859 0.881 untriggered 1 0.861 0.859 0.833 untriggered
2 0.861 0.863 0.883 untriggered 2 0.861 0.863 0.828 untriggered
3 0.861 0.860 0.879 untriggered 3 0.861 0.860 0.825 untriggered
4 0.861 0.700 0.868 untriggered 4 0.861 0.700 0.678 0.713
5 0.861 0.698 0.861 untriggered 5 0.833 0.726 0.693 0.719
6 0.861 0.707 0.866 untriggered 6 0.810 0.781 0.725 0.784
7 0.861 0.695 0.864 untriggered 7 0.818 0.888 0.850 untriggered
8 0.861 0.692 0.867 untriggered 8 0.818 0.894 0.851 untriggered

e Model invariants: extracted from validation data with
Random Forest using the output of the neurons of the
last layer as features.

The sample size considered for DeepEST is 500, and the
proportion of examples sampled randomly with respect to
those with weighted sampling is set to 0.5.

For independent verification or replication, the experimental
code is available on GitHub at:

https://github.com/dessertlab/DAIC.git.

B. Results

DAIC is experimented by running eight cycles, with five
repetitions. The pseudo-oracle assessment is executed at each
iteration.

In the experiments, the triggering condition for the
sampling-based assessment is:

{predicted accuracy < (verification accuracy - 0.05)} OR

{predicted accuracy < minimum accuracy}
that is, the offline assessment is triggered when the difference
between the accuracy estimated online (predicted accuracy)
and the accuracy estimated prior to release (verification ac-
curacy) drops below a given threshold (here set to 0.05), or
when the predicted accuracy falls below a minimum accuracy
required for the DNN (set to 0.80 in the experiments).

When DeepEST is triggered, a set of new manually labeled
samples are sent to the Data Preprocessing phase, where
they are integrated into the training and verification sets. The
proportion between new and old samples in the training dataset

may be varied according to the accuracy estimates of last
cycle(s). By default, both new and old samples are considered.

Figures 2 and 3 show the average results and the confidence
intervals over 5 repetitions of 8§ DAIC iterations. Tables I
and II provide the details for each cycle. The first three
cycles represent the nominal conditions, namely when the
training and validation set faithfully represent the operational
dataset. As expected, the operational accuracy computed with
SelfChecker (Figure 2, and first three rows of Table I) and with
DNN-OS (Figure 3, and first three rows of Table II) does not
trigger sampling in the first three cycles.

Starting from the fourth cycle, a label shift is simulated by
switching labels 2 and 7 in operational data. As SelfChecker
relies only on model and data information, it is unable to detect
failures, and its accuracy estimate diverges from the actual
one without triggering the assessment via sampling for the
remaining cycles (Figure 2, and cycle 4 in Table I).

Thanks to domain invariants, DNN-OS is able to correctly
detect failures, providing an accurate estimate of the oper-
ational accuracy. Indeed, when the accuracy drops (Figure
3), it triggers the assessment via sampling (cycle 4 in Table
IT). DeepEST estimate confirms that the operational dataset
is starting to diverge from the one observed in the previous
cycles. Thus, new samples are inserted into the training
dataset, and the model is re-trained. During cycles 5 and 6,
the accuracy drops are still correctly detected by DNN-OS,
and further improvement actions are performed with the new
samples provided by DeepEST.

During the 7t cycle the model is trained only with the
1,500 examples collected in cycles 4, 5, and 6 achieving a
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high actual accuracy. In both cycles 7 and 8 the accuracy is
correctly estimated by DNN-OS as greater than 0.8, avoiding
the triggering of DeepEST.

DNN-OS exhibits a single unnecessary trigger in cycle 6
(repetition 2), where it does not catch that the actual accuracy
was already higher than the minimum.

V. FUTURE PLANS

Life cycles for DNN-based systems adopted in continuous
delivery contexts are iterative by nature. The proposed integra-
tion of pseudo-oracles and sampling techniques supports both
the assessment and the improvement of the DNN accuracy. It
helps engineers to leverage collected features in the operational
environment to more faithfully evaluate and then specialize the
DNN performing the task they need in the way they need.

We plan to refine DAIC defining more sophisticated strate-
gies for the automatic improvement of the DNN in the loop.
Techniques like DeepEST can spot a high number of failing
examples, which, along with operational features, can help
improve the performance of DNN also in corner cases. An
advancement is to integrate the automatic improvement both
at the experimental and deployment stage. As shown in the
preliminary results, it is rarely required to change a well-
performing model in case of unexpected phenomena like label
shift. Often, additional training or training from scratch, by
incorporating the operational examples in the training set, may
suffice to improve the operational accuracy. For this reason, in
line with MLOps perspectives, strategies for the online auto-
improvement of DNN can be based on the “probabilistic”
output of the pseudo-oracles. Moreover, by automating data
preprocessing, the offline re-training step can be run without
human intervention.

To a second extent, we plan to apply inferential engines
on operational features to automatically extract operational
constraints aiming to improve pseudo-oracle effectiveness in
estimating the accuracy during the operation. A recent work
from Google stresses the importance of incorporating domain
knowledge as a set of rules to improve ML components
accuracy [30].

The iterative assessment and the improvement of the accu-
racy of the DNN can be of interest beyond the experimented
image classification domain. We plan to apply DAIC in
industry-relevant domains like Autonomous Driving: for in-
stance, to the throttle/braking/steering angle prediction, which
are regression problems.

VI. CONCLUSIONS

Preliminary results confirm that the accuracy computed be-
fore the release can be very different from the one achieved in
operation by the DNN in presence of unexpected phenomena
like label shift. However, the accuracy predicted by DNN-OS
follows the actual accuracy with the operational data thanks
the domain invariants, triggering the assessment via sampling
only when required.

The estimates provided by DeepEST can be used to faith-
fully evaluate the accuracy provided in operation. The experi-
mental results also showed that the performance of the DNN in

operation can be sensibly increased thanks to the availability
of the new labeled examples.
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