2102.06662v1 [cs.SE] 12 Feb 2021

arxXiv

Qualifying Software Engineers Undergraduates in
DevOps - Challenges of Introducing Technical and
Non-technical Concepts 1in a Project-oriented Course

Isaque Alves
University of Brasilia (UnB)

Brasilia, Brasil
isaquealvesdl @gmail.com

Abstract—The constant changes in the software industry, prac-
tices, and methodologies impose challenges to teaching and learn-
ing current software engineering concepts and skills. DevOps is
particularly challenging because it covers technical concepts, such
as pipeline automation, and non-technical ones, such as team
roles and project management. The present study investigates a
course setup to introduce these concepts to software engineering
undergraduates. We designed the course by employing coding
to associate DevOps concepts to Agile, Lean, and Open source
practices and tools. We present the main aspects of this project-
oriented DevOps course, with 240 students enrolled it since its
first offering in 2016. We conducted an empirical study, with both
a quantitative and qualitative analysis, to evaluate this project-
oriented course setup. We collected the data from the projects
repository and students’ perceptions from a questionnaire. We
mined 148 repositories (corresponding to 72 projects) and ob-
tained 86 valid responses to the questionnaire. We also mapped
the concepts which are more challenging to students learn
from experience. The results evidence that first-hand experience
facilitates the comprehension of DevOps concepts and enriches
classes discussions. we present a set of lessons learned, which
may help professors better design and conduct project-oriented
courses to cover DevOps concepts.

Index Terms—DevOps, education, Open source, OSS, FOSS,
Empirical software engineering, Agile software development,
Emerging domains of software, Tools and environments.

I. INTRODUCTION

The development rate of the software industry has evolved
from delivering the software product in the waterfall model
to continuous delivering in agile and DevOps [1]. This con-
stant evolution of software industry standards, practices, and
methodologies imposes challenges to teaching and learning
software engineering [2] [3]. Education programs must con-
nect abstract concepts taught in the classroom to skills needed
for software engineering practitioners [4] [5] [6] [7] [8]. How-
ever, it is common to see undergraduate software engineering
courses covering contents and concepts disconnected from
current industry practices.

In this context, teaching DevOps is exceptionally challeng-
ing. DevOps is a natural evolution of the agile movement [9]
[10], and it proposes a complementary set of practices and
automation to allow the iterative delivery of software in short
cycles effectively [11] [12] [13]. To understand the factors

Carla Rocha
University of Brasilia (UnB)

Brasilia, Brasil

caguiar@unb.br

that impact frequent and reliable release process, the student
should understand concepts such as continuous improvement,
product management over project management, small features,
measurement, change, risk cost, short feedback cycle, commu-
nication, a culture of collaboration, and cross-functional/full-
stack team, among others. Additionally, mastering technical
concepts are essential to enable a continuous deployment
pipeline. Deployment pipeline, continuous deployment, ver-
sioning, containerization, build automation, static code anal-
ysis, continuous integration, testing automation, microservice
architecture, automation tools, cloud services, and continuous
runtime monitoring guarantee supports a stable and repeatable
deployment process. However, it is far from trivial to bring to
a classroom context the complexity and the interdependence
between these concepts and their practical implications. How
to qualify engineers for DevOps practice is still an open
research question [11] [3].

A commonly adopted strategy in software engineering
courses to present complex concepts and develop technical
students’ skills is to foster them to participate in Open Source
Software (OSS) projects as part of the course [14] [15] [16].
By working with OSS projects, students learn skills, practices,
toolsets, and technologies aligned with the current software
development landscape [17]. Such a scenario also enhances
students’ resumes and parallels software engineering concepts
with real-world scenarios.

This paper presents a project-oriented course setup introduc-
ing both technical and non-technical DevOps concepts to un-
dergraduates. We employ coding to associate DevOps concepts
to Agile, Lean, and OSS practices and tools. Throughout the
course, teams contribute to a capstone OSS project, adopting
these proposed practices in the project development cycle.
Many OSS communities have embraced DevOps tools and
practices. We adopt many of these automation tools in the
projects. In the classroom, the professor introduces DevOps
theoretical concepts, correlates them with these practices, and
presents how they impact continuous delivery.

The insights obtained from this empirical research provide
lessons learned for professors, students, and OSS communi-
ties that want to take advantage of this process. The main

contributions of this papers are the following:

o We present a project-oriented course setup that associates
DevOps concepts with practices and tools from Open
Source Community, Agile and Lean. Previous work on
the topic focused mostly on tools and automation of
the deployment pipeline, and DevOps still imposes chal-
lenges due to its complexity [11]. We could not find
a research paper that covers the teaching challenges of
presenting the complexity of DevOps [3], to give an un-
derstanding that non-technical aspects, such as communi-
cation and management, together with technical aspects,
such as pipeline and provision automation, impacts the
continuous software delivery;

o From the course data analysis, we present a set of
recommendations/lessons learned to guide professors, in-
structors, and practitioners. Based on the course data
analysis, we present a set of lessons learned, which may
help professors better design and conduct project-oriented
courses to cover DevOps concepts.

The rest of the paper is organized as follows. In Section
IT we present our research question and the research method-
ology. Section III presents the course setup. In Section IV,
we present a quantitative analysis with data mining from
the course repository. Finally, in Section VI, we present our
lessons learned from four years of course experience, and the
related works in Section VII. The conclusions are in Section
IX.

II. METHOD

In this section, we state the research question and the
process followed in conducting data analysis. We defined one
research question that guided our study:

RQ. Can a project-oriented course help to teach both tech-
nical and non-technical DevOps concepts to undergraduates?

This research question guides us to plan, execute, and
evaluate a project-oriented course focused on DevOps. We
conducted empirical research to answer this research question.
First, we assigned practices and tools from agile, lean, and
OSS to DevOps concepts. It guides us to plan the presented
project-oriented course.

To evaluate the course syllabus and the relevance of these
practices, we mined data over 148 repositories from 72
projects extracted from the Github organization created for the
course, from all teams enrolled in the course. We take data over
four years in order to compare the DevOps and agile course
strategies. In this period, more than 352 undergraduate soft-
ware engineering students attended it. Finally, we conducted
a questionnaire to evaluate the students’ perceptions.

A. Assigning practices to concepts

The course, called “Software Product Development” (SPD),
is offered to undergraduate software engineers, twice a year
(Fall and Spring). The course was first offered in 2012, adapted
from the XP lab [18], similar to [19], and focusing on agile
practices. In 2014, we introduced OSS practices, and in 2016,
the course was reformulated to focus on DevOps.

To create the course syllabus, we adopted the DevOps
conceptual map from the survey [11], organized into four
categories: process, people, delivery, and runtime. Each cat-
egory presents a set of concepts and how they relate to each
other in the DevOps perspective. Delivery and Runtime cate-
gories cover mostly technical aspects of DevOps, including:
Continuous delivery/deployment, deployment pipeline stages,
automation, open source, versioning, build management, static
analysis, testing automation, continuous integration, build
once, configuration management, microservices, rollback, con-
tinuous runtime monitoring, infrastructure as code, container-
ization, cloud services, environments are similar, performance,
availability, scalability, resilience, reliability, less human inter-
vention.

People and Process categories cover concepts for project
management and collaboration, including: frequent and reli-
able release process, agile/lean, short feedback cycle, prod-
uct quality, small features, innovation, trust relationships,
continuous improvements, product management over project
management, risk and cost, a culture of collaboration, DevOps
role, aligning incentives, personal responsibility, failure as an
opportunity for improvement, cross-functional, ’you build it,
you run it”, deployment triggered by dev, knowledge, tools,
processes, and practices.

We excluded the concepts related to software maintenance
and evolution, like feature toggle, run time experiments, A/B
testing, Canary release, chaos engineering, log management,
and continuous post-production maintenance. They require
advanced projects, and it is out of the scope of a capstone
project lifecycle. From this first filter, we obtained the list of
DevOps concepts related to the software project development
cycle, as depicted in Table L.

Then, we listed agile, OSS, lean, and DevOps practices;
we also listed the open source tools adopted by DevOps
practitioners community to encourage students to use tools
adopted in the industry. We employed coding to assign each
practice to at least one DevOps concept [20]. From codes to
categories [21]: based on the initial list of practices (the codes),
we analyzed to identify the category of these practices. In the
following, we present some examples of concepts and related
practices:

o Culture of collaboration - core to DevOps, is based
on sharing knowledge, tools, processes and practices
[11]. Practices that promote this concept, when done
with a full-stack, self-organized team, and a centralized
repository: stand-up meeting, communication in issues
and pull requests, pair revision, and planning;

o Continuous delivery/deployment - we employ deploy-
ment automation tools to make the continuous delivery
process viable [11] [22] [13]. Practices that enables
continuous deployment: configure automated deployment
pipelines/stages, unit tests, integration tests, continuous
integration, automate build and deploy process;

B. Repository Analysis

We extracted the data from the GitHub repositories at the
course organization'. The goal is to understand how students
employ DevOps concepts in the project. This organization
contains the projects from 2014 to the present, and more than
352 students have enrolled in this course. For this study, we
considered all 72 projects.

We extracted several metrics/data from each repository:
the number of issues open/closed per sprint, the number of
pull requests open/closed per sprint, the number of stages
per pipeline, tools used, technical/project documentation, and
languages/frameworks used. They are available, and some of
these quantitative data reflect non-technical practices. For in-
stance, team communication is directly related to the frequency
they interact in the issues, the number of closed issues, and
interactions in pull requests. The qualitative data in the repos-
itory, such as comments on issues and project documentation,
are considered in students’ evaluation. However, we did not
use this data in the present study due to its subjectivity.

C. Questionnaire

To understand the students’ perspective on the course
methodology and the DevOps concepts, we designed an online
questionnaire and submitted it to students that took this course
from August 2016 to June 2019. The goal of this questionnaire
is to verify if students could perceive the complexities and
correlate technical with non-technical aspects of DevOps.
The survey consisted of 65 Likert scale questions on their
perception of the DevOps concepts, the agile, lean and OSS
practices, and open-ended questions eliciting the respondent’s
opinion in general [23].

We received 86 valid responses to our survey. We analyzed
the data using descriptive statistics and open coding of textual
comments. To reduce the subjectivity of this process, both
authors analyzed the data. We also provide representative
quotes to highlight our findings.

III. THE COURSE SETUP
A. Course Overview

The course has over 17 weeks (136 hours), with a theoretical
and hands-on class twice a week. Additionally, it requires,
on average, ten weekly hours of student efforts extra class,
with students dedicating to their OSS project development.
This course admits students with intermediate programming
skills, with experience in requirement engineering, software
architecture, code refactoring techniques, and basic knowledge
of software project lifecycle. The complete set of concepts
covered in this course, the corresponding practices, using the
process described in II-A are depicted in Table I. This table
guides professors, tutors, and students throughout the project
lifecycle.

In the initial course weeks, students organize themselves
in teams and apply to one of the available open problems.
The professor is responsible for validating/assigning a theme

Uhttps://github.com/fga-eps-mds

to each team. In the classroom, the professor introduces the
DevOps concepts, and practices depicted in Table I. In parallel,
the teams execute a software project development cycle em-
ploying all practices from Table I. In the planning stage, they
learn more about the product they will develop, organize their
repository, and perform training dojos with mentors’ help. In
the analysis stage, they start requirement elicitation, project
architecture definition, pipeline tools definition, and roadmap
of their deliveries.

In the design stage, students propose the pipeline stages,
automation tools, frameworks, to ensure continuous deliv-
ery. Risk management, project quality, and deliverables are
planned , and students monitor metrics and indicators to track
productivity. For seven weeks, they design and implement
some features of their project. At the end of this period,
we have a first release of their prototype, and the professor
gives feedback and assess risks. The remaining ten weeks are
dedicated to the continuous delivery and deployment, with
students deploying at least once a week a new version of
their Proof of Concept, guaranteeing the manual usability
tests, continuous deployment pipeline, unit test coverage, and
other test stages. The final delivery contemplates the software
delivery, the technical and methodology documentation, and
the compliance with OSS recommended standards.

It is students’ first experience leading a team, making
decisions, planning releases, and implementing a continuous
deployment pipeline. Students will execute the practices from
Table I throughout the project lifecycle, make decisions on
tools, manage a team composed of 10 members, plan release
cycles, document project execution and product management,
and justify their decision-making.

B. Full-stack Team

One common understanding between practitioners, man-
agers, and organizations is that the DevOps movement pro-
motes closer collaboration between all team members (devel-
opers, operators, managers) [24] [25]. This close collaboration
consists of sharing of knowledge and tools, processes, and
practices, risks, and the culture ”You built it, you run it” [11].

To introduce this core concept, the team must be account-
able for executing practices in Table I. Therefore, each student
in the team assumes one specific role throughout the project.
The assigned student must study the concepts, learn specific
tools, and assume the responsibility to guarantee the execution
of the practices and the deliverable related to the role. Each
team member develops distinct skills, focusing on one or
more categories from Table I, pushing them to communicate
effectively and collaborate to guarantee the project delivery.
The roles, their attributions, and deliverable are:

e Scrum Master/Tech Leader: responsible for executing
the concepts and practices from the Project Management
category. The expected deliveries are the process docu-
mentation, productivity metrics, and continuous analysis,
evaluation of teams agile practices maturity;

o Product Strategist: also responsible for executing the
concepts and practices from the Product Management

https://github.com/fga-eps-mds

DEVOPS CONCEPTS AND PRACTICES PRESENTED IN THE COURSE.

TABLE I

Categories

Concept

Practice

Tools

Product Management
(Process/ People)

Microservice; Product quality;

Customer satisfaction; Small features;
Artifact management; Release engineering;
Knowledge, Skills, and Capabilities;
Programing educations; Quality assurance;
and Artifact management.

OSS Documentation standards;
unit test; review; licensing;
pair revision and code review;
architecture structure;

product documentation; and
pipeline stage documentation.

wiki; git Pages; codeclimate;
coveralls; git; and SonarQube.

Project Management
(Process/ People)

ZenHub; HubCare; wiki;

People management; Short feedback cycle;
Pilots team and lead customer;
Compliance regulations; Team experience;
Aligning incentives; Breaking down silos;
Culture of collaboration; Versioning;
Sharing knowledge; Programing educations;
Global community knowledge;

Failure as opportunity of improvement;
ollaborate across departments;

Knowledge, skills, and capabilities; and
Artifact management.

Sprint; Kanban; planing; review;
Stand-up metting; dojos;

Tasks in issues; training;

0SS Recommended Standards;
Post mortem; code of contributing;
Communication in issue and PR;
Full-stack and self organized teams;
git-flow; pull request; process
documentation; badges status

in readme; tracking metrics; and
pair revision.

ZenHub; HubCare; wiki;
Agile Visualization; Telegram;
Slack; Rocket Chat; Redmine;
Google Drive; programming
language; and test tools.

Build Process
(Delivery)

Release engineering; Continuous delivery;
Automation; Testing automation;
Correctness; and Static analysis.

Deployment pipeline stages;
Automation; Unit test; Integration
tests; and components tests.

AWS Cloud Formation; Jest;
Jmeter; Selenium; Sonar; Rancher;
Cucumber; and Code Climate.

Continuous Integration
(Delivery)

Frequent and reliable release process;
Release engineering; Deployment pipeline;
Continuous integration; Automation;

and Continuous delivery.

Build and deploy automated;
badges status in readme;
and git-flow.

Jenkins; Gitlab CI;
Circle CI; and Travis.

Deployment
Automation
(Delivery/Runtime)

Frequent and reliable release process;
Release engineering; Continuous delivery;
Configuration management; Automation;
Infrastructure as code; Virtualization;

and Containerization.

Git-flow; Continuous Integration;
Build and Deploy automated;
Architecture Structure;
Documentation; and pipline stage
documentation.

Shell Script; Travis; Docker; npm;
Virtualenv; OpenStack; Vagrant;
Kubernets; Cloud services; Chef;
Puppet; Heroku; Flyway; Rancher;
and AWS Cloud Formation.

Monitoring & Logging
(Delivery/Runtime)

You built it, you run it; Availability;
After-hours support for Devs; Alerting;

Operation tasks in issues;
Logging; Monitoring; and
Benchmark.

Prometheus; Graylog; Arachni;
Nagios; Zabbix; Logstash;

Continuous runtime monitoring; Security;
Performance; Automation Metrics;
Experiments Log management; Reliability;
and Scalability Resilience.

Graylog; and ElasticSearch.

category. This role must describe the user personas, how
the product fits into the current market, and how it
will achieve business goals. The expected deliveries are
product plans, roadmap, business plan, usability tests, and
visual product identity.

Software Architect: responsible for executing the con-
cepts and practices from Product Management and Build
Process categories. It deals with the application and its
data flow by defining structures, tools, and technologies.
The expected deliveries are architecture definition and
documentation, programming language selection, external
services (Open Source) usage, functionalities reuse, and
services integration, defining the quality criteria.
Release/devops Engineer: responsible for the execution
of the concepts and practices from Continuous Integra-
tion, Deployment Automation, and Monitoring & logging
categories. It defines the deployment pipeline stages, the
automation tools, configures this pipeline in both staging
and production environments. The expected deliveries are
the documentation, implementation of the pipeline stages,
continuous deployment automation, and automated tests.
Monitoring the production environment is optional.
Development Team: implements the Product Backlog
into potentially deliverable functionality by following
technologies and quality criteria established. The ex-

pected deliveries are the source code of the project,
unit test, communication via issues, and OSS practices
execution.

o Teacher: assists in risk management, introducing theo-
retical concepts related to DevOps, and facilitating com-
munication with other stakeholders.

o Instructor: assists the team with training and feedback
on tools, technologies, and best practices in OSS product
development. They help with the culture of collaboration
and share their lessons learned.

C. Project Restrictions

Project restrictions are important to limit the project’s scope,
set the evaluation criteria and checklist, guide planning, execu-
tion, and prioritization of tasks. It also helps instructors assess
the projects’ risks continually and give constant feedback to
teams, according to the boundaries set by the restrictions. OSS
community has a series of recommended standards focusing
on building welcoming communities. These practices aim to
maintain norms, code quality, technical standards, communica-
tion, knowledge spreading, team awareness, share ownership,
welcome newcomers continually. We do not cover in this paper
the students’ evaluation detailed evaluation criteria. Strongly
leaning on OSS communities and standards, we define a set
of project restrictions to guide students decision-making:

+ Project Selection: a set of themes are available. Theme
suggestion is allowed but should be approved;

o Programming Language: each team has the liberty to
choose their technologies based on projects requirements;

o Tests: it is mandatory to have at least 90% unit test cov-
erage; integration tests are also mandatory. The pipeline
must execute these tests automatically in stages of both
continuous integration and deployment. Other tests are
optional;

o DevOps toolset and pipeline: students are free to choose
the toolset. The following are mandatory: containeriza-
tion, continuous integration, static code analysis, style
sheet compliance, test automation, deployment pipeline
automation, source-control branching model;

o Licence: the license must be permissive;

o Documentation: both technical and non-technical docu-
mentation must be available on the project wiki. Oblig-
atory documentation: vision document, architecture, de-
ployment pipeline, product/project roadmap;

o Architecture: we recommend microservices;

o Monitoring: they should monitor the project metric. Such
as test coverage, cumulative flow, knowledge evolution,
risk burndown, earned value management, release train,
deployments, and velocity;

« Environments: each team must have staging and produc-
tion environments available;

e OSS standards: OSS community standards must be
adopted. Standardization and template issues, source-
control branching model, project documentation, deploy-
ment pipeline, issue communication, and feedback on
Pull Requests are examples of OSS standard;

o Delivery cycles: there are two significant official releases
in the course where the teams present their solutions to
an evaluation board.

IV. THE COURSE METRICS

When correctly employing DevOps concepts in a project de-
velopment cycle, one expects to obtain high team productivity,
a complete automated deployment pipeline, and consolidated
collaboration culture. Therefore, the metrics reflecting these
three aspects give a general perception of how effective a team
deploys DevOps concepts in practice.

To answer the research question, we evaluate the course
delivery over the years. Since 2014 352 students enrolled in
this course, producing 47.583 commits, 5.255 pull requests,
and 5.820 issues. In this section, we analyze the data from
the project’s repositories to verify if a project’s development
helps students understand and practice DevOps concepts.

A. Culture of Collaboration, Performance, and Productivity

Commit best practices are individual evaluation criteria. Ar-
chitectural and project complexity are similar among projects.
Therefore, the atomicity of commits is similar. Although
simplistic, we can use commits per project as a metric of
team productivity, and we use it to evaluate the course setup
centered? on DevOps. Figure 1 depicts the commits per

project in this course, from 2014 to 2019. One can notice
the line representing the commits overtime, highlighting the
periods in which the course focused on Agile (from 2014 to
2016) and DevOps (since August 2016). The improvement
of teams productivity perceived overall in the course reflected
adopting practices from Delivery and Runtime categories while
updating the Project Management category to work on full-
stack teams’ perspective. Even though teams could choose
unfamiliar technology (programming language, frameworks)
for their projects, this choice does not impact the average
number of features delivered, hence productivity.

3000 .

2000

Quantity of Commits
'

DevOps
1000

- o po oo
e oo 4o
em|me o
e @8 o
e o o
e de o

]
0
2014 1 2014 2 20151 20152 2016 1 2016 2 2017_1 2017.2 2018 1 2018 2 20181 20182

Semester

Fig. 1. Commits per project from 2014 to 2019.

Efficient and frequent communication tends to impact the
productivity and delivery of a team positively. A metric to
evaluate the communication practice and the culture of collab-
oration can be the average length (number of characters) of
conversations on issues. It does not reflect the communication
efficiency but rather the effort to share decisions, doubts, and
issues with the entire team. Another productivity or delivery
metric can be the number of closed issues over time. From
OSS community practice, organizations with high delivery also
communicate frequently in issues. To verify this correlation
in the course, Figure 2 shows the effect of communication
practices and the teams delivery, two crucial pillars of DevOps.

In Figure 2, in the x-axis, we have the size of comments
on issues per project, and the y-axis shows the number of
issues closed per project. Each dot represents one team. The
hypothesis is that the more a team communicates in issues,
they reinforce collaboration between development and opera-
tion tasks, and consequently, they have faster feature releases.
According to their grades in class, we separate them into two
groups. The teams on the upper region of the graph presented
more mature continuous delivery pipelines and processes. We
compared the result in Figure 2 with groups post mortem,
final project delivery, and grades. Overall, we found a direct
correlation with how well the group invested in collaboration,
efficient communication, performance, and the final technical
project delivery quality.

Closed issues per total comment size

500 =
L]
v 400
7 é -
- * &
2 300 A %
S - oo o
S «
S 200 @ S
2z 8o @
= 'o\ QS
]
2w | WBe®
e
& .
O <4
0 50000 100000 150000 200000 250000

Total comment size (number of chars)

Fig. 2. Culture of collaboration: impact of communication (via issue) and
the teams productivity (number of closed issues)

B. 0SS, Agile, Lean Practices and Continuous Delivery

OSS community embraced DevOps practices and provide
several automation tools [11] [26], and we adopt many of them
in the course, as depicted in Table I. We continually track
each team’s maturity in these OSS practices. We performed
a qualitative analysis on how effective the communication
is in issues and pull requests, the quality and correctness
of the technical communication, contribution guidelines (git
branches with policies), issues and Pull Requests templates,
and all technical and community documentation. Additionally,
agile/lean practices such as stand-ups, planning, sprint re-
view, pair programming, Pull request, and Kanban strengthens
project and product management.

Table II summarizes the teams’ technological choices (pro-
gramming languages, frameworks). There are 19 frontends
and 110 backends (microservices, monolith applications, and
APIs) repositories. 53% of the projects used Docker for con-
tainerization. Containerization became obligatory in August
2018 [27]. Soon after, 95% of repositories adopted Docker.
The remaining 5% projects are usually frontend repository
and native apps with only documentation to configure and
deploy the environment. To configure continuous integration
and deployment pipeline, groups work with shell scripting and
other tools such as Rancher, Kubernetes, Travis, Jenkins, and
DockerHub. As we can see, more than 50% of the projects
used shell script.

In [15], Hu listed the 13 most common students’ mistakes
in OSS projects oriented courses. They are mostly related
to coding mistakes and pull requests not following the OSS
community code quality standards. When focusing on De-
vOps, students do not usually make these mistakes because
automation tools for continuous deploys, such as static code
analysis, language code style, unit test automation, continuous
integration, force students to employ the best programming
practices.

From the Delivery/Runtime categories, one of the critical
aspects of DevOps is deployment pipeline automation. It re-

TABLE 11

TECHNOLOGIES USED.

Technology used on frontend used on backend
JavaScript 89% 53%
HTML 74% 47%
CSS 68% 35%
Shell 37% 52%
Python 21% 55%
Makefile 21% 25%
Ruby 11% 15%
TypeScript 32% 5%
Objective-C 11% 1%
Java 16% 7%
Vue 16% 2%
Gherkin 5% 6%
Kotlin 5% 2%
C# 2%
Puppet 1%
CoffeeScript 4%
PHP 4%
LenaSYS 1%
TSQL 1%
Hack 1%
PLpgSQL 1%
Jupyter Notebook 1%
Smalltalk 1%
TABLE III
DEPLOYMENT PIPELINE.
Pratics % of use

Containerization 76%

Virtualization 11%

None 14%

Continuous Integration 92%

None 8%

Others DevOpsTools 6%

quires knowledge of concepts like containerization, continuous
integration vs. continuous deployment, pipeline stages, process
(git branches and pull request policies), toolset configuration,
cloud service, and microservice architecture. Typically, one
student per project is responsible for studying and making
decisions on deployment pipeline automation. Then, pairing
with other team members to evolve and maintain the pipeline
is the primary strategy to share knowledge and tools. In Table
III, we outline how much of these concepts undergraduates in
software engineers were able to implement in their projects.

V. QUESTIONNAIRE ANALYSIS

Before the course, only 24,1% of the respondents had
previous experience with OSS, and 80,3% believed it was
very relevant to the course. All students were under 24 years
when they took the course, and 80, 5% were men. When asked
students’ expectations before attending the course, we have the
following remarks:

o Developer Experience: students cited that the course was
their first contact with the software development cycle,
working in a team, learning more about coding practices
and techniques.

o Work in a Real Project: students cited that even if they
were working on capstone projects, they learned how

to build software products for real problems with real
potential clients.

o Challenge and Culture: It is inevitable not to notice
the culture created around this course. Students answered
almost unanimously that the course is challenging, as
it requires time and dedication. One student mentioned:
”Because of the culture created around the course, |
expected it to be a laborious and exhausting experience,
but at the same time of great learning opportunity.”

o Project and Product Management: They recognized
the importance of management to increase their team
productivity and the quality of their artifacts.

o Development, Delivery, and Runtime: The students
stated they mature on their understanding of the prob-
lems associated with software delivery, the importance
of automation, versioning control, and clear acceptance
criteria to new features.

With a focus on DevOps, students’ most relevant technical
aspects are the design and implementation of a continuous
deployment pipeline. We ask them to rank the most relevant
tools and evaluate several DevOps concepts/practices while
executing their project. Continuous Integration (87%) is the
most critical in the students’ opinion, followed by Continu-
ous Deploy (79.6%), Code Versioning (80.6%), Continuous
Delivery (70.4%), Environment Isolation (69.4%), and Build
Automation with 63%.

These concepts introduced from the beginning of the course,
added with tips and tools already used in previous classes,
increase discussions and understanding become more mature
and straightforward to apply. Automation, Product Vision,
Feedback, Continuous Delivery, and Containerization were the
DevOps practices that added most value from students’ per-
spective as “Very relevant”. Aspects like Packaging (27.8%)
and Architecture Microservices (30.6%) are at the bottom of
the ranking, as these aspects were recently added to the course.

About the challenges, 27% reported the difficulty in both
team and self-time managing. They report they have little
time to understand and implement a large number of concepts,
tools, techniques. They also recognized the difficulties in
guaranteeing an efficient communication. Numerous students
stated the following challenge: "Manage and remove impedi-
ments from the development team to not impact delivery. And
surely keep communication between everyone in the group
clear” (Student)

We asked students their perception of their prior and post-
course knowledge in coding techniques, programming lan-
guage and DevOps practices. They did a self-assessment on
a scale of 1 to 5. Figure 3 presents an average of the re-
sponses of the leading technologies and concepts used (Python,
JavaScript, Web Programming, and Agile Practices) before and
after the course. Before the course, the majority of responses
were 1, showing that they did not have a previous contact to
these programming languages and practices.After finishing the
course their self-assessment improved in general to 3 and 4. As
it is a self-assessment, we cannot say that students’ knowledge
increased, but we can infer that students feel more confident

about the tools, concepts, and technologies after working with
them during the course.

Before [After
50%
40%
30%
20%
10%
L1 i
1 2 3 4 5
Fig. 3. Average of the technologies and concepts used, perception of

knowledge before and after the course.

VI. LESSONS LEARNED

In this section, we discuss some of the lessons learned ob-
served from data analysis, insights from teachers, and feedback
from people and partners who have already gone through the
discipline. As it is an experimental discipline, the culture of
continuous feedback was adopted, collecting through surveys
and meetings with students at the end of each semester, thus
applying improvements to the next offer. This section aims
primarily to present some of the issues professors, instructors,
and students supporting DevOps teaching will likely face.

o Culture is a key factor - it is reported the importance of

DevOps culture to make continuous deployment effective.
The same is true for teaching it. It is essential to develop
and foster a safe environment for the students to learn
and fail, reward open collaboration, open communica-
tion, engaged mentoring, and technical leadership, self-
organization, team-oriented over individuals. With the
commitment to keep technical communication centralized
on issues, the teams organized themselves to maintain
this culture using bots on communication channels and
other tools to maintain decentralized communication and
the entire community. Figures 2, 1 and Table II indicate
that performance of every team is quite similar and it is
not much affected by the technical choices, a reflection
the culture of collaboration. Students are aware of the
importance of this particular course in their professional
qualification, and it motivates them to engage and dedi-
cate themselves throughout the entire project.

o Encourage the use of different technologies - students
freedom to choose their technological setting, alongside
culture, instigate them to experiment with a new toolset,
new languages, new frameworks. Table II show all the
language and frequency used by the teams. The adopted
technologies are continuously evolving, and the students
choice are compatible with trending technologies adopted
by practitioners in Stackoverflow 2. In this process,

Zhttps://stackoverflow.com

professors emphasize that concepts are more important
than tools, and each technical choice should be attached
to a DevOps practice and the problem being solved.
Each team must justify their technological choice based
on such concepts and how they enable DevOps. As
stakeholders, professors and instructors share concerns,
past project mistakes, known risks, and, finally, approve
team choices. This freedom enables innovation and keeps
the course updated with current practices and toolsets
used by the DevOps community.

No detailed plan for achieving the final delivery - the
course does not provide a roadmap to students to follow
through the project, which is similar to real software
projects. Leaving this core decision to the teams exercise
their management and decision-making skills, but it also
encourages them to collaborate with other teams, with
their mentor, with the professor. The project roadmap
encompasses the complexity of a software project when
focusing on continuous delivery and DevOps: it involves
defining the process, the toolset, the delivery pipeline,
the automation, the runtime environment, monitoring
and assigning people attributions, the deliverables, the
team training, among others. All these choices combined
impact the effectiveness of DevOps in a controlled course
environment. It gives the students a systematic view
of DevOps aspects from experience. Learning DevOps
from experience is more important and beneficial than
a purely theoretical approach because it evidences how
both technical and non-technical DevOps concepts are
interconnected, and they both impact the final delivery.
Several students reported their initial struggle to make
decisions, their insecurity to not have a pre-defined list
of tasks. Nevertheless, they recognized the importance of
decision-making to comprehend the elements that impact
continuous delivery.

OSS communities practices - There is still significant
debate among practitioners and managers about DevOps;
the community standards, tools, and practices guidelines
are continually evolving. There is a variety of suggested
pipeline stages, depending on the application context. De-
vOps tools and practices are rapidly changing, and most
of them are open source, and the use of such tools directly
impacts developers and operators’ responsibilities. Table
IIT also highlights the use of other practices more directly
linked to integration and continuous delivery in projects.
Thus, it is fundamental to project-based DevOps courses
to request teams to employ the current OSS and DevOps
community standards (documentation, communication,
process, tools) to keep the discussions and concepts up
to date.

Students portfolio and collaboration with local soft-
ware industry - it was well documented the benefits for
project-oriented OSS courses to build student portfolio.
Like Outreachy, Google Summer of Code, many industry
initiatives, finance undergraduates in contributing to open
source communities. They are both strategies to bridge

the gap between academy and industry. In countries
where the software industry is not well established or
does not have enough investments to follow global trends,
we hypothesize that the initiative to teach undergraduates
current DevOps concepts in a practical setup promotes
innovation to the local industry. These students will build
globally competitive skills, and they can share them with
the local industry.

Mentoring - we have tested several mentoring formats:
two instructors per team participating continually and
directly in project decisions and responsible for team
coaching; both technical and non-technical collaborators
from local industry working as mentors. Each format
has its benefits and disadvantages. External collaborators
can have low commitment to guide students; instructors
chosen by the professor may not have the necessary
technical skill necessary to mentor a particular project;
non-proactive teams may not search for mentors. These
risks are always present, and projects can be adversely
affected by them. However, the benefits of any format of
mentoring are countless [28]. Mentors aid the professor in
assessing project risks, and they bring different perspec-
tives, practices, and technologies that help bridge the gap
between academia and the software industry.

Team versatility is important - It is impractical for
every student in a team to develop all of the necessary
skills. DevOps requires versatile and skilled developers,
managers, and product strategists. Therefore, professors
and instructors should encourage students to assume
the responsibilities and tasks that correspond to their
interests. It is essential to have students with the ability
to understand many aspects of the system (generalists).
Additionally, another skill necessary in learning DevOps
is the ability to be responsible (and accountable) for mak-
ing deployment decisions, taking quality, performance,
acceptance criteria into account. Dealing with unpredicted
scenarios and risks and taking appropriate initiatives
when necessary. Even when students take managerial
tasks, they should be aware that technical management
is essential, and they should aim to influence the team
rather than give orders.

Evaluation should not focus only on deliverable - even
though it is possible to monitor metrics on DevOps, it is
vital for professors not to focus strictly on project/product
metrics. Risk management maturity, process experience,
communication effectiveness, team engagement, innova-
tion should also be considered in students’ evaluation.
Otherwise, it will not encourage students to experiment
and fail, try new frameworks and tools, and take risks.
These qualitative criteria must be explicit at the beginning
of the course to build trust among the stakeholders
(students, professors, instructors). Even though we did
not cover the course evaluation in the current paper, some
of the practices depicted in Table I are not measurable.
External Evaluators - It is beneficial to invite externals
to evaluate and give teams feedback from both industry

and academy perspective. They have unique views and
might bring new questioning to the course, suggesting im-
provements, exposing blind spots and bias not perceived
by professors and instructors supervising the course.
Since DevOps is inherently multidisciplinary, so should
be these externals evaluators. Designers, SRE experts,
software architects, open source advocates, developers are
examples of past evaluators. They are essential to enable
the course to improve continually. External evaluators
continually review the practices covered in Table 1.

VII. RELATED WORKS

Because of the novelty of DevOps, few papers on DevOps
education were published, and it is still an open challenge
[11], and most of the papers treat teaching DevOps in Master
Degrees and specializations. Chung et al. [29] present the
knowledge, skills, and abilities to DevOps education, such
as Architectural pattern, automation, unit testing, productivity,
and agile development, and how they are relevant in web
development courses. Christensen [9] claims teaching DevOps
is challenging due to its skill-focused competence nature, that
goes through orient-object, testing, database subjects, and is
a response for problems like speed, scale, and availability.
New curriculum based on DevOps concepts and practices are
proposed in [30] [31]. Both papers outline the importance
of project-oriented courses in the Software Engineering cur-
riculum. Capozucca et al. [30] argue that in this pedagogical
methodology, every team in a course should be assigned to the
same project in order to enable consistency when evaluating
groups’ work. We disagree with this conclusion once our re-
sults have indicated that different projects motivate teams and
foster innovation. The major challenge we faced in our context
is to define quantitative metrics to evaluate non-technical
aspects of the project development. Diehl in [32] characterizes
the skills necessary to master software development, and they
evidence the relevance of mentoring to build knowledge and
thus contribute to the improvement of expertise. Pang et al. [3]
used Grounded Theory (GT) to study DevOps education from
both academic and industrial perspectives. They concluded that
institutions were not teaching students about DevOps, because
academics were not interested in adopting or teaching DevOps.
In this paper, we employ most of the DevOps Education
Hypotheses proposed in [3].

Bringing an OSS project into a teaching context is not
uncommon. According to [33], it helps students understand
the differences between their small projects and real-life large
scale software. Pinto et al. [16] [34] present both teacher
and students’ perspectives on using OSS projects to learn
more advanced software engineering practices and techniques
while maintaining and evolving OSS. Students felt motivated
to participate in a real project, point out that the subject was
a starting point in the OSS community and an opportunity to
build a portfolio. Besides, some students became active OSS
contributors.

VIII. LIMITATIONS

This study has limitations, and we strove to mitigate their
potential impacts. First, our study is limited by one university
and the number of students who participated in our study. This
empirical research took four years, with four of them were
DevOps oriented. We use coding to identify OSS, agile and
lean practices to assign to DevOps concepts. Some may argue
that coding is a personal interpretation, and the validity of
coding is questionable. To address this concern, both authors
performed the coding and reviewed it by external invited
evaluators at every final course cycle.

IX. CONCLUDING REMARKS

DevOps education is more challenging than any other kind
of technical training. DevOps is much more than a specific
technology, it is a set of technical and non-technical concepts.
Adopting a given practice or implementing a pipeline stage
automation has a nonlinear effect on continuous delivery (it is
a complex system). In this paper, we present a project-oriented
DevOps course, and we introduce DevOps concepts through
Agile, Lean, and Open source practices and tools. From the
DevOps conceptual map presented in [11], we selected the
concepts related to the software development cycle. Then, we
apply the coding technique to assign Agile, Lean, and OSS
practice to these concepts, depicted in Table I. In a project-
oriented course, students employ these practices and contribute
to a capstone OSS project.

Automating the deployment pipeline does not necessarily
guarantee continuous delivery [10]. Students should expe-
rience this complexity, perceiving that continuous delivery
is achieved by combining practices and automation while
optimizing resources and identifying waste. It provides un-
dergraduates an experience much closer to a real software
project’s challenges and gives a more realistic perception of
these concepts’ importance.

To evaluate this course scenario, we mined 148 repositories
and evaluated this course over four years. We also surveyed to
assess students’ perceptions of DevOps concepts and practices.
From the repository of the project, we wanted to understand
if the OSS, agile and lean practices/tools brought the benefits
of DevOps adoption. We analyzed the teams’ productivity,
the culture of collaboration, and the automation pipeline.
We observed that the adoption of DevOps over a previous
agile approach in class improved overall team productivity.
From the survey, we observed students tend to assign more
relevance to technical DevOps practices, such as continuous
integration and deployment, over non-technical practices, like
communication and documentation. We believe it is because
they value practices that provide instant or measurable benefits.

ACKNOWLEDGEMENTS

We want to thank all the teachers, instructors, external
evaluators/stakeholders, and students who support the course
development and improve it continually. The complete list of
students, contributors can be found in the course organization
https://github.com/fga-eps-mds.

https://github.com/fga-eps-mds

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

D. G. Feitelson, E. Frachtenberg, and K. L. Beck, “Development and
deployment at facebook,” Internet Computing, IEEE, vol. 17, pp. 8-17,
07 2013.

C. H. Hopper, Practicing college learning strategies. Cengage Learning,
2012.

D. B. Candy Pang, Abram Hindle, “Understanding devops education
with grounded theory,” ICSE-SEET 20, (Piscataway, NJ, USA), IEEE
Press, 2020.

J. Silge, “How much do developers earn? find out with the stack
overflow salary calculator,” 2017. https://stackoverflow.blog/2017/
09/19/much-developers-earn-find- stack-overflow-salary-calculator/, ac-
cessed on April 2018.

B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site Reliability
Engineering: How Google Runs Production Systems. O’Reilly Media,
2016.

D. Brown, “Our DevOps journey - Microsoft’s internal transformation
story,” 2018. DevOneConf 2018, https://www.youtube.com/watch?v=
cbFz0jQOjyA, accessed on Jul 2018.

D. Broman, K. Sandahl, and M. A. Baker, “The company approach to
software engineering project courses,” IEEE Transactions on Education,
vol. 55, no. 4, pp. 445-452, 2012.

J. Vanhanen, T. O. Lehtinen, and C. Lassenius, “Teaching real-world
software engineering through a capstone project course with industrial
customers,” in 2012 First International Workshop on Software Engineer-
ing Education Based on Real-World Experiences (EduRex), pp. 29-32,
IEEE, 2012.

H. B. Christensen, “Teaching devops and cloud computing using a
cognitive apprenticeship and story-telling approach,” in Proceedings of
the 2016 ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE 16, (New York, NY, USA), pp. 174-179,
ACM, 2016.

J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Addison-
Wesley Professional, 2010.

F. K. D. M. Leonardo Leite, Carla Rocha and P. Meirelles, “A survey
of devops concepts and challenges,” ACM Compututer Survey, 2019.
B. B. N. de Franca, H. Jeronimo, Junior, and G. H. Travassos, “Charac-
terizing devops by hearing multiple voices,” in Proceedings of the 30th
Brazilian Symposium on Software Engineering, SBES 16, pp. 53-62,
ACM, 2016.

G. Rong, S. Gu, H. Zhang, and D. Shao, “Devopsenvy: an education
support system for devops,” in 2017 IEEE 30th Conference on Software
Engineering Education and Training (CSEE&T), pp. 37-46, IEEE, 2017.
R. Holmes, M. Allen, and M. Craig, “Dimensions of experientialism
for software engineering education,” in Proceedings of the 40th Inter-
national Conference on Software Engineering: Software Engineering
Education and Training, ICSE-SEET °18, (New York, NY, USA),
pp. 31-39, ACM, 2018.

Z. Hu, Y. Song, and E. Gehringer, “Open-source software in class:
Students’ common mistakes,” in 2018 IEEE/ACM 40th International
Conference on Software Engineering: Software Engineering Education
and Training (ICSE-SEET), pp. 40-48, May 2018.

G. Pinto, C. Ferreira, C. Souza, I. Steinmacher, and P. Meirelles,
“Training software engineers using open-source software: The students’
perspective,” in Proceedings of the 41st International Conference on
Software Engineering: Software Engineering Education and Training,
ICSE-SEET °19, (Piscataway, NJ, USA), pp. 147-157, IEEE Press,
2019.

D. M. C. Nascimento, K. Cox, T. Almeida, W. Sampaio, R. A.
Bittencourt, R. R. G. Souza, and C. von Flach G. Chavez, “Using open
source projects in software engineering education: A systematic mapping
study,” 2013 IEEE Frontiers in Education Conference (FIE), pp. 1837—
1843, 2013.

A. Goldman, F. Kon, P. Silva, and J. Yoder, “Being extreme in the
classroom: Experiences teaching xp.,” J. Braz. Comp. Soc., vol. 10,
pp. 5-21, 06 2004.

J. Vanhanen, T. O. A. Lehtinen, and C. Lassenius, “Teaching real-
world software engineering through a capstone project course with
industrial customers,” in Proceedings of the First International Workshop
on Software Engineering Education Based on Real-World Experiences,
EduRex 12, p. 29-32, IEEE Press, 2012.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software en-
gineering research: A critical review and guidelines,” in 2016 IEEE/ACM
38th International Conference on Software Engineering, ICSE 16,
pp. 120-131, 2016.

K. Charmaz, “Chapter 7: Grounded theory as an emergent method,” in
Handbook of Emergent Methods, The Guilford Press, 2008.

K. Keefe and M. Dick, “Using extreme programming in a capstone
project,” in Proceedings of the Sixth Australasian Conference on Com-
puting Education-Volume 30, pp. 151-160, 2004.

T. Punter, M. Ciolkowski, B. Freimut, and I. John, “Conducting on-
line surveys in software engineering,” in 2003 International Symposium
on Empirical Software Engineering, 2003. ISESE 2003. Proceedings.,
pp- 80-88, Sep. 2003.

A. Dyck, R. Penners, and H. Lichter, “Towards definitions for release
engineering and devops,” in 2015 IEEE/ACM 3rd International Work-
shop on Release Engineering, pp. 3-3, 2015. Code: B26.

R. de Feijter, S. Overbeek, R. van Vliet, E. Jagroep, and S. Brinkkemper,
“DevOps competences and maturity for software producing organiza-
tions,” in Enterprise, Business-Process and Information Systems Mod-
eling, pp. 244-259, Springer, 2018. Code: S805.

E. Mulyana, R. Hakimi, and Hendrawan, “Bringing automation to
the classroom: A chatops-based approach,” in 2018 4th International
Conference on Wireless and Telematics, ICWT, pp. 1-6, 2018.

D. Kelly, “Configuration management and containers: Which is bet-
ter?,” 2016. https://blog.containership.io/configuration-management-
and-containers-which-is-better, accessed on July 2018.

E. H. Trainer, A. Kalyanasundaram, and J. D. Herbsleb, “e-mentoring for
software engineering: A socio-technical perspective,” in Proceedings of
the 39th International Conference on Software Engineering: Software
Engineering and Education Track, ICSE-SEET ’17, (Piscataway, NJ,
USA), pp. 107-116, IEEE Press, 2017.

S. Chung and S. Bang, “Identifying knowledge, skills, and abilities (ksa)
for devops-aware server side web application with the grounded theory,”
J. Comput. Sci. Coll., vol. 32, pp. 110-116, Oct. 2016.

A. Capozucca, N. Guelfi, and B. Ries, “Design of a (yet another?) devops
course,” in Software Engineering Aspects of Continuous Development
and New Paradigms of Software Production and Deployment (J.-M.
Bruel, M. Mazzara, and B. Meyer, eds.), (Cham), pp. 1-18, Springer
International Publishing, 2019.

E. Bobrov, A. Bucchiarone, A. Capozucca, N. Guelfi, M. Mazzara, and
S. Masyagin, “Teaching devops in academia and industry: Reflections
and vision,” in Software Engineering Aspects of Continuous Develop-
ment and New Paradigms of Software Production and Deployment (J.-
M. Bruel, M. Mazzara, and B. Meyer, eds.), (Cham), pp. 1-14, Springer
International Publishing, 2020.

S. Baltes and S. Diehl, “Towards a theory of software development ex-
pertise,” Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering - ESEC/FSE 2018, 2018.

S.-K. K. David Carrington, “Teaching software design with open source
software,” 33rd Annual Frontiers in Education, 2003. FIE 2003, 2003.
G. H. L. Pinto, F. F. Filho, I. Steinmacher, and M. A. Gerosa, “Training
software engineers using open-source software: The professors’ perspec-
tive,” in 2017 IEEE 30th Conference on Software Engineering Education
and Training (CSEE T), pp. 117-121, Nov 2017.

https://stackoverflow.blog/2017/09/19/much-developers-earn-find-stack-overflow-salary-calculator/
https://stackoverflow.blog/2017/09/19/much-developers-earn-find-stack-overflow-salary-calculator/
https://www.youtube.com/watch?v=cbFzojQOjyA
https://www.youtube.com/watch?v=cbFzojQOjyA
https://blog.containership.io/configuration-management-and-containers-which-is-better
https://blog.containership.io/configuration-management-and-containers-which-is-better

	I Introduction
	II Method
	II-A Assigning practices to concepts
	II-B Repository Analysis
	II-C Questionnaire

	III The Course Setup
	III-A Course Overview
	III-B Full-stack Team
	III-C Project Restrictions

	IV The Course Metrics
	IV-A Culture of Collaboration, Performance, and Productivity
	IV-B OSS, Agile, Lean Practices and Continuous Delivery

	V Questionnaire analysis
	VI Lessons Learned
	VII Related works
	VIII Limitations
	IX Concluding Remarks
	References

