
SQLRepair: Identifying and Repairing Mistakes in
Student-Authored SQL Queries

Kai Presler-Marshall, Sarah Heckman, Kathryn T. Stolee
North Carolina State University

Raleigh, North Carolina
Email: {kpresle, sarah heckman, ktstolee}@ncsu.edu

Abstract—Computer science educators seek to understand the
types of mistakes that students make when learning a new
(programming) language so that they can help students avoid
those mistakes in the future. While educators know what mistakes
students regularly make in languages such as C and Python,
students struggle with SQL and regularly make mistakes when
working with it. We present an analysis of mistakes that students
made when first working with SQL, classify the types of errors
introduced, and provide suggestions on how to avoid them going
forward. In addition, we present an automated tool, SQLRepair,
that is capable of repairing errors introduced by undergraduate
programmers when writing SQL queries. Our results show
that students find repairs produced by our tool comparable in
understandability to queries written by themselves or by other
students, suggesting that SQL repair tools may be useful in
an educational context. We also provide to the community a
benchmark of SQL queries written by the students in our study
that we used for evaluation of SQLRepair.

I. INTRODUCTION

Understanding how beginners work with a new program-
ming language and the types of mistakes that they make can
help instructors better tailor their lesson plans to avoid previ-
ous pitfalls [1], [2]. We consider SQL, a widely-used language
for interacting with relational databases. SQL is taught in many
undergraduate computer science programs [3], [4], but may
not be part of the core curriculum. It is regularly used by
professional and amateur developers alike [5], including those
with little formal computer science background [6], [7].

While the types of mistakes that students make when
working with languages such as C and Java are relatively
well studied [8]–[10], we know less about mistakes made in
special-purpose languages such as SQL. We seek to understand
the types of mistakes that undergraduate students, who are
relatively familiar with Java, make when working with SQL.
Understanding these mistakes can help educators ensure that
they have the resources necessary to support computer science
students and end-user programmers alike, which may include
automated support [11].

In addition to an analysis of student mistakes, we propose
a tool, SQLRepair, which can automatically fix some of the
errors students introduce.1 While there are tools for automated

1We adopt terminology used in existing work on SQL education: students
make a mistake while solving a problem, introducing one or more errors into
the query. Note that this diverges from terminology frequently used in testing
literature where the term would be fault instead of error. We choose error
for consistency with existing work.

repair of programs in languages such as C and Java [12]–[15],
to the best of our knowledge, no existing techniques attempt to
repair errors in SQL queries. Our repair process first attempts
non-synthesis repair based on a predefined ruleset. As needed,
it uses a satisfiability modulo theory (SMT) solver [16] to
further synthesize repairs.

We frame our work around the following research questions:

• RQ1: What types of mistakes do beginners make when
working with SQL?

• RQ2: How well can SQLRepair fix errors introduced by
beginning SQL programmers?

• RQ3: Do students find SQLRepair-repaired queries to
be more understandable than queries written by other
students?

To answer our research questions, we conducted an empiri-
cal evaluation to understand student mistakes (RQ1), evaluate
SQLRepair’s ability to repair the errors in the student-written
queries (RQ2), and determine the repair quality (RQ3). Stu-
dents in two undergraduate computer science courses at a large
public university in the United States, North Carolina State
University (NCSU), were given a short introduction to SQL
and then asked to write queries to solve problems associated
with a sample database. For each problem, students were
provided an example (source, destination) table pair
that demonstrated the desired transformation (similar to pro-
gramming by example (PBE) techniques) [17] and were asked
to write a SQL query that would complete the transformation.
Incorrect queries were followed by additional examples (up to
three) to demonstrate the intended behavior. Any SQL query
that did not correctly solve the problem was analyzed for errors
and considered a candidate for repair. Students were then
asked to evaluate up to four human-written or tool-generated
queries, judging each for understandability. Our work makes
the following contributions:

• quantitative and qualitative classifications of the types of
errors introduced by beginning SQL programmers,

• a tool capable of repairing 29.1% of the observed errors
in SQL queries,

• a benchmark dataset of realistic SQL errors gathered from
undergraduate computer science students, and

• a demonstration that tool-repaired SQL queries are equal
in understandability to human-written queries.

1

ar
X

iv
:2

10
2.

05
72

9v
1 

 [
cs

.S
E

] 
 1

0 
Fe

b 
20

21



TABLE I
MAJOR CONCEPT IN EACH PROBLEM AND THE TOTAL NUMBER OF

(SOURCE, DESTINATION) TABLES IN THE PROBLEM SPECIFICATIONS.

Problem Major Concept Number of Table Pairs

1 Single-condition select 3
2 Select with projection 2
3 Inequality 3
4 Projection and inequality 2
5 Compound select 2
6 Compound select with AND 2
7 Distinct 2
8 Ordering 2
9 Joins 2
10 Grouping 2

II. STUDY

To provide a dataset for analyzing mistakes (RQ1) and
evaluating SQLRepair (RQ2, RQ3), we conducted a two-phase
study with students from two undergraduate computer science
courses. In Phase 1, we conducted a study with students from
the Summer 2019 offering of a 2nd-year Java programming
course. This phase demonstrated the viability of our approach,
gave us preliminary data for RQ1 and RQ2, and motivated
additional enhancements to our tool. In Phase 2, we put repairs
produced by SQLRepair directly in front of students to under-
stand whether our tool-generated repairs are understandable
(RQ3). Students were recruited from the Fall 2020 offerings
of a 2nd-year Java programming course and a 3rd-year Software
Engineering course. Our tool and instructions on how to set it
up are available.2

A. Phase 1

We collected a dataset of SQL queries written by introduc-
tory programmers to understand the type of mistakes students
make by analysing the errors they introduce, and ascertain
SQLRepair’s ability to repair the errors.

1) Design: Eighteen students were given a lecture on SQL
functionality and syntax, including compound select queries,
various datatypes, JOIN, COUNT, DISTINCT, and GROUP BY.
Students were informed that we were interested in studying
how beginners work with SQL and the types of mistakes that
they make. Next, they were given a ten-problems to solve;
each problem had a (source, destination) table pair
and students were asked to write a SQL query that would
accomplish the transformation. Each problem had two or three
pairs of (source, destination) tables that acted as
test cases that must be passed simultaneously for the query
to be considered correct. The major concept of each problem
is shown in Table I. For example, the major concept introduced
in Problem 10 was grouping, and there were two sets of
(source, destination) table pairs for evaluating the
query. The problems and data used were based on the UMLS
dataset, a health and biomedical vocabulary dataset made
available free-of-charge by the NIH, which was chosen for
offering a large amount of structured data [18].

2http://github.com/kpresler/sqlrepair

Fig. 1. The application for students to submit SQL queries.

Students were shown one (source, destination)
table pair at a time. Each student received a paper handout
that contained the first pair for each problem. To avoid learning
effects, the problems were given in a random order. Students
submitted their queries into a web application. If the applica-
tion detected that the first pair had been solved successfully,
the query was then tested against subsequent pairs. If a
query failed a subsequent pair, that pair was revealed to the
student. Students spent approximately 40 minutes working on
all problems and were reminded every ten minutes to move on
to the next problem if they had been stuck for more than five
minutes. Students were compensated with participation credit.

The web application is shown in Figure 1. In this example,
a student submitted the query SELECT * FROM alpha WHERE

min < 2;, which was incorrect, as communicated through the
message, “Unfortunately, your proposed query didn’t solve
the problem . . . ”; the actual output from executing the query
is shown alongside the expected output (destination table). If
the query produces the correct output for all table pairs, the
student was congratulated and told to move on to the next
problem. The application records the participant’s unique ID,
submission time, proposed query, and whether the problem
was solved correctly or not. At the end of the study, students
completed a brief demographics survey, which asked questions
such as their prior programming experience, their experience
with SQL, and whether they had any comments on the
introduction to SQL or the problems themselves.

2) Participants: We recruited participants from a 2nd-year
Java programming course (CS2). CS2 is the second computer
science course taken by majors and minors at NCSU. By this
point, students are exposed to programming in Java. Eighteen
students from the Summer 2019 offering of CS2 participated,
but only 12 students submitted one or more SQL queries as
part of the study. Of the 12 active participants, three identified
as female. Ten students said they had three or fewer years
of programming experience (min: 0, max: 8, average: 2.6)
and none had more than a year of professional programming
experience. One student reported prior database experience.

2

http://github.com/kpresler/sqlrepair


3) Dataset: We collected 362 SQL queries written by
12 different students. Of these, 35 were correct. Of the
327 incorrect queries, 124 had syntax error(s) and 203 had
semantic error(s). Students submitted between 7 and 65 queries
(average: 32.2, median: 28.5). Students made between one
and 21 attempts per problem (average: 4.6, median: 3.5)
and attempted between two and ten problems (average and
median: 6.5).

B. Phase 2

In Phase 2, we build on Phase 1 and further evaluate
SQLRepair by putting repaired queries directly in front of
students to assess query quality.

1) Design: Phase 2 was similar to Phase 1 in that students
were given the same introductory SQL lecture and the same
set of problems to solve. However, some changes were made
to the study format and content, as follows:

Due to the COVID-19 pandemic, Phase 2 was performed
online via Zoom. After the introduction to SQL and the study,
each participant was assigned to an individual breakout room
to work in for the remainder of the session. To ensure that each
participant was engaged and working, the first author rotated
between each room at least once to answer any technical
questions that arose. Students could also use Zoom’s “Ask
for help” functionality to request assistance.

While the study problems were identical to Phase 1, we
made operational changes to suit the online format:
• Instead of a paper handout, each student received the

randomly ordered problems as a PDF.
• Instead of students entering their participant ID manually,

the web application automatically included each student’s
random ID in each problem submission.

• The post-study demographics survey was converted from
a paper handout to a Google Form. Students were asked
to include their participant ID in their submission.

Additionally, after composing queries for a problem, students
evaluated the understandability of several solution queries for
that problem (Section II-B2).

2) Evaluating SQLRepair: We wanted students to assess
the understandability of tool-repaired queries by comparing
them against human-written queries. As a majority of software
engineering effort is spent on maintenance [19], we consider
understandability, as a proxy for ease of maintenance, to be
paramount. We seek a minimally-invasive way of gathering
information on students’ program comprehension as they
evaluate queries without the feeling of being watched [20].
Thus, we opt for short surveys deployed after each question
and separately at the end of the study.

First, we populated a database with data from Phase 1,
giving us 29 unique correct queries and 19 unique repaired
queries SQLRepair produced from incorrect queries. Next, we
modified the web application to use SQLRepair to attempt to
repair incorrect queries that students wrote during the study.
We did this through brief post-problem surveys: after solving
each problem, students were asked to rate the understandability
of up to four different queries using a modified Likert scale,

Fig. 2. An example of how students voted on the understandability of queries.

with 1 indicating the query was very difficult to understand
and 7 that it was very easy to understand. As an alternate
workflow, after making at least five attempts at a problem over
at least five minutes, students were presented with an “I’m
tired of this problem” button. Upon clicking it, they would be
given the voting options shown, despite having never solved
the problem correctly.

The four possible queries presented to students were:
• MyCorrectQuery: A correct query written by the student

(available if they solved the problem correctly).
• MyRepairedQuery: A repair of an incorrect query writ-

ten by the student (available if they got the problem
wrong at least once, and SQLRepair was able to repair
one of their queries.3)

• OtherCorrectQuery: A correct query written by some-
one else (a participant from Phase 1 of the study; a query
from this category was always available).

• OtherRepairedQuery: A repair of an incorrect query
written by someone else (a participant from Phase 1 of the
study; a query from this category was always available).

The queries were labeled A through D, and presented in
a random order. An example with three queries is shown in
Figure 2. For queries written by others, query selection was
pseudo-random: each query was associated with a count of
how many times it had been shown to a student for voting,
and each time a query was needed for voting, the application
selected the query with the smallest vote count. Identical
queries were consolidated (for instance, if the first and fourth
queries were identical, the query would only appear once).

3) Participants: In Fall 2020, we distributed recruitment
emails to students in two undergraduate courses: CS2 and
a 3rd-year Software Engineering course (SE). SE is a fifth-
semester course, and by this point, students have been exposed
to Java, C, x86 assembly, and JavaScript. Additionally, prior

3Incorrect queries were considered starting with the most recent incorrect
submission, and repairs were attempted until a query was successfully
repairable, or, to ensure sufficient responsiveness of the web application, the
repair process had failed ten times.

3



TABLE II
A BREAKDOWN OF ALL OF THE QUERIES SUBMITTED.

Course
CS2 SE Total

Correct 157 94 251
Syntax Error 680 137 817
Semantic Error 1,185 529 1,714

Total 2,022 760 2,782

to our study, the SE students received an in-class lecture on
SQL, although not hands-on practice with it. Students in both
classes were invited to sign up for one of four two-hour virtual
lab sessions held. In all, 104 students signed up to participate
in a session; 71 students attended and participated for at least
thirty minutes. The first of four sessions was used as a pilot for
the improved SQLRepair tool and new format. Feedback was
collected and data from this group was discarded. Participants
from Phase 1 could not participate in Phase 2.

Seventy-three students from CS2 signed up; 46 ultimately
participated. Thirty-one students from SE signed up; 24 ulti-
mately participated. After discarding data from the pilot study,
we retained data from 33 CS2 and 19 SE students. Students
in CS2 reported up to seven years of prior programming
experience (average and median: 2); students in SE reported
up to 8 years (average: 5, median: 4). Sixteen participants from
CS2 and five from SE identified as female.

4) Dataset: We collected 2,420 SQL queries from 52
students. Of these, 216 were correct; of the 2,204 incorrect
queries, 693 had syntax error(s) and 1511 had semantic er-
ror(s). Students submitted between 1 and 118 queries (average:
42.4, median: 37.5). Students attempted between 1 and 10
problems (average and median: 7) and made between 1 and
50 attempts per problem (average: 6.4, median: 4).

The 33 students from CS2 submitted 1,660 queries. Of
these, 122 were correct; of the 1,538 incorrect queries, 556
had syntax error(s) and 982 had semantic error(s). Students
submitted a median of 41 queries (max: 118) and attempted
between 1 and 10 problems (average: 6.8, median: 7.5).

The 19 students from SE submitted 760 queries. Of these,
94 were correct; of the 666 incorrect queries, 137 had syntax
error(s) and 529 had semantic error(s). Students submitted a
median of 36 queries (max: 79). Students attempted between
1 and 10 problems (average: 7.4, median: 7).

C. Data Summary

A summary of all of the queries collected across both phases
of our study, and their correctness or error category, is shown
in Table II. We performed a Mann-Whitney test between the
two CS2 courses (Summer 2019 and Fall 2020 from Phase 1
and Phase 2, respectively) looking for significant differences
on successes per problem. Our analysis revealed that the
differences between them were not statistically significant
(p = .31), so the data from both were combined for further
analysis. The data from SE remained significantly different
(p = .0016) and was kept separate.

item price quantity country seller

apples 7 500 US Joe’s Fruits
bananas 3 400 MX Nancy’s Produce
oranges 11 300 MA Ahmed’s Fruits
grapes 1 200 US Raj’s Vinyard

item price quantity country

grapes 1 200 US

Fig. 3. Example source (top) and destination (bottom) tables.

D. Analysis

We use the errors that students introduce into SQL queries
they write as a proxy for the mistakes made while solving the
problem. To identify student mistakes for RQ1, we executed
each student-written query against the source and destination
tables using a MySQL 5.7 database. Any query where the
database returned an error message was considered to have
syntax error(s).4 For the remaining queries, we compared the
actual output table to the expected output for the problem.
When they were different, the query was considered to have
semantic error(s).

To identify syntax error categories, we manually grouped
queries with similar errors together. For example, students
submitted the queries:
SELECT CUI1, RUI FROM bravo where REL='RO', 'SY';
SELECT CUI1, RUI, FROM bravo WHERE CUI2 == C0364349;

Both queries have an extra comma, so were grouped together.
We continued this process for all queries with a syntax error.
If there were three or more queries in a category, we gave
the category a name. Categories with fewer than three were
grouped together into a miscellaneous category.

For semantic errors, we manually investigated the query and
the output table it produced and grouped together queries with
similar errors. For example, students submitted the queries:
SELECT LAT FROM juliett;
SELECT LAT, STT FROM juliett

Both queries return only a subset of the columns expected
(LAT, STT, ISPREF) so they were grouped together. A mis-
cellaneous category was created by grouping together all
categories with less than three queries.

A single query can contain multiple errors (for instance, a
broken operator and unquoted string literal) so some queries
were counted for multiple categories. However, when classi-
fying errors, a single query could be counted towards either
the syntax error category or semantic error category, but not
both.

III. SQLREPAIR

SQLRepair follows the correct-by-construction approach to
automated program repair [21]. The subset of supported SQL
includes queries with compound WHERE clauses, integer and
string datatypes, ORDER BY, and DISTINCT.

4This understates the number of SQL syntax errors as MySQL 5.7 supports
functionality not part of the official SQL specification, such as wrapping
strings in double quotes or using operators such as && instead of AND.

4



To explain how SQLRepair builds constraints from the
(source, destination) tables and SQL query, con-
sider the following example. A user of SQLRepair sub-
mits the source and destination tables shown in Figure 3
and the SQL query SELECT * FROM fruitSellers WHERE

country=US && quantity < 800. SQLRepair proceeds in two
steps: (1) non-synthesis repair, and (2) synthesis repair.

A. Non-Synthesis Repair

SQLRepair attempts three types of non-synthesis repair
over the following types of errors: operator mismatches that
result in parse errors, column mismatches that can cause an
otherwise correct query to be incorrect, and string repair where
a string literal shows up without proper quotes.

1) Operator Mismatch: SQLRepair replaces any C/Java-
style operators in the provided query with their SQL equiva-
lent. For example, C/Java use == for equality checks and && for
logical AND. SQL uses = and AND, respectively. SQLRepair
thus replaces operators such as these. In the example, &&

is replaced with AND, giving us the query, SELECT * FROM

fruitSellers WHERE country=US AND quantity < 800.
2) Column Mismatch: SQLRepair attempts to repair any

issues with the column list prior to the WHERE clause. When
a column does not exist, a syntax error occurs. However,
column mismatch does not always start with a syntax error.
In the the running example, the source table has five columns
while the destination table only has four; however, the SQL
query has a SELECT * clause, SQLRepair detects and fixes
this mismatch. Thus, the query is updated to SELECT item,

price, quantity, country FROM fruitSellers WHERE

country=US AND quantity < 800. In addition to correcting
the column list following SELECT, SQLRepair can also rename
columns to match the destination table using AS.

3) String Repair: SQLRepair attempts to repair any is-
sues where a string literal is present in the query ei-
ther unquoted or quoted incorrectly. SQL requires strings
to be surrounded with single quotes. Thus, SQLRepair re-
moves double quotes and surrounds what appear to be un-
quoted string literals with single quotes. The query is thus
updated to SELECT item, price, quantity, country FROM

fruitSellers WHERE country='US' AND quantity < 800.
Resolving operator mismatch, column mismatch, and fixing

strings resolves syntax errors, but often synthesis is needed to
fully correct the semantic errors.

B. Synthesis Repair

SQLRepair uses a SMT solver, Z3 [16] to synthesize parts
of a query in need of repair [21]. The synthesized parts, or
patches, are composed of individual constants, operators, and
column names. The (source, destination) tables are
used as test cases that must be simultaneously satisfied for a
query to be successfully patched.

For each query, SQLRepair builds a system of constraints to
represent the query logic. Given a set of example (source,
destination) tables E and a SQL query q, SQLRepair
checks that: ∀e ∈ E, q ∧ sourcee → destinatione. If the

equation evaluates to true, Z3 returns SAT and q is correct;
otherwise q is incorrect and a candidate for repair.

If q is a repair candidate, SQLRepair inserts holes into q,
for example by replacing a constant with CONST_i, forming q′,
and provides q′ to the solver. If q′ is repairable by SQLRepair,
Z3 returns SAT and the solver has identified values for
the holes in the satisfiable model. If q′ is not repairable by
SQLRepair, Z3 returns UNSAT . SQLRepair supports five
types of synthesis repairs. After each repair stage, the process
terminates if a successful repair can be made. Repairs are
performed in the following order:

1) Constant Synthesis: For constants that are compared
to columns, SQLRepair replaces each constant in the WHERE

clause with CONST_i. If a query contains CONST_1 OP_1

CONST_2, SQLRepair does not replace either of the constants.
Synthesis is supported for integers and strings, although syn-
thesized strings must be exact matches without wildcards.

2) Operator Synthesis: SQLRepair replaces each operator
in q’s WHERE clause with OP_j. SQLRepair supports synthe-
sising operators for both string and integer types. SQLRepair
supports = and != when dealing with strings, and =, !=, >, >=,
<, and <= when dealing with integers.

3) Column Synthesis: SQLRepair inserts holes for the
columns. For example, a query q = . . . quantity OP_1

CONST_1 is replaced with q′ = . . . COL_1 OP_1 CONST_1, where
COL_1 represents one of the columns in the source table.
If SQLRepair fails to find a solution, column synthesis is
repeated for each subclause in the original query, in order.

4) Clause Removal: SQLRepair will remove subclauses
one at a time to attempt a solution. For a query with n sub-
clauses, if a correct solution cannot be found for n subclauses,
but can be found with 1...n-1 subclauses, SQLRepair will
remove subsequent clauses that impede correctness. If this step
fails, the removed clauses are added back to the query before
proceeding with Clause Synthesis.

5) Clause Synthesis: Some queries require additional WHERE
clauses or conditions. In this case, SQLRepair functions most
similarly to Scythe [22], and will synthesize new subclauses.
Suppose in the column synthesis step, SQLRepair inserts
holes such that q′ = . . . WHERE COL_1 OP_1 CONST_1, but is
not able to find any columns, operators, and constant values
that result in a solution. At this point, SQLRepair attempts
to make a repair by synthesizing in a new subclause. More
formally, SQLRepair will take a clause . . . WHERE COL_1 OP_1

CONST_1 from the previous step, and add a new subclause, giv-
ing q′ = . . . WHERE COL_1 OP_1 CONST_1 BOP_1 COL_2 OP_2

CONST_2, where BOP_1 is a binary operator (AND or OR) and
COL_2 OP_2 CONST_2 represents the abstracted form of a new
subclause to be synthesized. If values can be found, they are
inserted into the query, and the repair is complete. If no such
values can be found, the query will be expanded again. This
process repeats until either a solution is found, or the query
reaches the maximum of five subclauses, at which point the
process is aborted and the repair is marked as failed.5

5In our experiment, the maximum number of added clauses in a successfully
patched query was three.

5



TABLE III
CLASSIFICATIONS OF SYNTAX ERRORS INTRODUCED BY STUDENTS ACROSS BOTH PHASES.

Error Type CS2
Number (%)

SE
Number (%)

Total
Number (%) Example

Broken operator 188 (27.6%) 29 (21.2%) 217 (26.5%) SELECT RUI FROM bravo WHERE CUI1 == 'C0000039'

Column reference error 118 (17.3%) 16 (11.7%) 134 (16.4%) SELECT DISTINCT CUI FROM juliett, india WHERE
juliett.CUI = india.CUI

Quotes on strings 87 (12.8%) 40 (29.2%) 127 (15.5%) SELECT * FROM foxtrot WHERE TTY = PT
Incomplete query 91 (13.4%) 6 (4.4%) 97 (11.9%) SELECT DISTINCT WHERE MRRANK_RANK < 384;
Wrong order 83 (12.2%) 14 (10.2%) 97 (11.9%) select LAT, STT, ISPREF distinct from juliett

Table reference error 68 (10.0%) 16 (11.7%) 84 (10.3%) SELECT STT, ISPREF FROM juliett WHERE
india.CUI = juliett.CUI

Extra commas 62 (9.1%) 13 (9.5%) 75 (9.2%) SELECT CUI1, RUI, FROM bravo WHERE CUI2 = 'C0364349'
Missing commas 20 (2.9%) 9 (6.6%) 29 (3.5%) SELECT RSAB TFR CFR FROM delta WHERE TFR > 470
Miscellaneous 38 (5.6%) 1 (0.7%) 39 (4.8%) SELECT CUI, STN, TUI from hotelORDER BY TUI DESC

TABLE IV
CLASSIFICATIONS OF SEMANTIC ERRORS MADE BY STUDENTS ACROSS BOTH PHASES.

Error Type CS2
Number (%)

SE
Number (%)

Total
Number (%) Example

Wrong subclauses in WHERE 828 (69.9%) 406 (76.7%) 1,234 (72.0%) SELECT * FROM charlie
Missing or extra operator
(GROUP BY, DISTINCT, etc) 369 (31.1%) 122 (23.1%) 491 (28.6%) SELECT LAT, STT, ISPREF FROM juliett, india

WHERE juliett.CUI = india.CUI GROUP BY LAT

Wrong values in WHERE 241 (20.3%) 74 (14.0%) 315 (18.4%) SELECT DISTINCT SVER FROM golf WHERE
SVER < 2000

Wrong ordering 209 (17.6%) 68 (12.9%) 277 (16.2%) SELECT DISTINCT * FROM echo ORDER BY
MRRANK_RANK DESC

Column mismatch 70 (5.9%) 46 (8.7%) 116 (6.8%) SELECT * FROM juliett a, india b WHERE
a.CUI = b.CUI

Wrong operator in WHERE 83 (7%) 27 (5.1%) 110 (6.4%) select LAT, STT, ISPREF from india a,
juliett b where a.CUI = b.CUI AND a.CVF = 256

Missing join (implicit or explicit) 43 (3.6%) 21 (4.0%) 64 (3.7%) SELECT LAT, STT, ISPREF from juliett
where TS='S';

Miscellaneous 31 (2.6%) 3 (0.6%) 34 (2.0%) SELECT DISTINCT SVER FROM golf;

In the example, after repairing Operator Mismatch
and Column Mismatch and performing String Repair the
query: q = SELECT item, price, quantity, country FROM

fruitSellers WHERE country='US' AND quantity < 800

is incorrect. Thus, SQLRepair creates: q′ = SELECT item,

price, quantity, country FROM fruitSellers WHERE

country = 'US' AND quantity OP_1 CONST_1. When Z3
returns SAT , SQLRepair uses the satisfiable model to replace
OP_1 →! = and CONST_1 → 500, creating a correct query.

C. Analysis

To identify queries to repair for RQ2, we considered any
query that had a syntax error or semantic error. We report
on what SQLRepair can fix from Phase 1 and Phase 2.
Unlike with error classification, as discussed in Section II-D, a
repaired query could be counted towards both the synthesis and
non-synthesis categories, depending on precisely what repair
operations were performed.

With RQ3, we seek to understand the quality of the repairs
produced by SQLRepair. Students in Phase 2 were shown mul-
tiple queries simultaneously (see Figure 2) and asked to rate
the understandability of each one on a seven-point Likert scale.
Because students were shown multiple queries simultaneously,
we are interested in the relative ratings given to each one.
Thus, we perform a series of paired Mann–Whitney U analyses
to understand how queries from one category compare to
queries from another category.

IV. RESULTS

In this section, we present quantitative and qualitative results
showing the types of errors students introduce (RQ1), the types
of repairs by SQLRepair (RQ2), and the repair quality (RQ3).

A. RQ1: SQL Mistakes

The students in SE were more successful at solving the
problems than the students in CS2 (see Table II). Among
queries submitted by SE students, 12.4% (94 of 760) were
correct, compared to 7.8% (157 of 2,022) from CS2 students.
Additionally, perhaps due to exposure to more programming
languages, the SE students introduced syntax errors at a lower
rate (20.6% of all queries with errors, vs. 36.4% among CS2
students). We performed a test of two proportions and found
that the difference in overall success rates between groups was
statistically significant (p < .001). For this reason, results for
students from each course are presented separately.

Table III and Table IV show the syntax and semantic
errors students introduced, respectively. Because individual
queries can contain multiple errors, a query can be counted
in more than one category. Each row in the table shows one
of the categories, how many queries had errors of that type, a
corresponding percentage, and a representative example from
the category. For example, the first row of Table III is our
syntax error category of a Broken operator; we saw 217
of these, representing 26.5% of the 817 queries with syn-
tax errors. The query SELECT RUI FROM bravo WHERE CUI1

6



== 'C0000039' was placed into the Broken operator group
because the query uses a == where it should have used a =.

We notice similarities between our categories in Table III
and those reported by Taipalus and Perälä [3]; for instance,
we both observed a column reference error, wrong ordering
of SQL keywords, and miscellaneous syntax errors. Likewise,
there is overlap between our categories and those of Ahadi,
et al. [23]; the column reference error rank high in both lists,
and their general syntax error category appears similar to our
broken operator category. Unfortunately, because they do not
offer examples of their categories it is impossible to map our
categories to theirs precisely. The types of semantic errors
that we saw are shown in Table IV. The most common
issue was Wrong subclauses in the WHERE clause; this is the
first row in the table and was observed in 1,234, or 72%,
of queries. The prevalence here indicates that students had
difficulty precisely describing the rows they wanted to include.
A Missing or extra operator was the second most common
issue, particularly among students in CS2. In contrast to our
categories of semantic errors, which represent cases where
the analyzed query returns an incorrect result, Brass and
Goldberg [24] focus on queries that are correct but complicated
or difficult to read. There is, however, overlap between our
categories and those of Taipalus and Perälä [3], such as a
missing join. In addition, their category of duplicate rows is
similar to ours of a Missing [or extra] operator.

The breakdown of successful queries and submitted queries
on each problem is shown in Table V. We note that certain
problem types proved to be particularly challenging. For ex-
ample, Problem 9, which necessitated use of a join, was widely
attempted (with a total of 350 attempts from 42 different
participants) but was solved correctly by only a single student.
Problems involving compound WHERE clauses (Problems 5 &
6) proved difficult as well, with less than a third of students
managing to solve each one correctly. The lower success
rates on these problems compared to single-condition selects
(Problems 1 & 2) likewise suggests that students struggle with
understanding the interactions between multiple columns.

RQ1 Summary: Students made eight main types of syntax
mistakes, including misusing an operator and ambiguity
with referenced columns, and seven main types of semantic
mistakes, including using the wrong column(s) in a WHERE

clause, using wrong constants, and missing operators such
as GROUP BY or DISTINCT. Joins and compound clauses
proved difficult for all students.

B. RQ2: SQLRepair

Our evaluation dataset consists of 2,531 incorrect SQL
queries. Of these, SQLRepair was able to find a repair for 737,
giving an overall repair success rate of 29.1%. The different
types of repairs made are shown in Table VI. The table is
organized based on the repair types: the first three correspond
to the three non-synthesis repairs supported, and the last five
to the synthesis repairs. For example, the first row, Column

Mismatch, is described in Section III-A2; this repair is made
to 67 (13.7% of 488) queries from CS2 and 40 (16.1% of 249)
from SE, totaling 107 (14.5% of 737) of all repaired queries.
The representative example modifies the SELECT clause to
return three columns instead of two.

1) Repaired Queries: The most common repair type ob-
served was Column Synthesis (made to 393, or 53.3% of 737,
queries), where SQLRepair synthesizes an expression using
a new column, replacing an existing expression. The second
most common repair type observed was Clause Removal,
where SQLRepair identifies and removes a WHERE subclause
that results in incorrect output. The third most common syn-
thesis repair type is Clause Synthesis, where a new subclause
is generated for the WHERE clause. Together, these three repairs
correspond to the very common Wrong subclauses in WHERE
clause error observed across both classes (see Table IV), where
the resolution is to add, fix, or remove an incorrect clause.

We also observe that while the majority of repairs performed
(982 of 1,192 repairs, or 82.4%, from Table VI) involve a
synthesis repair, non-synthesis repairs play an important part
in success as well. In 107 cases, our tool fixes a Column Mis-
match error by identifying a query that is returning the wrong
set of columns and rewrites the SELECT clause accordingly.
Although this is a non-synthesis repair, it fixes queries from the
Column reference error category in Table III and the Column
mismatch category in Table IV, thus covering both syntax and
semantic errors. Fixing unquoted or misquoted string literals
(String Repair) and incorrect C/Java style operators (Operator
Mismatch) happen less often, but a fix from one of these
categories is still made to 75 and 28 queries, respectively.
Additionally, making non-synthesis repairs also opens up new
possibilities for synthesis repairs: queries must be well-formed
for synthesis repair to proceed, and non-synthesis repair fixes
some cases where they are not.

More often than not, repaired queries requires a combination
of repair operations. In fact, 433 (58.8%) of the successfully
repaired queries contained multiple repair operations. For
example, the query select * from delta WHERE CFR < 1696

was repaired by fixing both the columns to return (a Column
Mismatch repair and changing the 1696 to an 1865 (a Constant
Synthesis repair).

2) Not Repaired Queries: The remaining 1794 queries that
could not be repaired fall into two major categories:

a) Unsupported functionality: Some functionality nec-
essary to solve the problems in Table I is not supported in
SQLRepair, such as GROUP BY or joins. Students also used
functionality that was neither necessary nor supported (such as
BETWEEN and LIMIT), which rendered their queries unfixable.

b) Miscellaneous syntax errors: SQLRepair can fix some
but not all syntax errors. Errors such as a misspelled SQL
keyword (e.g., . . . GROUPED BY. . . ) clauses placed in the wrong
order (e.g., SELECT * DISTINCT. . . ) are not fixed automatically
by our tool.

3) Performance: We tested the performance of SQLRepair
on an Intel i7-6700HQ running Linux Mint 18. Successful
repairs are found in a median of 231 milliseconds (max: 1,602)

7



TABLE V
SUCCESSES PER PROBLEM AND PER COURSE. EACH CELL REPRESENTS THE RATIO BETWEEN THE NUMBER OF CORRECT ATTEMPTS AND THE TOTAL
NUMBER OF ATTEMPTS. SUCCESS PER PARTICIPANT REPRESENTS THE RATIO BETWEEN THE NUMBER OF STUDENTS WHO ATTEMPTED THE PROBLEM
AND THE NUMBER OF STUDENTS WHO SOLVED IT SUCCESSFULLY. SUCCESS PER ATTEMPT REPRESENTS THE SUM OF CORRECT ATTEMPTS TO TOTAL

ATTEMPTS ACROSS CS2 AND SE.

Course

Problem Major Concept CS2 SE Success
per participant

Success
per attempt

1 Single-condition select 31/115 (27.0%) 14/25 (56.0%) 45/51 (88.2%) 45/140 (32.1%)
2 Select with projection 17/233 (7.3%) 9/163 (5.5%) 26/49 (53.1%) 26/396 (6.6%)
3 Inequality 17/140 (12.1%) 13/55 (23.6%) 30/41 (73.2%) 30/195 (15.4%)
4 Projection and inequality 23/145 (15.9%) 12/39 (30.8%) 35/41 (85.4%) 35/184 (19.2%)
5 Compound select 4/304 (1.3%) 7/101 (6.9%) 11/51 (21.6%) 11/405 (2.7%)
6 Compound select with AND 6/256 (2.3%) 8/113 (7.1%) 14/44 (31.8%) 14/369 (3.8%)
7 Distinct 23/153 (15.0%) 11/38 (28.9%) 34/52 (65.4%) 34/191 (17.8%)
8 Ordering 19/201 (9.5%) 12/80 (15.0%) 31/49 (63.3%) 31/281 (11.0%)
9 Joins 1/280 (0.4%) 0/70 (0.0%) 1/42 (2.4%) 1/350 (0.3%)

10 Grouping 16/195 (8.2%) 8/76 (10.5%) 24/45 (53.3%) 24/271 (8.9%)
Successful
attempts - 157/2022

(7.8%)
94/760
(12.4%)

TABLE VI
TYPES OF COMPLETE REPAIRS FROM SQLREPAIR. NON-SYNTHESIS REPAIRS ARE PRESENTED FIRST, FOLLOWED BY SYNTHESIS REPAIRS. EACH

SECTION IS SORTED BY THE TOTAL NUMBER OF REPAIRS; PERCENTAGES ARE COMPUTED OVER THE TOTAL NUMBER OF REPAIRED QUERIES. BECAUSE
MANY SUCCESSFULLY REPAIRED QUERIES CONTAIN TWO OR MORE REPAIRS, THE TOTALS IN EACH COLUMN SUM TO MORE THAN 100%. THE

IDENTIFIER ASSOCIATED WITH EACH REPAIR TYPE CORRESPONDS TO THE DESCRIPTION IN SECTION III.

Repair Type CS2
Number (%)

SE
Number (%)

Total
Number (%) Representative Example

N
on

-S
yn

th
es

is Column Mismatch (III-A2) 67 (13.7%) 40 (16.1%) 107 (14.5%) SELECT CUI, TUI FROM. . .→ SELECT CUI, TUI,
STN FROM . . .

String Repair (III-A3) 33 (6.8%) 42 (16.9%) 75 (10.2%) . . .WHERE CUI2 = C0364349 → . . .WHERE CUI2 =
'C0364349'

Operator Mismatch (III-A1) 28 (5.7%) 0 (0%) 28 (3.8%) . . .WHERE min==0 → . . .WHERE min = 0

Sy
nt

he
si

s

Column Synthesis (III-B3) 252 (51.6%) 141 (56.6%) 393 (53.3%) . . .WHERE REL = 'RO'; → . . .WHERE CUI2 =
'C0364349';

Clause Removal (III-B4) 109 (22.3%) 98 (39.4%) 207 (28.1%) . . .WHERE CUI2 = 'C0364349' OR REL = 'RO' →
. . .WHERE CUI2 = 'C0364349'

Clause Synthesis (III-B5) 131 (26.8%) 65 (26.1%) 196 (26.6%) SELECT CUI1, RUI FROM bravo → SELECT CUI1, RUI
FROM bravo WHERE CUI2 = 'C0364349';

Constant Synthesis (III-B1) 114 (23.4%) 21 (8.4%) 135 (18.3%) . . .WHERE CFR < 1834 → . . .WHERE CFR < 1865
Operator Synthesis (III-B2) 39 (8.0%) 12 (4.8%) 51 (6.9%) . . .WHERE TFR < 1850. . .→ . . .WHERE TFR <= 1965. . .

and unsuccessful repairs in a median of 196 milliseconds
(max: 1,912).

RQ2: SQLRepair automatically fixes 29.1% of student
queries with errors, covering both syntax and semantic
errors.

C. RQ3: Repair Quality

To understand the quality of the repairs produced by SQL-
Repair, once students in Phase 2 found a solution for a problem
(or gave up), we presented them with several alternative
solutions (see Section II-B). Students rated each query on a
scale of 1 (very difficult to understand) to 7 (very easy to
understand) and optionally provided a free response rationale.
We received a total of 281 voting responses (CS2: 183, SE:
98) and 81 rationales (CS2: 50, SE: 31).

Each query was from one of four categories (Section II-B):
MyCorrectQuery (MCQ), MyRepairedQuery (MRQ), Other-
CorrectQuery (OCQ), OtherRepairedQuery (ORQ). On aver-
age, students found their own queries (MCQ) to be more

understandable than their repaired queries (MRQ) (5.58 vs.
5.35, see Table VII), but the difference is not significant.
Thus, a student’s repaired query could be used as an alternate
way to solve a problem without sacrificing understandability,
a divergence from prior work in automated program repair
suggesting that machine-repaired code is less understandable
than human-written code [25].

Looking more closely at the data, a pairwise analysis can
determine the within-participant differences in understand-
ability between each query category. Using the four query
categories, we ran six paired Mann–Whitney U tests. As all the
p-values are above 0.1, the data show that there is no statistical
difference in understandability between human-written and
machine-repaired SQL queries. For example, comparing the
student’s own query (MCQ) with their repaired queries (MRQ)
yielded p = 0.662. While there is a 0.23 difference in
averages, representing a quarter of a level on the 7-point Likert
scale, the difference is not significant. Comparing a student’s
own correct query (MCQ) against a correct query written by
others (OCQ) also reveals no difference in understandability.

8



TABLE VII
AVERAGE LIKERT-SCALE UNDERSTANDABILITY SCORES PER COURSE

AND PER QUERY TYPE, WHERE 1 MAPS TO VERY DIFFICULT AND 7 MAPS
TO VERY EASY; 4 IS A NEUTRAL RESPONSE (NEITHER EASY NOR
DIFFICULT). QUERY CATEGORIES ARE DEFINED IN SECTION II-B.

Course
CS2 SE Overall

MyCorrectQuery (MCQ) 5.62 5.54 5.58
MyRepairedQuery (MRQ) 5.32 5.41 5.35
OtherCorrectQuery (OCQ) 5.04 5.41 5.17
OtherRepairedQuery (ORQ) 5.03 5.38 5.15

Therefore, we find evidence that repaired queries and queries
written by others are all viable candidates for presenting
students with alternate implementations of SQL queries.

Qualitatively, we observe that some students preferred their
own solutions over all others; we received written responses
such as “I literally wrote [this query]” and “I chose [this
query] because it was exactly my solution”. However, this was
not universally the case: one student remarked “I can’t believe
how [bad] my answer is”. This suggests that automated repair
can help students identify better solutions even after solving
a problem correctly.

RQ3: Queries repaired by SQLRepair are rated as equal
in understandability compared to queries written by the
students themselves, suggesting repaired queries could be
useful for presenting students with alternate queries.

V. DISCUSSION

Here, we discuss the implications of our results, present
opportunities for future work, and discuss threats to validity.

A. Implications

By analyzing the SQL queries written by students new to
SQL, we see that certain topics are particularly challenging;
most students struggled with joins, ordering, and compound
clauses. When SQL is used, it is typically with more than
one table, so teaching joins is a necessity [26]. By contrast,
students had less difficulty with operators such as GROUP BY.
All concepts were introduced to students in a similar way,
with background information provided through slides and live
examples showing how they work in practice. These results
suggest that some topics remained more difficult for students
to understand and thus may require additional instruction.

To the best of our knowledge, SQLRepair is the first auto-
mated repair (APR) tool for SQL queries, and our results pro-
vide preliminary evidence that this can be useful in education.
Patitsas, et al. report that presenting students with multiple
solutions side-by-side can improve learning outcomes [27]. In
cases where peer instruction is unavailable, our results suggest
repair tools may be able to provide alternative solutions for
students to visualize. Providing hints or iterative refinement
rather than just a new solution may further improve the
process.

While the overall repair rate of SQLRepair is lower than
many general-purpose repair tools, this is a first step and the
availability of our dataset should allow future SQL repair tools
to improve on our efforts reported here for educational and
professional audiences.

B. Future Work

We have identified several promising directions for future
work in program repair to support learners.

The single most challenging problem for students was one
that involved joining two different tables together on a com-
mon column. This suggests that students struggle to see the
big picture and how their data connects together. Tools such
as MySQL Workbench allow reverse-engineering an entity-
relation diagram from an existing database schema, and the
produced diagrams can be used much like UML class diagrams
to introduce new developers to an existing design. A database
IDE that automatically shows the relationship between tables
when two or more are included in a query could help users
see and utilise the connections in their data.

We observed, and several students affirmed in their com-
ments, that it is challenging to identify patterns within a table
and thus pick out desired rows (i.e., forming queries from
examples is challenging). Tooling that highlights similarities
and differences between selected columns of two or more rows
could help the user better identify relevant patterns.

More generally, our results suggest that program repair may
be a useful educational tool for presenting alternate solutions
to a problem. Notebooks such as Jupyter have become a
popular way for performing exploratory data analysis, par-
ticularly among end-user programmers, because they allow
intermingling code, written descriptions, and results [28].
While most such notebooks focus on Python or R, SQL has
a place within the data science world as well, and integrating
synthesis or repair tools could help make the learning process
easier for many students.

All of the repairs produced by SQLRepair follow the steps
listed in Section III. The order in which repairs are performed
has the potential to impact the query that is ultimately pro-
duced. Future work could study whether performing repairs
in a different order impacts the quality of the query produced
by potentially producing more concise or understandable so-
lutions.

C. Threats to Validity

Our conclusions may not generalize to different student
body populations. The students who signed up to participate
for our Phase 2 evaluations did so on the promise of extra
credit. Consequently, there may be a selection bias.

The problems we had students complete were based off
of the UMLS dataset; it is unknown whether the nature of
the dataset contributed to the difficulty students faced when
solving problems. The specific errors that students faced may
not generalize to different problems. It is possible that the
context of the data made problems more difficult than if

9



students had been working with more familiar data. However,
we expect the data to be equally unfamiliar to all students.

In this work, we use the understandability rating that a
student gives a query as a proxy for the quality of the query
that has been produced. However, this merely asks students to
read the query and then offer a vote on it; we do not ask them
to integrate the queries produced into a larger application or
modify the query to solve a problem that is similar but not
identical. Consequently, students who are using the queries
in a different context may have different priorities for what
makes a query understandable or not.

VI. RELATED WORK

Existing work in teaching SQL to undergraduates focuses
on how students learn SQL [4], [29] and the types of semantic
and syntax errors made [3], [23], [24]. Migler and Dekhtyar [4]
break down the exercises students solve in an undergraduate
databases course around their primary concept, and find that
joins and subqueries are the most challenging. Our observa-
tions agree with theirs in that students have a harder time
solving problems involving multiple tables.

Poulsen, et al. [29] study SQL queries students write in
an upper-level databases course and find persistent issues
with not just difficult semantic concepts such as nested
queries and grouping, but syntax errors. Ahadi, et al. [23]
consider only syntax errors; we observe that students make
significantly more semantic errors than syntax errors. Brass
and Goldberg [24] present a list of semantic errors in SQL
queries, showing some errors guarantee an incorrect result and
others produce a query that is substantially more complicated
than is necessary. However, their work does not assess error
frequency, which we report in Section IV-A, and therefore
cannot be used as a basis for direct comparison. Most similar
to our work, Taipalus and Perälä [3] and Taipalus, et al. [30]
present a breakdown of errors made into semantic and syntax
categories. However, their student population is from a more
advanced databases course. In our work, we offer a similar
breakdown for novice students.

Weise, et al. [31], [32] study student preferences for Java
and Python code written in different programming styles, and
their ability to understand code written in an “expert” style.
They find that many students prefer a more naive, or verbose,
approach, but are capable of understanding code that uses more
expert approaches. Similarly, our work asks students to choose
between several different queries, which may be more-or-less
expertly written, to select the one that is easiest to understand.
Maalej, et al. [33] study how professional developers compre-
hend and understand the code they are working with. While
we do not ask them to explain their comprehension process,
we nonetheless expect them to perform many of the same steps
by reading and comparing multiple queries.

Stolee and Elbaum [34] demonstrate that students can take
provided SQL queries and write corresponding input-output
table pairs for them. Our work asks them to do the reverse.

To the best of our knowledge, SQLRepair represents the first
application of automated program repair to SQL. However,

some research efforts have produced tools for SQL query con-
struction using program synthesis. SCYTHE [22] takes input-
output examples and generates a query capable of performing
the transformation, but is limited in that it does not support
common operators such as projection. Finally, SCYTHE sup-
ports only a single (source, destination) pair, while
SQLRepair supports arbitrarily many.

Existing work by Solar-Lezama [35] in program synthesis
by sketching demonstrates that it is feasible to provide part of
a program, and to have automated tools fill in the remainder
of it. This is the approach that we use for synthesis repairs.

Drosos, et al. [36] present a tool, Wrex, for performing pro-
gram synthesis in Jupyter notebooks. They focus on producing
Python code that is easy for humans to read and understand so
the code is more likely to be used going forwards. We report
results similar to theirs, showing that code synthesized by a
tool is of sufficiently high quality to be used.

VII. CONCLUSION

In this work, we have analyzed the mistakes that under-
graduate students make when working with SQL for the
first time by studying the errors they introduce. We found
that the majority of queries contain one or more syntax or
semantic error, and that semantic errors make up a majority of
errors introduced. We found that junior-level students perform
better than sophomore-level students, solving more problems
correctly and introducing syntax errors at a lower rate. Among
the more advanced SQL topics covered, students particularly
struggle with joins, thus suggesting a need for teaching
students to see and utilise patterns in data. We have also
demonstrated that SQLRepair can fix 29.1% of queries with
errors. By demonstrating that APR techniques are applicable
to SQL, we pave the way for additional automated repair of
special-purpose programming languages. Finally, our results
suggest that automated repair may support students as they
learn SQL. Students rate our tool-produced repairs as good
as queries written by themselves or other students, and thus
automated repairs may make a compelling teaching tool when
peer instruction and feedback is unavailable.

ACKNOWLEDGMENTS

This work was supported in part by NSF SHF grants
#1645136 and #1749936. We would like to thank Gina R.
Bai for her comments on this work and the students of NC
State University’s Summer 2019 CSC 216 course and Fall
2020 CSC 216 and CSC 326 courses for allowing us to use
their data for analysis and evaluation.

DATA AVAILABILITY

All queries collected, SQLRepair, and supporting tools for
analysis are available on Zenodo.

REFERENCES

[1] S. Chren, B. Buhnova, M. Macak, L. Daubner, and B. Rossi, “Mistakes
in uml diagrams: Analysis of student projects in a software engineering
course,” in Proceedings of the 41st International Conference on Software
Engineering: Software Engineering Education and Training, ser. ICSE-
SEET ’19. Piscataway, NJ, USA: IEEE Press, 2019, pp. 100–109.
[Online]. Available: https://doi.org/10.1109/ICSE-SEET.2019.00019

10

https://doi.org/10.1109/ICSE-SEET.2019.00019


[2] M. Aniche, F. Hermans, and A. van Deursen, “Pragmatic software
testing education,” in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’19. New
York, NY, USA: ACM, 2019, pp. 414–420. [Online]. Available:
http://doi.acm.org/10.1145/3287324.3287461

[3] T. Taipalus and P. Perälä, “What to expect and what to focus on
in sql query teaching,” in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’19. New
York, NY, USA: ACM, 2019, pp. 198–203. [Online]. Available:
http://doi.acm.org/10.1145/3287324.3287359

[4] A. Migler and A. Dekhtyar, “Mapping the sql learning process
in introductory database courses,” in Proceedings of the 51st ACM
Technical Symposium on Computer Science Education, ser. SIGCSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
619–625. [Online]. Available: https://doi.org/10.1145/3328778.3366869

[5] “Stack overflow developer survey 2019,” 2019. [Online]. Available:
https://insights.stackoverflow.com/survey/2019

[6] J. Hardin, R. Hoerl, N. J. Horton, D. Nolan, B. Baumer, O. Hall-Holt,
P. Murrell, R. Peng, P. Roback, D. T. Lang, and M. D. Ward, “Data
science in statistics curricula: Preparing students to “think with data”,”
The American Statistician, vol. 69, no. 4, pp. 343–353, 2015.

[7] B. Baumer, “A data science course for undergraduates: Thinking with
data,” The American Statistician, vol. 69, no. 4, pp. 334–342, 2015.

[8] N. C. Brown and A. Altadmri, “Investigating novice programming
mistakes: Educator beliefs vs. student data,” in Proceedings of the Tenth
Annual Conference on International Computing Education Research,
ser. ICER ’14. New York, NY, USA: ACM, 2014, pp. 43–50. [Online].
Available: http://doi.acm.org/10.1145/2632320.2632343

[9] A. Altadmri and N. C. Brown, “37 million compilations: Investigating
novice programming mistakes in large-scale student data,” in
Proceedings of the 46th ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’15. New York, NY, USA: ACM,
2015, pp. 522–527. [Online]. Available: http://doi.acm.org/10.1145/
2676723.2677258

[10] N. C. C. Brown and A. Altadmri, “Novice java programming
mistakes: Large-scale data vs. educator beliefs,” ACM Trans. Comput.
Educ., vol. 17, no. 2, pp. 7:1–7:21, May 2017. [Online]. Available:
http://doi.acm.org/10.1145/2994154

[11] S. Gulwani, I. Radiček, and F. Zuleger, “Automated clustering
and program repair for introductory programming assignments,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2018. New
York, NY, USA: ACM, 2018, pp. 465–480. [Online]. Available:
http://doi.acm.org/10.1145/3192366.3192387

[12] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping
program repair space with existing patches and similar code,” in
Proceedings of the 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2018. New York,
NY, USA: ACM, 2018, pp. 298–309. [Online]. Available: http:
//doi.acm.org/10.1145/3213846.3213871

[13] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’16.
New York, NY, USA: ACM, 2016, pp. 298–312. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837617

[14] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 691–701. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884807

[15] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 364–374.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2009.5070536

[16] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 337–340. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1792734.1792766

[17] S. Gulwani, “Programming by examples (and its applications
in data wrangling),” in Verification and Synthesis of Correct
and Secure Systems. IOS Press, January 2016. [On-

line]. Available: https://www.microsoft.com/en-us/research/publication/
programming-examples-applications-data-wrangling/

[18] O. Bodenreider, “Unified medical language system (umls),” 2004.
[Online]. Available: https://www.nlm.nih.gov/research/umls/index.html

[19] R. L. Glass, Software Engineering: Facts and Fallacies. USA: Addison-
Wesley Longman Publishing Co., Inc., 2002.

[20] L. A. Williams and R. R. Kessler, “Experiments with industry’s “pair-
programming” model in the computer science classroom,” Computer
Science Education, vol. 11, no. 1, pp. 7–20, 2001. [Online]. Available:
https://doi.org/10.1076/csed.11.1.7.3846

[21] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE Transactions on Software Engineering, vol. PP, pp. 1–1,
10 2017.

[22] C. Wang, A. Cheung, and R. Bodik, “Synthesizing highly expressive
sql queries from input-output examples,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2017. New York, NY, USA: ACM, 2017,
pp. 452–466. [Online]. Available: http://doi.acm.org/10.1145/3062341.
3062365

[23] A. Ahadi, V. Behbood, A. Vihavainen, J. Prior, and R. Lister, “Students’
syntactic mistakes in writing seven different types of sql queries and
its application to predicting students’ success,” in Proceedings of the
47th ACM Technical Symposium on Computing Science Education,
ser. SIGCSE ’16. New York, NY, USA: ACM, 2016, pp. 401–406.
[Online]. Available: http://doi.acm.org/10.1145/2839509.2844640

[24] S. Brass and C. Goldberg, “Semantic errors in sql queries: A quite
complete list,” J. Syst. Softw., vol. 79, no. 5, pp. 630–644, May 2006.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2005.06.028

[25] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in Proceedings of the 2012 International Symposium
on Software Testing and Analysis, ser. ISSTA 2012. New York,
NY, USA: Association for Computing Machinery, 2012, p. 177–187.
[Online]. Available: https://doi.org/10.1145/2338965.2336775

[26] H. Lu, H. C. Chan, and K. K. Wei, “A survey on usage of sql,”
SIGMOD Rec., vol. 22, no. 4, pp. 60–65, Dec. 1993. [Online].
Available: http://doi.acm.org/10.1145/166635.166656

[27] E. Patitsas, M. Craig, and S. Easterbrook, “Comparing and contrasting
different algorithms leads to increased student learning,” in Proceedings
of the Ninth Annual International ACM Conference on International
Computing Education Research, ser. ICER ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 145–152. [Online].
Available: https://doi-org.prox.lib.ncsu.edu/10.1145/2493394.2493409

[28] M. B. Kery, M. Radensky, M. Arya, B. E. John, and B. A. Myers,
“The story in the notebook: Exploratory data science using a literate
programming tool,” in Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 1–11. [Online].
Available: https://doi.org/10.1145/3173574.3173748

[29] S. Poulsen, L. Butler, A. Alawini, and G. L. Herman, “Insights from
student solutions to sql homework problems,” in Proceedings of the
2020 ACM Conference on Innovation and Technology in Computer
Science Education, ser. ITiCSE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 404–410. [Online]. Available:
https://doi.org/10.1145/3341525.3387391

[30] T. Taipalus, M. Siponen, and T. Vartiainen, “Errors and complications
in sql query formulation,” ACM Trans. Comput. Educ., vol. 18, no. 3,
Aug. 2018. [Online]. Available: https://doi.org/10.1145/3231712

[31] E. S. Wiese, A. N. Rafferty, D. M. Kopta, and J. M. Anderson,
“Replicating novices’ struggles with coding style,” in 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC),
2019, pp. 13–18.

[32] E. S. Wiese, A. N. Rafferty, and A. Fox, “Linking code readability,
structure, and comprehension among novices: It’s complicated,”
in Proceedings of the 41st International Conference on Software
Engineering: Software Engineering Education and Training, ser.
ICSE-SEET ’19. IEEE Press, 2019, p. 84–94. [Online]. Available:
https://doi.org/10.1109/ICSE-SEET.2019.00017

[33] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the
comprehension of program comprehension,” ACM Trans. Softw.
Eng. Methodol., vol. 23, no. 4, Sep. 2014. [Online]. Available:
https://doi-org.prox.lib.ncsu.edu/10.1145/2622669

[34] K. T. Stolee and S. Elbaum, “On the use of input/output queries for code
search,” in 2013 ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, Oct 2013, pp. 251–254.

11

http://doi.acm.org/10.1145/3287324.3287461
http://doi.acm.org/10.1145/3287324.3287359
https://doi.org/10.1145/3328778.3366869
https://insights.stackoverflow.com/survey/2019
http://doi.acm.org/10.1145/2632320.2632343
http://doi.acm.org/10.1145/2676723.2677258
http://doi.acm.org/10.1145/2676723.2677258
http://doi.acm.org/10.1145/2994154
http://doi.acm.org/10.1145/3192366.3192387
http://doi.acm.org/10.1145/3213846.3213871
http://doi.acm.org/10.1145/3213846.3213871
http://doi.acm.org/10.1145/2837614.2837617
http://doi.acm.org/10.1145/2884781.2884807
http://dx.doi.org/10.1109/ICSE.2009.5070536
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://www.microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling/
https://www.microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling/
https://www.nlm.nih.gov/research/umls/index.html
https://doi.org/10.1076/csed.11.1.7.3846
http://doi.acm.org/10.1145/3062341.3062365
http://doi.acm.org/10.1145/3062341.3062365
http://doi.acm.org/10.1145/2839509.2844640
http://dx.doi.org/10.1016/j.jss.2005.06.028
https://doi.org/10.1145/2338965.2336775
http://doi.acm.org/10.1145/166635.166656
https://doi-org.prox.lib.ncsu.edu/10.1145/2493394.2493409
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/3341525.3387391
https://doi.org/10.1145/3231712
https://doi.org/10.1109/ICSE-SEET.2019.00017
https://doi-org.prox.lib.ncsu.edu/10.1145/2622669


[35] A. Solar-Lezama, “Program synthesis by sketching,” Ph.D. dissertation,
Berkeley, CA, USA, 2008, aAI3353225.

[36] I. Drosos, T. Barik, P. J. Guo, R. DeLine, and S. Gulwani, “Wrex: A
unified programming-by-example interaction for synthesizing readable
code for data scientists,” in Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1–12. [Online].
Available: https://doi.org/10.1145/3313831.3376442

12

https://doi.org/10.1145/3313831.3376442

	I Introduction
	II Study
	II-A Phase 1
	II-A1 Design
	II-A2 Participants
	II-A3 Dataset

	II-B Phase 2
	II-B1 Design
	II-B2 Evaluating SQLRepair
	II-B3 Participants
	II-B4 Dataset

	II-C Data Summary
	II-D Analysis

	III SQLRepair
	III-A Non-Synthesis Repair
	III-A1 Operator Mismatch
	III-A2 Column Mismatch
	III-A3 String Repair

	III-B Synthesis Repair
	III-B1 Constant Synthesis
	III-B2 Operator Synthesis
	III-B3 Column Synthesis
	III-B4 Clause Removal
	III-B5 Clause Synthesis

	III-C Analysis

	IV Results
	IV-A RQ1: SQL Mistakes
	IV-B RQ2: SQLRepair
	IV-B1 Repaired Queries
	IV-B2 Not Repaired Queries
	IV-B3 Performance

	IV-C RQ3: Repair Quality

	V Discussion
	V-A Implications
	V-B Future Work
	V-C Threats to Validity

	VI Related Work
	VII Conclusion
	References

