
LitterBox: A Linter for Scratch Programs
Gordon Fraser, Ute Heuer, Nina Körber, Florian Obermüller, Ewald Wasmeier

University of Passau
Passau, Germany

Abstract—Creating programs with block-based programming
languages like SCRATCH is easy and fun. Block-based programs
can nevertheless contain bugs, in particular when learners have
misconceptions about programming. Even when they do not,
SCRATCH code is often of low quality and contains code smells,
further inhibiting understanding, reuse, and fun. To address this
problem, in this paper we introduce LITTERBOX, a linter for
SCRATCH programs. Given a program or its public project ID,
LITTERBOX checks the program against patterns of known bugs
and code smells. For each issue identified, LITTERBOX provides
not only the location in the code, but also a helpful explanation
of the underlying reason and possible misconceptions. Learners
can access LITTERBOX through an easy to use web interface
with visual information about the errors in the block-code, while
for researchers LITTERBOX provides a general, open source, and
extensible framework for static analysis of SCRATCH programs.

Index Terms—Scratch, bug patterns, code smells, linting

I. INTRODUCTION

The SCRATCH [7] block-based programming language is
tremendously popular amongst teachers and programming
novices. While it is easy to create games and animations
using SCRATCH [10], programs may nevertheless contain
bugs. This is particularly the case because SCRATCH pro-
grammers are usually young learners who might not know,
or have misconceptions about, programming concepts. Even
when programs suitably satisfy the behavior intended by the
programmer, the quality of SCRATCH code has been reported
to be low and riddled with code smells [6], [15]. This may
have serious implications on learning outcomes, the general
understandability of SCRATCH programs, and the overall
enjoyment of programming. It can also severely inhibit teachers
who may face the daunting task of debugging a potentially
large and diverse set of student solutions at the same time.

In order to address this problem, we introduce LITTERBOX,
a linter for SCRATCH programs. LITTERBOX is built on the
observation that, even though there are abundant ways to
produce bugs, many of them result from similar misconceptions
and manifest in common patterns of bugs. As an example,
consider the script shown in Figure 1a, which was written by a
SCRATCH user with the intent to continuously check whether
level 21 has been reached in a game, and if so to broadcast
a corresponding message. The program contains a bug that is
typical of learners who have not yet fully comprehended the
concept of variables: Instead of comparing the value of the
variable level with 21, the literal “level” is compared with the
number 21. Obviously, this if-condition will never evaluate to

Authors listed in alphabetical order

(a) Erroneous SCRATCH script.

IfThen

Equals StmtList

StringLiteral NumberLiteral

thenStmtboolExpr

operand1 operand2

Broadcast

statements

…

messagevaluetext
… … …

(b) Bug pattern in the syntax tree.

(c) Hint provided by LITTERBOX.

Fig. 1: Example bug pattern: Instead of comparing the variable
level with the value 21, this script in the “Elephant” sprite
compares the literal “level” with 21—a comparison that will
never evaluate to true.

true. Such a comparison between literals can easily be described
as a pattern on the abstract syntax tree of SCRATCH programs,
and bugs matching this pattern occur frequently: In a recent
study, we found 4,939 instances of this bug pattern in a dataset
of 74,830 publicly shared SCRATCH projects [4].

LITTERBOX identifies bugs like this by statically analyzing
the source code of SCRATCH programs, and applying a
catalogue of finders for different bug patterns and code smells
on the abstract syntax tree (Figure 1b) and control flow graph.
For each issue identified, SCRATCH provides a visual summary
of the relevant blocks together with an explanation of the
issue, as well as possible underlying misconceptions. Figure 1c
illustrates this for the comparing literals bug seen in Figure 1a.

LITTERBOX is developed as an open source Java project. On
the command line, LITTERBOX can be used to check individual
SCRATCH projects, collections of them, or for downloading
projects from the SCRATCH website given their project IDs, and
producing reports in configurable output formats. In addition
to the command line interface, we provide a web interface
which makes LITTERBOX easy to use for learners as well as
for teachers having to assess multiple projects.

ar
X

iv
:2

10
2.

07
44

0v
1 

 [
cs

.S
E

] 
 1

5 
Fe

b 
20

21



II. CODE QUALITY ISSUES IN SCRATCH

A. The SCRATCH Programming Language

SCRATCH [7] is popular amongst teachers and programming
novices for several reasons: It is block-based, which means
that programs are assembled by visually arranging blocks
representing program statements and expressions. Blocks come
in different shapes to visually demonstrate which combinations
are valid. For example, boolean expressions are represented
as pointed blocks, and other expressions in rounded blocks,
and wherever such blocks can be inserted, there are holes
in the appropriate shapes. Statements ‘snap’ together like
Lego bricks, such that it is only possible to create programs
of syntactically valid combinations of blocks. The blocks
available are displayed in a toolbox, supporting recognition
over recall. While SCRATCH blocks contain many standard
programming language constructs such as conditions and loops,
many statements represent high-level actions of the sprites
interacting on a stage. This makes it easy to quickly arrange
blocks in a way that results in fun and game-like programs.

While the tinkering-approach to programming is initially
encouraging for learners, it has been observed that SCRATCH
programmers tend to develop certain negative habits while
coding [8]. Multiple studies have demonstrated that issues in
code quality are prevalent in SCRATCH [1], [6], [11], [15] and
have a negative impact on code understanding [5]. LITTERBOX
therefore aims to identify recurring issues in SCRATCH code [4].
In the following, we discuss different categories of issues that
occur in SCRATCH programs.

B. Syntax Errors in SCRATCH

Although the block-based nature of SCRATCH is intended
to prevent syntax errors, it can only achieve this to a certain
degree. Even though it is usually not possible to combine
blocks in invalid ways, there are exceptions. For example, all
‘reporter’-blocks have the same shape and so it is possible to
use a reporter block for a costume name at a place where a
color is expected. The notion of custom blocks gives rise to
possible bugs, as SCRATCH does not validate the signature
of these blocks; for example it is possible to have multiple
parameters with the same name, or to use parameter blocks
outside their scope. Many different types of syntax errors can
arise from reuse and modification, for example when custom
blocks are deleted, uses of their parameters may still remain in
the program. Finally, incomplete programs can also give rise
to bugs; for example, omitting a condition in a repeat until
loop will lead to an infinite loop.

C. SCRATCH-specific Bugs

The program scenario of a stage with multiple sprites
interacting on it gives rise to bugs specific to this setting.
For example, programs may contain event handlers for scene-
related events (e.g., a change of the backdrop) without these
events ever being triggered. The ability to use SCRATCH in a
Logo-like mode, where sprites draw lines when moving, gives
rise to various types of bugs when omitting to enable or disable
the ‘pen’-mode.

D. Patterns of General Bugs
Besides SCRATCH-specific bugs, there are countless ways

for producing mistakes that may occur in any programming
language. For example, it is possible to produce infinite
recursions with custom blocks or message passing, there may be
control flow anomalies, and there may be data flow issues such
as lack of initialization. Common issues include omissions of
broadcast or clone statements for which handlers are available,
or vice versa, omissions of the handlers for events that are
produced. There is no end to the creativity with which bugs
can be produced in SCRATCH.

E. Code Smells
Even when SCRATCH programs do not contain bugs, the

code may nevertheless be of mediocre quality. The concept of
code smells describes different concrete quality problems in
code which is not wrong per-se, but its quality issues reduce
understandability and maintainability, and thus increase the
chances that bugs are introduced later on. Common code smells
known from regular programming languages often also apply
to SCRATCH programs (e.g., spaghetti code, code duplication).

III. LITTERBOX: STATIC ANALYSIS FOR SCRATCH

A. Main Features of LITTERBOX

Bug finders. The central feature of LITTERBOX is to find
issues in SCRATCH programs based on bug patterns and code
smells. Table I provides a list of all issue finders implemented
in LITTERBOX 1.5. Extending LITTERBOX with new issue
finders is straightforward, so this list is growing continuously.
Code metrics. Besides checking for bugs, LITTERBOX can
extract different metrics on SCRATCH programs, such as the
numbers of blocks, scripts, and sprites, or the overall weighted
mean complexity of a program.
Code translation. LITTERBOX can translate SCRATCH pro-
grams to LeILA (Learners’ Intermediate Language), the inter-
mediate language used by the model checker BASTET [12],
and to the SCRATCHBLOCKS1 format.
Output formats. LITTERBOX can produce output in different
formats: Besides basic information on the console, LITTERBOX
can produce data files in CSV format, which is useful for
researchers conducting analyses on datasets of SCRATCH
programs. LITTERBOX produces a custom JSON report that
contains detailed information about the issues found and their
descriptions, which serves as a basis for displaying results to
learners. LITTERBOX can export versions of the SCRATCH
project in which all blocks associated with issues are annotated
with comments explaining the issues, and giving hints on how
the user could try to fix it.
Mining/downloading. LITTERBOX can analyze individual
local files as well as folders containing multiple projects to
check. Alternatively, LITTERBOX can also handle individual
project IDs or lists of IDs, and will then download these projects
from the SCRATCH servers before analyzing them.
Language support. LITTERBOX supports internationalization
and currently provides output in English, German, and Spanish.

1 http://scratchblocks.github.io, last accessed September 23, 2020.

http://scratchblocks.github.io


TABLE I: Issue finders implemented in LITTERBOX 1.5.

Syntax Errors

Ambiguous Custom Block Signature Several custom blocks have identical hats
Ambiguous Parameter Name Custom block parameters with identical name
Call Without Definition Non existing custom block is called
Expression As Touching Or Color Reporter is used in color or object spot
Illegal Parameter Refactor String parameter is used in bool condition
Missing Termination Condition Repeat until without condition
Missing Wait-Until Condition Wait until without condition
Orphaned Parameter Parameter is not defined anymore
Parameter Out Of Scope Parameter outside custom block

SCRATCH-specific Bugs

Missing Backdrop Switch Backdrop switch event never triggered
Missing Erase All Pen lines are not erased
Missing Pen Down Pen is up but never down
Missing Pen Up Pen is down but never up
Missing Resource Used costume, sound or background is missing
Stuttering Movement Annoying typematic delay

General Bugs

Blocking If-Else Terminates in both paths, code after if-else
Comparing Literals Strings/Numbers are compared directly
Custom Block With Forever Blocks after custom block never execute
Custom Block With Termination Blocks after custom block never execute
Delete Clone After Broadcast Clone is deleted immediately after broadcast
Endless Recursion Custom block or script calls itself without

termination
Forever Inside Loop Outer loop is never executed
Inappropriate Hatblock Greenflag handler in script with delete clone
Interrupted Loop Sensing Block that takes time interrupts continuous

sensing
Message Never Received Broadcast does not trigger handler
Message Never Sent Broadcast for handler is never sent
Missing Ask Answer is used without ask
Missing Clone Call Clone event is never called
Missing Clone Initialization Clone handler is not used
Missing Initialization Sprite is not initialized
Missing Loop Sensing Condition is checked only a single time
No Working Scripts Only empty scripts and code lying around; no

handler is connected to any blocks
Position Equals Check Positions are compared exactly
Recursive Cloning Clones clone themselves without termination
Stop after Say Script stopped immediately after say
Terminated Loop Loop is stopped during first iteration
Type Error Incompatible blocks are compared
Variable As Literal Variable name instead of reporter

Code Smells

Busy Waiting Constantly checking to stop script
Cloned Code Code clones of types 1-3
Code Lying Around Loose blocks without handler
Double If Consecutive if with same condition
Duplicate Sprite Two sprites are exact duplicates
Duplicated Script Two scripts in a sprite are exact duplicates
Empty Control Body C-block without sub stack
Empty Custom Block Custom block without body
Empty Project Project without sprites
Empty Script Handler without body
Empty Sprite Sprite without scripts
Long Script Script longer than 12 blocks
Message Naming Message with uncommunicative name
Middle Man Broadcast reception sends next broadcast;

custom block calls next custom block
Multi Attribute Modification Variable is changed multiple times in a row
Nested Loops Loops without other blocks stacked in-between
Same Variable Different Sprite Same variable name in multiple sprites
Sequential Actions Sequence of repeated blocks instead of loop
Sprite Naming Sprite with uncommunicative name
Unnecessary If After Until If checks same condition that terminated until
Unnecessary Loop Loop that runs never or one time
Unused Custom Block Custom block is never called
Unused Parameter Parameter is defined but not used
Unused Variable Variable is never used
Variable Initialization Race Variable is initialized with different values in

scripts with same handler

B. Analysis Engine

LITTERBOX supports the analysis of projects in the most
recent version of SCRATCH (3.0). SCRATCH projects are saved
as .sb3 files, which are zip-archives containing the code of
the project as a JSON file and all the assets such as sounds
or costumes. LITTERBOX can process both, .sb3 and JSON
files. A project is parsed to an abstract syntax tree (AST)
in LITTERBOX, in which there is a distinct class for each
type of block in SCRATCH. Stack blocks are represented as
Statements (Stmt), reporter blocks (including variables, lists
and parameters of custom blocks) as Expressions. LITTERBOX
also has wrapper classes to reflect the non typed structure of
SCRATCH programs (e.g., with a wrapper a String Expression
can be put into a Stmt expecting a Number Expression, for
example when the username block is used as parameter of
the move steps block).

A visitor pattern is used to traverse this tree. So called
issue finders, which check for bug patterns or code smells, are
implemented as visitors to find idioms of SCRATCH blocks.
Furthermore, LITTERBOX creates a control flow graph from
the AST which is used in some of the finders, e.g., to report
the missing initialization of variables or attributes of sprites.

IV. USING LITTERBOX

A. Command Line Usage

LITTERBOX can be accessed on the command line using an
executable jar-file. An overview of all possible command line
options can be displayed using the --help option:

$ java -jar Litterbox-1.5.jar --help

The main modes of operation are --check to apply checks
on a SCRATCH project, --stats to produce code metrics, and
--leila to translate a program to LeILA. For example, to
check a project stored on the local hard drive (as either .sb3
file or just the project.json file containing the code) with
all default checkers on would use the following command:

$ java -jar Litterbox-1.5.jar --check --path <filename>

Instead of a single file, one can also provide a folder, in
which case LITTERBOX will check all SCRATCH projects
contained in that folder. If the project is not available as a
downloaded file yet, one can let LITTERBOX do this as well:

$ java -jar Litterbox-1.5.jar --check --projectid <id>

If no output directory is specified, LITTERBOX will place
the file in a temporary directory.

There are command line options to select the output
format. By default, LITTERBOX will only produce output
on the console, but providing an output file name using
--output=<filename> will produce a report. The format
of this report is deduced from the filename (i.e., .csv or



Fig. 2: Projects can be checked by uploading a file or entering
the ID of a shared project.

Fig. 3: The result of the analysis is a list of issues and hints.

.json). Other options, such as whether to ignore unconnected
blocks (i.e., scripts that have no hat-block), which checks
to apply, and many other options using parameters can be
displayed using the --help command line option.

B. The LITTERBOX Web Interface

For easier usage by learners LITTERBOX can also be
accessed via a web interface. We provide a publicly accessible
version of this at https://scratch-litterbox.org.

The web interface supports multiple languages (currently
English, German, and Spanish). Users can upload a .sb3 file
or simply provide the ID of a publicly shared SCRATCH project
(see Figure 2). After the analysis is finished, a list of issues
found is shown (Figure 3). For each issue, we display (1) the

public class MissingAsk extends AbstractIssueFinder {

private List<Answer> answerBlocks = new ArrayList<>();
private boolean askUsed = false;

@Override
public Set<Issue> check(Program program) {

// ...
program.accept(this);

// Add an issue for each answer block
// if the program contains no ask-block
if (!answerBlocks.isEmpty() && !askUsed) {

for (Answer answer : answerBlocks) {
addIssue(answer, answer.getMetadata());

}
}
return issues;

}

@Override
public void visit(AskAndWait node) {

askUsed = true;
}

@Override
public void visit(Answer node) {

answerBlocks.add(node);
}

// ...
}

Fig. 4: Example bug finder to check if the Answer block is
used without an AskAndWait block.

sprite which contains the affected script, (2) the block-code
representation of the erroneous script, with the affected block
highlighted in red with a worm attached to it, and (3) a textual
description of the problem and possible remedies.

C. Extending LITTERBOX

Extending LITTERBOX with new bug patterns or smell
checks is easy, as the internal structure allows extension by
adding just a single class, a so called finder. As there is
an abstract base class for finders which implements an AST
visitor, the concrete finders have to override the existing visit
methods only for the nodes that are relevant for the new check.

For convenience, the AST offers different levels of abstrac-
tion, for example, all reporter blocks implement one common
interface Expression and all stack blocks implement Stmt,
so that it is possible to handle all of them the same way without
having to implement one visit method for each expression
or stack block, respectively.

Figure 4 shows a simple bug finder which marks each usage
of an answer block as an issue if the program contains no
corresponding ask blocks. To achieve this, the finder simply
needs to override the visit methods for the AskAndWait and
Answer blocks to keep track of their usage, and afterwards
can annotate all issues in the check method. LITTERBOX
also makes more complex checks possible, using the control
flow graph or support for classical data flow analysis.

Each finder needs to provide at least one hint message. It is
possible to customize the hint messages to take specific aspects
of the issue at hand into account, and provide more actionable

https://scratch-litterbox.org


help. Hint messages are internationalized through the use of
resource bundles. Support for new languages can simply be
added by including new resource bundles.

V. APPLICATIONS IN PROGRAMMING EDUCATION

A. Learners

Previous research has already shown that code smells
in SCRATCH hamper the learning process of students [5].
LITTERBOX identifies not only code smells, but also bug
patterns, which are more severe issues than smells, and thus
likely have an even worse impact on learning.

LITTERBOX provides hints that consist of (1) an explanation
of the issue focusing on meaningful context and (2) a short
description of possible actions that might assist learners in
solving the issue. This helps learners segmenting the complex
debugging and refactoring process into manageable parts by
locating potential issues one by one (Figure 3). It may also ease
reflection on possible underlying misconceptions and foster
resolving them by targeting inappropriate concepts for repair.

Deploying Eccles’s expectancy-value theory [3] on students’
debugging (and refactoring) processes yields the assumption
that learners are more likely to keep on debugging if they
expect to do well and they value debugging. As such, working
with LITTERBOX learners might be more motivated to succeed.

B. Teachers

LITTERBOX can also be used by teachers to get an overview
of potential bugs in their students’ programs, in particular bugs
that might be signs of misconceptions or missing concepts. It
can thus support teachers in analyzing their learners’ current
knowledge and skills, facilitating instructional adjustments re-
peatedly. In particular, LITTERBOX endorses teachers assigning
different tasks that are specifically set out to students differing
in prior performance, thus alleviating individualized instruction.

LITTERBOX supports students when fixing their broken
programs without needing extensive assistance of a human
teacher while doing so. Teachers are then able to spend more
time with learners in need of special support or extra attention.
Note, however, that LITTERBOX finds only generic issues
that are problematic in any SCRATCH program. Bugs that are
specific to the task at hand require analysis with respect to a
specification [12], [13].

VI. EMPIRICAL RESULTS

We investigated [4] a data set of 74,830 publicly shared
SCRATCH projects (excluding remixes), and found a total
of 109,951 instances of the 25 bug patterns implemented in
LITTERBOX at the time of the study. Not every instance of
a bug pattern may lead to visible failure of the program, and
static analysis tools may in general produce false positives.
We therefore manually inspected a stratified random sample
of 250 bugs reported by LITTERBOX. In this sample, only 32
instances of bug patterns were revealed to be false positives.
Overall, this demonstrates that bug patterns occur frequently
in practice, and LITTERBOX helps to find them.

VII. RELATED WORK

The importance of analyzing SCRATCH programs was shown
in previous studies [1], [6], [11], [15], which found code smells
to occur frequently in practice. Hermans and Aivaloglou [5]
determined empirically that code smells may inhibit learning
and make it harder for pupils to extend SCRATCH programs
with new functionalities. Techapalokul and Tilevich [15] also
argue that code smells have negative effects on the SCRATCH
community, for example as projects with code smells are less
often remixed than those without smells.

The HAIRBALL [2] tool, which offers a basic Python API
for analysing SCRATCH (version 2) programs, was instrumental
in enabling this research on code smells, and other tools
such as QUALITYHOUND [14] followed for statically finding
code smells. LITTERBOX provides a generic program analysis
framework for SCRATCH (version 3) programs. While it also
incorporates basic code smells, it introduces the concept of
bug patterns, the prevalence of which we demonstrated in an
analysis of randomly sampled SCRATCH projects [4]. Whereas
code smells identify low quality code that may lead to bugs in
the future, patterns are indicative of bugs already present in the
code. LITTERBOX offers various program analysis techniques,
such as control- and data-flow analysis, to support the definition
of further code smells, bug patterns, and also code metrics.

LITTERBOX also incorporates elaborate, multi-language
hints to explain the issues found in the code. The web
frontend in which these hints are displayed is inspired by
DR. SCRATCH [9], which analyzes SCRATCH projects with
respect to the computational thinking concepts applied.

VIII. CONCLUSIONS

SCRATCH is tremendously popular with learners, teachers,
and researchers. There is, however, a need to provide support for
all these user groups. This is what LITTERBOX aims to achieve:
LITTERBOX is a static analysis tool that automatically detects
bug patterns and code smells. A convenient web-interface and
helpful explanations support learners and teachers alike, while
the flexible command line interface and a modular design
support teachers and researchers.

In this paper we have summarized the features of LITTER-
BOX. By providing LITTERBOX as open source, we hope to
foster research on analyzing SCRATCH programs as well as on
SCRATCH-based programming education.

To try out LITTERBOX, visit our web site:

https://scratch-litterbox.org

The source code of LITTERBOX is available at:

https://github.com/se2p/LitterBox

ACKNOWLEDGEMENTS

This work is supported by DFG project FR 2955/3-1
“Testing, Debugging, and Repairing Blocks-based Programs”
and BMBF project “primary::programming” as part of the
Qualitätsoffensive Lehrerbildung. We would like to thank
Christoph Frädrich, Miriam Münch, Gregorio Robles, Andreas
Stahlbauer, and all other LITTERBOX contributors.

https://scratch-litterbox.org
https://github.com/se2p/LitterBox


REFERENCES

[1] E. Aivaloglou and F. Hermans, “How kids code and how we know: An
exploratory study on the Scratch repository,” in Proceedings of the ACM
Conference on International Computing Education Research, 2016, pp.
53–61.

[2] B. Boe, C. Hill, M. Len, G. Dreschler, P. Conrad, and D. Franklin,
“Hairball: Lint-inspired static analysis of scratch projects,” 2013, pp.
215–220.

[3] J. Eccles, “Who Am I and What Am I Going to Do With My Life?
Personal and Collective Identities as Motivators of Action,” Educational
Psychologist, vol. 44, no. 2, pp. 78–89, 2009.

[4] C. Frädrich, F. Obermüller, N. Körber, U. Heuer, and G. Fraser, “Common
Bugs in Scratch Programs,” in Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education, ser.
ITiCSE ’20. ACM, 2020, pp. 89–95.

[5] F. Hermans and E. Aivaloglou, “Do code smells hamper novice
programming? A controlled experiment on Scratch programs,” in 2016
IEEE 24th International Conference on Program Comprehension (ICPC),
2016, pp. 1–10.

[6] F. Hermans, K. T. Stolee, and D. Hoepelman, “Smells in Block-Based
Programming Languages,” in 2016 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 2016, pp. 68–72.

[7] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch Programming Language and Environment,” ACM Transactions
on Computing Education (TOCE), vol. 10, p. 16, 2010.

[8] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, “Habits of Program-

ming in Scratch,” in Proceedings of the Conference on Innovation and
Technology in Computer Science Education, 2011, pp. 168–172.

[9] J. Moreno-León, G. Robles, and M. Román-González, “Dr. scratch:
Automatic analysis of scratch projects to assess and foster computational
thinking,” RED-Revista de Educación a Distancia, 2015.

[10] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: Programming for all,” Commun. ACM, vol. 52, no. 11,
p. 60–67, 2009.

[11] G. Robles, J. Moreno-León, E. Aivaloglou, and F. Hermans, “Software
clones in Scratch projects: On the presence of copy-and-paste in
computational thinking learning,” in 2017 IEEE 11th International
Workshop on Software Clones (IWSC). IEEE, 2017, pp. 1–7.

[12] A. Stahlbauer, C. Frädrich, and G. Fraser, “Verified from Scratch: Program
Analysis for Learners’ Programs,” in In Proceedings of the International
Conference on Automated Software Engineering (ASE). IEEE, 2020.

[13] A. Stahlbauer, M. Kreis, and G. Fraser, “Testing Scratch Programs
Automatically,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 165–175.

[14] P. Techapalokul and E. Tilevich, “Quality hound — an online code
smell analyzer for scratch programs,” in 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 2017, pp.
337–338.

[15] ——, “Understanding Recurring Quality Problems and Their Impact on
Code Sharing in Block-Based Software,” in 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
2017, pp. 43–51.


	I Introduction
	II Code Quality Issues in Scratch
	II-A The Scratch Programming Language
	II-B Syntax Errors in Scratch
	II-C Scratch-specific Bugs
	II-D Patterns of General Bugs
	II-E Code Smells

	III LitterBox: Static Analysis for Scratch
	III-A Main Features of LitterBox
	III-B Analysis Engine

	IV Using LitterBox
	IV-A Command Line Usage
	IV-B The LitterBox Web Interface
	IV-C Extending LitterBox

	V Applications in Programming Education
	V-A Learners
	V-B Teachers

	VI Empirical Results
	VII Related Work
	VIII Conclusions
	References

