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Abstract—Testing is a crucial activity in the development of
software systems. With the increasing complexity of software
projects, the industry requires incorporating graduates with
adequate testing skills and preparation in this field. A challenge
in software testing education is to make students perceive the
benefits of writing tests and assess their quality with advanced
testing techniques. In this paper, we present an experience
integrating both mutation testing and self/peer assessment —two
of the most used techniques to that end in the past— into
a software testing course during three years. This experience
allowed us to analyze the effect of applying these strategies on
the students’ perception of their manually-written test suites.
Noticeably, the computation of the mutation score significantly
undermined the initial expectations they had on the developed test
suites. Also, the application of peer testing helped them estimate
the relative quality of two comparable test suites, as we found a
notable correspondence with their respective mutation coverage.
Besides, a more in-depth analysis revealed that the students’ test
suites with more test cases did not always achieve the highest
scores, that they found more readable their own tests, and that
they tended to cover the basic operations while forgetting about
more advanced features. An opinion survey confirmed the impact
that the use of mutants had on their perception about testing,
and they mostly supported paying a higher level of attention to
testing concepts in software engineering degree plans.

Index Terms—Software testing education, mutation testing,
peer testing, self/peer assessment.

I. INTRODUCTION

Software testing is a fundamental activity in the life cycle
of a software project. Testers aim to apply testing methods
to find as many software defects as possible, spending the
least possible effort and time. Despite the advances in this
discipline, testing takes up most of the resources of a project
and, therefore, the industry requires qualified professionals in
this domain to achieve a more cost-effective process. Several
studies show that the exposition to software testing knowledge
also brings benefits to the code developed by students in terms
of reliability [1] and programming skills [2]. However, current
academic curricula in software engineering still place much
more emphasis on development and design than on testing [3].
As a consequence, university degrees are not able to fulfill the
demand of graduates with a solid background in testing.

As noted by Lauvås and Arcuri [4], software testing teachers
not only face the challenge of instructing students in the use
of testing techniques but also of making them understand how
fundamental software testing is within the software devel-
opment, especially when it is often seen as a tedious task.
In fact, according to the study by Pham et al. [5], students

prioritize obtaining a functional product over testing it, and
they may find designing test cases fruitless —they cannot see
an apparent reward derived from their test generation efforts.
As a result, many of the teams participating in that study
resorted to manual testing instead of testing methodically. As
such, effective and innovative teaching methods are required
to change students’ attitude toward software testing.

Both mutation testing and peer testing are two of the
strategies highlighted in the software testing teaching lit-
erature to enhance students’ motivation [4], [6]. Mutation
testing poses more demanding testing criteria than traditional
coverage-based metrics [7], [8] —which usually overestimate
the apparent test quality—, and allow students to directly
observe examples of bugs that their tests are not able to
detect [9]. As for peer testing, it exposes students to different
solutions and offers the opportunity to share their knowledge
with their classmates, engaging them in the learning process
and increasing the quality of their developments [10], [11],
[12]. Both techniques have been applied in several recent
studies, mainly to analyze their impact on the learning of
programming skills [13], to motivate students in the use of
testing techniques [14] and to allow them to learn from each
other [11]. However, it has been less explored what is the effect
of applying these approaches on the students’ perception,
especially regarding the use of advanced testing techniques
over manual and unguided testing, and the chance to evaluate
their test suites with a comparable solution.

In this paper, we present the results of an experience in
which we analyzed the subjective self and peer assessments
made by our students of their manually-written test suites in
combination with the more impartial measure of the mutation
score. The results show that mutation testing had a great
impact on their perception of the test suites; their evaluations,
made before and after knowing the mutation score, differ even
though the tests did not change in between both assessments.
We also found that the comparison between their own test
suites with that of a peer helped them estimate their relative
detection capability and detect possible flaws regarding their
completeness. However, that did not happen to the same extent
with regard to the design and readability of the tests —two
important factors in the software industry [15]—, which may
suggest that a guideline on these aspects is required. At the
end of the experience, students mostly found mutation testing
useful and supported the incorporation of testing concepts into
introductory programming courses. Finally, our analysis also



reveals that a high number of test cases does not always imply
greater fault detection, and that students tend to focus on the
most basic operations and, therefore, forget about other more
advanced features. These aspects should be emphasized in the
classroom to make them aware of the different factors they
should consider to improve the test quality and adequacy.

The structure of the paper is as follows. Section II defines
the main concepts related to this work and reviews the studies
addressing them. Section III presents our research questions
and Section IV describes all the aspects related to the design
of the experience. Then, Section V shows and discusses the
results of the designed study. Section VI collects the lessons
learned from the experience. Finally, Section VII summarizes
the main findings of this study and provides some research
lines that should be explored in the future.

II. BACKGROUND

A. Mutation testing in software testing education

Mutation testing is a technique inspired by the actual
objective of software testing: the detection of real faults. It is
based on the insertion of syntactic changes, called mutations,
that mainly try to resemble realistic bugs. The more mutants
the test suite kills (i.e., the more of these mutations a test
suite is able to reveal), the more likely is that it also identifies
real faults. Such mutant detection happens when the output of
executing it against the test suite differs from the output of
the original version. The number of killed mutants over the
whole set of killable mutants is called mutation score, which
provides an estimation of the fault detection ability of the tests.

Mutation testing has gained attention in the last years not
only in research studies and the industry but also in software
testing education. In general, students perceive testing as an
unproductive and secondary task [5] because they usually
have to generate a test suite without tangible evidence of its
benefit —they do not face the defects it could seemingly help
avoid. However, mutation testing brings them in contact with
simulated but plausible buggy versions of a program; they have
the potential to engage students in analyzing why a test suite
is not able to catch those faults, or even in refining it.

The use of mutation testing tools with educational purposes
was proposed many years ago [16], but this technique has been
put into practice more extensively in recent years. Oliveira et
al. [13], [17] assessed the use of mutations in programming
courses as a means to improve the learning process of novice
students. Also in introductory courses, Smith et al. [9] used
an automated system fed with a pool of buggy versions of the
subject under test (SUT) to evaluate the test cases submitted
by their students. Some studies have also investigated the
accuracy of mutation and code coverage as metrics of the
adequacy of students’ test suites [7], [18]. A relevant group of
papers following the same research line [14], [19] proposed the
introduction of mutation testing as a game (the game is called
Code Defenders) to make the learning of software testing
concepts more enjoyable for the student. Zhang et al. [20]
also tried to motivate students to focus on testing by injecting
logical errors into their projects. In our study, the aim of

using mutants is that our students realize that their manually-
designed tests are not as effective as they could initially expect.

B. Self/Peer assessment

As described by Dochy et al. [21], while self-assessment
refers to the involvement of students in judging their own
developments or learning process, peer assessment is the
process in which students rate their peers, either individually
or in groups. Both self and peer assessment foster the active
participation of students in their own learning and aim to give
them a space to reflect on their results, especially when com-
pared to those of their peers. Several authors have reported on
successful experiences related to peer assessment in software
testing sessions, generally known as peer testing [10], [11],
[12], [22], [23], [24]. Peer testing encompasses the activities
in which students assess the developments made by their peers,
either reviewing each others’ code or designing test cases
to find defects in them. Peer assessment in software testing
courses not only helps students to identify issues in their code
—based on the reciprocal critique made by peers— but it can
also allow them to learn from other solutions to the same
problem [11], [25]. Clark et al. [10] observed several benefits
of applying peer testing in her study, including the increase in
the quality of the submissions, the awareness of the necessity
of testing, the collaborative spirit among classmates, and the
learning of technical skills, among others.

Peer testing has been applied following a diversity of
approaches. Smith et al. [11] and Clark et al. [10] focused
on both peer code review and testing to detect possible errors
in the programs implemented by other classmates. In the
experience by Smith et al, all the activities from programming
to testing were additionally performed in pairs. The studies
by Barbosa et al. [24] and Alazzam and Akour [23] went a
step beyond by evaluating the use of pair programming in the
design of test cases instead of in the implementation of the
program (the traditional use of pair programming). The first
study found that working with a partner was more efficient
than working individually, whereas the second study showed
that this collaboration also led to the design of test suites with
a higher mutation score. The use of Code Defenders [14], [19]
is another form of peer testing, where two students compete
in a mutation testing game where they attack each other by
creating mutants and defend themselves by adding mutant-
killing test cases. Also, Gaspar and Langevin [12] combined
pair programming and test-driven development to engage
students in competitive learning. In our study, we follow a
peer testing approach in which students inspect and grade the
test suite designed by another peer, instead of reviewing the
code of the tested subject as in previous works. Our approach
is similar to the one followed by Gaspar et al. [22], in which
students perceived benefits of exchanging their tests with other
partners to improve both the test suite itself and the SUT.

III. RESEARCH QUESTIONS

To achieve the goals of this study, we designed an experi-
ment combining two different aspects. As shown in Figure 1,
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Fig. 1. Twofold approach in the designed experiment.

we confront both two testing approaches (manual and au-
tomated) and the opinion on test quality of two different
solutions (the test suite created by the own student, self-
assessment, and the one of a peer, peer assessment). Therefore,
our aim is twofold:

1) By contrasting their subjective assessment with the im-
partial score offered by an automated technique like mu-
tation testing, we expect students to become more aware
of the benefits of applying advanced testing strategies.

2) By comparing their test suites with those of their peers,
we want to analyze how the self and peer assessments
differ and the extent to which students are able to
discern between the quality of two different test suites.
Additionally, we expect them to realize that each one
may have a different perspective on how complete or
well designed a test suite is and that relying only on
manual methods may compromise its quality.

These hypotheses are reflected in the following questions:
RQ1: What is the effect of knowing the mutation score of

the manually-written test suite on the student’s perception?
RQ2: What is the effect of introducing self and peer review

of the student-written test suites in this experience?
Additionally, we wanted to analyze in more detail the

relation between the student-written tests and mutation testing
to draw further conclusions on the designed test cases. That
leads to the following two research questions:

RQ3: Is the mutation score correlated with the number of
designed test cases?

RQ4: Are there any programming features that are more
likely to be poorly covered by the students than others?

IV. STUDY DESIGN

In the following subsections, we detail how we planned our
experiments to answer our RQs, including details of the course
and set of students, design of the experience, distribution in
sessions, material, testing techniques and assessment criteria.

A. Course and participants

We carried out this experiment in the course Software
Verification and Validation of the Degree of Computer Science
and Engineering at our University. This is a 3rd-year course
for students in the Software Engineering branch (one of the
five different branches in this Degree). Students are taught

the fundamental concepts and the importance of software
verification and validation, and are instructed in the use of
several testing tools and the testing techniques behind them,
among others. We think that integrating this experience into a
3rd-year course is preferable to doing so into an introductory
course. First, students at this point have a better understanding
and background of the entire software development lifecycle;
second, we counter the threat that low-performing test suites
are directly related to the inability of novice programmers to
understand the code of the SUT, to create the necessary test
cases or to reason about the possible faults that could appear.

The experience was developed in three different years with
the same configuration. In total, we have at our disposal the
results and opinions about the experience of 20 students. This
practice is part of a series of practices and exams that they
have to undertake throughout the course, from which their
final grade is derived. Therefore, while this experience has
no definitive influence on their final grade, we believe it
is sufficient to encourage them to take the proposed tasks
seriously.

B. Design of the experience

For the sake of the experience’s success, we leveraged
different findings in the literature to prepare our experiment.
Thus, we made some decisions about the following findings:

Finding #1: According to different reports, students are
not fond of testing tasks [5], [26], and they may find writing
tests unproductive as there is no immediate benefit: To address
this issue, we designed a concise and manageable experience
that was effective without being overly burdensome. Namely,
we distributed the work into two sessions of 2,5 hours (5 hours
in total), which were focused on a single test subject.

Finding #2: Students do not like testing their own
programs because testing judges their programming skills by
revealing the faults in them [26], [27] : To avoid this problem,
we opted for providing them with a test subject. As such, the
goal was to create a good test suite for that code instead of
revealing existing defects in it. For once, we wanted students to
be focused on testing more than on the programming aspects.

Finding #3: According to the following report [5], the
test subject size was a relevant factor for students, as they
may feel that there is no need to test small projects: In our
experience, we took into account this consideration but to
produce the opposite effect. We selected a test subject of low
to moderate complexity, which consists of two C++ classes
(Parent and Child adapted from a listing in [28]) representing
the inheritance relationship between them. By using a small
SUT, the effect of observing plausible faults not covered by
their test suites could be more shocking for students than
observing them in a complex or unmanageable program.

Finding #4: Different studies [7], [8] have reported great
differences between the use of statement and mutation cover-
age, being the latter more effective at detecting weaknesses in
test suites: As a result of this, we focus on mutation testing as
the metric of test effectiveness. Mutation testing, in addition
to providing an impartial measure of test quality, offers the



Task Session 1 Session 2
Reading of material and preparation 20 min. 35 min.
Manual design of test suite 90 min. –
Application of mutation testing – 75 min.
Self assessment 15 min. 15 min.
Peer assessment 25 min. 25 min.

TABLE I
DISTRIBUTION OF THE TASKS IN SESSIONS

opportunity to gain first-hand knowledge of the types of faults
that their tests would not reveal. We also believe that the effect
of seeing uncovered faults is more tangible and convincing
than the effect of a simple grade assigned by the lecturer.

Finding #5: Different studies applying an approach
related to peer testing have shown to provide benefits to
students [10], [22], [24]: In the designed experience, students
play the role of both developers and reviewers at different
times. In this study, peer assessments allow us to analyze the
differences in the relative test quality of the student-written
test cases when compared to the self-assessments, and how
these assessments relate to the mutation score. In addition, this
approach exposes students to a different test suite for the same
program, and we can evaluate how that affects their perception.

C. Sessions

We divided the experience into two well-defined sessions
of work (Table I represents the structure of the experience):
• Session 1: Students are asked to manually design a test

suite as adequate as possible for the SUT. This process
is done without the guidance of any measurable testing
criteria, such as the statement or mutation coverage. They
are only informed about the five assessment criteria that
will be used to evaluate their test suites (these criteria
are detailed in Section IV-E). After that, they are asked
to use the rubric with the assessment criteria to evaluate
their own test suite and the test suite designed by a peer.

• Session 2: Students are asked to evaluate the fault de-
tection capability of their test suites (i.e., those designed
in the first session) by applying mutation testing. After
that, students are again asked to perform the same self
and peer assessments of those test suites (without any
modifications). The decision of evaluating again the ini-
tial version is intentional: we wanted to analyze whether
knowing the mutation score changes their perception of
the test suites they had already assessed.

The process can be summarized in terms of the documents
that each student should submit:
• Session 1: Manually-written test suite, self-assessment

survey and peer-assessment survey.
• Session 2: Execution matrix (it contains which test cases

kill which mutants) and mutation score, self-assessment
survey and peer-assessment survey.

• After the sessions: Anonymous questionnaire, inspired by
the one designed by Oliveira et al. [13] and extended
with new specific questions related to the experience.
With these questions, we mainly want to know whether

students can actually draw a lesson from this experience
beyond the results of our analysis of their test suites. We
also aim to understand how they perceive this experience
in order to learn some lessons ourselves.

To differentiate the assessments made in the first and second
sessions, we will refer to them as pre-mutation score (pre-MS)
and post-mutation score (post-MS) assessments, respectively.

D. Course material and application of mutation testing

For the first session, we prepared a manual explaining how
to create and execute new test cases for the SUT. We provided
the students with a library for the design and execution of
tests for object-oriented (OO) software. By using this library,
adding a test case is as simple as expressing in a new function
the desired sequence of calls to the public methods of the
classes, and call check test case as many times as required to
include the planned assertions. The following is a valid test
case with two asserts, shown in the manual as an example.
void t e s t C h i l d C o n s t r u c t o r ( ){

C h i l d c ( ” P r i t c h e t t ” , ” Simon ” ) ;
c h e c k t e s t c a s e ( s t r c mp ( c . g e t F i r s t N a m e ( ) , ” Simon ” ) == 0 ) ;
c h e c k t e s t c a s e ( s t r c mp ( c . getLastName ( ) , ” P r i t c h e t t ” ) == 0 ) ;

}

For the generation and execution of mutants, we applied
MuCPP [29], a mutation tool for C/C++ code. The use of this
tool is easy enough to be understood in one-session work;
two command lines suffice to generate all the mutants and
then execute them on the previously-designed test suite. We
prepared a step-by-step manual on how to install the tool
and configure the project to incorporate their own test suite,
and how to use the tool and interpret its output. MuCPP
counts with a set of traditional mutation operators (i.e., those
commonly applied in any general-purpose language) and class
operators (i.e., those affecting OO features).

Shams and Edwards [30] mentioned some issues related to
the use of mutation testing in the classroom. In our study, they
do not represent an obstacle because of the following reasons:

Issue #1: Incomplete or buggy solutions: In those cases,
not all the expected mutants would be generated. In our study:
Mutation testing is directly applied to the instructor-provided
code, so the same mutants are available to all of the students.

Issue #2: Compile-time dependencies: The student-
written tests may not compile when bound together with the
instructor-provided reference solution. In our study: Students
develop the test suite directly for the reference solution.
Therefore, their tests should only refer to the elements of this
original version, avoiding this type of compilation errors.

Issue #3: Equivalent mutants: These mutants, which
actually do not represent a buggy version of the program
despite the inserted change, may distort the mutation score
calculation. In our study: Thanks to a previous inspection of all
the mutants, we can inform the students which of the mutants
are equivalent and should be subtracted for the mutation score
computation. In total, without counting equivalent mutants, our
students had to execute their test suites against a set of 39
killable mutants generated by 15 different operators.



E. Assessment Criteria

These experiments required the definition of a set of as-
sessment criteria so that students could judge and value the
developed test suite. To this end, we used five criteria that
cover different aspects related to the quality of test suites:

1) C1 - Correctness: The test cases pass successfully
when executed against the original program, which is
considered to be fault-free.

2) C2 - Completeness: The test suite presents an appropri-
ate coverage of functionalities by exercising the diverse
scenarios that may apply when using the program.

3) C3 - Assertions: The test cases include a sufficient
number of assertions to cover the possible changes in the
internal state of the program as a result of the actions.

4) C4 - Design: Each test case is designed to test a
particular functionality (i.e., a test case does not combine
multiple and unrelated scenarios), and there are no
overlapping or redundant test cases.

5) C5 - Legibility: The programming style is clear and
allows understanding the purpose of the test cases and
their assertions.

Students had to value each criterion in the range 1 (min-
imum) to 4 (maximum). With C1, we just wanted to make
students aware that each input should produce the expected
output according to the code of the program. C2 and C3
represent the aspects that could be measured with a testing
criterion, such as statement or mutation coverage. Finally,
C4 and C5 seek to preserve and encourage the clarity and
readability of tests, an aspect that has been recently shown to
be of utmost importance in the industry [15]. Also, as reported
by Edwards and Shams [8], students tend to merge different
scenarios in a single test case, leading to poor test case design.

Notice that C2 and C3 could be the more affected crite-
ria in the student’s assessments after knowing the mutation
score (in principle, correctness, design and legibility are not
directly related to the fault detection capability). As such, to
better appreciate differences between the pre-MS and post-
MS assessments, we weighted both C2 and C3 with 30% of
the total assessment score. The rest of the criteria have the
following weights: C1 (10%), C4 (15%) and C5 (15%).

V. RESULTS AND DISCUSSION

A. Effect of the mutation score on the student’s perception

Table II furnishes the data collected from each student
during this experience, which includes the number of designed
test cases, the mutation score (as a percentage of all the
mutants detected) and the marks assigned in the self and peer
assessments in the range 1-4 points. Focusing on the mutation
score, it stands out the low number of mutants killed overall.
The scores range from 8% to 61%, although the mean is 31%
and only 3 of the students were able to detect more than half
of all the mutations. These results favor the expected effect
from this practice, as a low mutation score reveals significant
deficiencies in the developed test suites.

Student MS
Session

Test 1 2
cases Self Peer Self Peer

1 12 36% 3.25 3.25 2.8 2.65
2 8 28% 3.4 3.25 3.1 3.1
3 6 26% 3.2 2.8 3.1 3.1
4 8 33% 3.1 2.2 2.8 1.9
5 5 8% 2.4 3.6 - -
6 9 26% 3.0 3.25 3.3 3.4
7 12 28% 2.8 3.2 2.35 1.85
8 9 10% 3.0 3.55 2.9 2.95
9 17 49% 4.0 2.8 3.4 2.65

10 6 18% 2.8 2.6 2.35 2.0
11 9 13% 2.8 2.4 1.75 2.45
12 4 23% 2.65 2.8 2.05 2.5
13 16 41% 2.65 2.65 2.5 2.65
14 13 59% 3.25 2.35 2.85 2.05
15 10 51% 3.4 2.95 2.75 2
16 11 22% 2.45 3.7 1.85 2.2
17 8 18% 1.9 2.65 1.85 2.25
18 14 31% 2.8 3.0 2.6 2.8
19 11 38% 3.25 3.55 2.35 2.65
20 14 61% 3.15 3.1 2.35 2.05

Mean 10 31% 3.0 3.0 2.6 2.5
TABLE II

LIST OF THE RESULTS BY STUDENT, INCLUDING NUMBER OF TEST CASES,
MUTATION SCORE (MS), AND WEIGHTED MEAN OF THE MARKS ASSIGNED

TO THE CRITERIA (C1-C5). THESE MARKS ARE DIVIDED BY SESSION (1
AND 2) AND TYPE OF ASSESSMENT, INCLUDING THE SELF REVIEW (Self )

AND THE REVIEW MADE BY THE STUDENT OF A PEER’S TEST SUITE (Peer).

To analyze the effect of the mutation score on the students,
we can focus on the pre-MS and post-MS assessments. The
mean value of the self and peer assessment fell 0.4 (from 3 to
2.6) and 0.5 points (from 3 to 2.5) from the first to the second
session, respectively. Notably, 95% of the students depreciated
the value of their test suites in their post-MS assessments. The
greatest difference appears in the student 11 (-1.05 points),
whose mutation score was notably low (13%). Also, 79% of
the students reduced the marks assigned to their peers in the
second session. In this case, the largest drop is 1.5 points, from
3.7 to 2.2 (student 16).

It is interesting to know which of the assessment criteria
gave rise to these decreases. Table III shows the mean marks
per criterion (C1-C5). As expected, the greatest differences
appear in C2 (completeness) and C3 (assertions), both di-
rectly related to the mutation coverage. Regarding the self-
assessment, we can observe a drop of 0.7 and 0.4 points in
C2 and C3, respectively; these drops are even more notable in
the reviews of the peers: 0.65 and 1 points, respectively. On the
contrary, the design-related criteria (C4 and C5) were barely
affected by the knowledge of the score. Interestingly, some of
the students seemed to consider their tests not as “correct” as
they initially expected, judging by the decrease in C1 (-0.3),
although this was not the original purpose of this criterion.

B. Self and peer assessments

We can evaluate the student’s perception of test quality
by comparing the values assigned in the self and peer as-
sessments, which can be seen again in Table II. In the first
session, we can observe that nine of the students attached
lower scores to their peers than to themselves, and that nine of



Assessment Session C1 C2 C3 C4 C5

Self 1 3.6 2.4 2.7 3.35 3.8
2 3.3 1.7 2.3 3.35 3.7

Review 1 3.1 2.5 3.15 3.25 3.35
by peer 2 3.2 1.85 2.15 3.05 3.4

TABLE III
MEAN OF THE VALUES ASSIGNED IN THE SELF AND PEER ASSESSMENT

DIVIDED BY SESSION (1 OR 2) AND CRITERION (C1-C5).

them did the contrary, being 1.2 points the greatest difference
in both cases (student 9 and 16, respectively). Therefore, half
of them felt that their tests were better than the ones of the
reviewed peer, and the other half that they were worse. To
better understand whether these differences are justified, we
performed a correlation test analyzing the following variables:

1) X: The difference in mutation score of the own test suite
and the reviewed test suite.

2) Y: The difference between the mean mark in the self
and peer assessments (when acting as a reviewer).

With this statistical test, we wanted to observe whether an
increase/decrease of the marks in the self and peer assessments
corresponds with a similar increase/decrease in the mutation
score of their test suites. As an example, let’s consider student
12, who reviewed student 13. For this student, X = 23% - 41%
= -18%, and Y is 2.65 - 2.8 = -0.15. In this case, the increase
in the value attached to the peer’s test suite corresponds with
an increase in its mutation score; this means that this student
seemingly realized that the peer’s test suite was of a higher
quality than his/her own test suite.

a) Pre-MS assessment: The data for the first session
corresponding to X and Y are displayed in the scatter plot
in Figure 2, showing the tendency line. We run the Pearson’s
correlation test between these two variables. The result (r:
0.587; p-value: 0.006) suggests that indeed there is a direct
correlation between the differences in the assessments and
the mutation scores, but this correlation is medium. We can
interpret from this result that most of the students were able to
understand which of the two test suites was the most adequate,
but they could not accurately measure that difference.

b) Post-MS assessment: We can run the same correlation
test but with the post-MS assessments, when they know the
mutation score (Figure 3 represents these data). The result of
the Pearson’s correlation test (r: 0.830; p-value: 1.099e-05)
shows that the correlation is now much stronger. This means
that an impartial measure as the mutation score influenced their
subjective assessment, this time assigning marks that were
more in line with the fault detection ability of those tests.

We can analyze each criterion individually again in Ta-
ble III, but focusing on the differences between the self and
peer review this time. In the first session, the students gave
higher marks to their peers than to themselves in C2 (from
2.4 to 2.5) and C3 (from 2.7 to 3.15). This leads us to think
that, in general, they realized that some test cases or assertions
were missing in their own test suites on reviewing the tests
of their peers. Contrarily, they gave lower marks in C1 (from
3.6 to 3.1), C4 (from 3.35 to 3.25) and C5 (from 3.8 to 3.35).

Fig. 2. Scatter plot - Session 1: Axis x: difference in mutation score (MS)
of the student and the peer test suite (variable X); Axis y: difference between
mean marks in the self assessment and peer assessment (variable Y).

Fig. 3. Scatter plot - Session 2: Axis x: difference in mutation score (MS)
of the student and the peer test suite (variable X); Axis y: difference between
mean marks in the self assessment and peer assessment (variable Y).

Regarding C1, we found severe decreases (from 4 to 1) in two
of the students, and we conjecture that they simply failed to
execute the peer’s test suite because they did not follow the
steps correctly. Regarding C4 and especially C5, the decrease
corresponds with our expectations that a test suite is not as
straightforward to interpret for others as it is for its designer.

C. Student’s opinions after the experience

Table IV compares the results of the questionnaire filled
out by the students in our study and the study by Oliveira et
al. [13]. We can observe a notable degree of similarity in the
responses to SQ2, SQ6 and SQ8. SQ1 and SQ3 also present
similar results but there was a transference to the new options
—added to make those questions more complete. Interestingly,
none of our students thought that their knowledge of testing
reached an intermediate level before the course (SQ1), and
50% of them considered that practicing mutation testing could
result in both better programs and programmers (SQ3).

Analyzing these questions altogether, we can infer that
our students were aware that testing had not been properly
addressed in previous courses and, however, that integrating
testing techniques and tools into introductory programming
courses could have had a positive effect on them. Remarkably,
all of our students thought that using educational testing tools



# Question Answers Result Oliv.

SQ1
What were your previous knowledge of software testing - None 33.3% 42.9%
before the course? - Basic level 66.7% -

- Intermediate level 0% 57.1%

SQ2
Do you encourage mutation testing concepts to be presented - Yes 25% 38.1%
in conjunction to programming foundations? - Yes, but superficially 50% 52.4%

- No 25% 9.5%

SQ3

What might be the effects of practicing mutation analysis - Better programs 25% 61.9%
by novice programmers? - Better skilled programmers 16.7% 28.6%

- Better programs and skilled programmers 50% -
- None 8.3% 9.5%

SQ4
Do you consider regular testing tools useful to teach - Yes 8.3% 36.4 %
programming foundations? - Yes, using basic functionalities 91.7% 54.5%

- No 0% 9.1%

SQ5
Do you consider the mutation testing tools useful to teach - Yes 16.7% 19.4%
programming foundations? - Yes, using basic functionalities 66.7% 19.5%

- No 16.7% 61.1%

SQ6
Disregarding the specific course on software testing, considering - Fairly presented 16.7% 13.6%
your course’s curriculum, software testing concepts were: - Poorly presented 58.3% 59.1%

- Not presented 25% 27.3%

SQ7 Do you think that the use of educational testing tools might be - Yes 100% 59.1%
useful to create good programming habits? - No 0% 41.1%

SQ8 Do you think that designing test cases through mutation testing might - Yes 75% 72.7%
be useful to improve the learning capacity of novice programmers? - No 25% 27.3%

TABLE IV
FIRST PART OF THE QUESTIONNAIRE, WITH GENERAL QUESTIONS PROPOSED BY OLIVEIRA ET AL. [13]. COLUMN Result AND Oliv. SHOW THE RESULTS

COLLECTED IN OUR EXPERIMENTS AND BY OLIVEIRA ET AL., RESPECTIVELY. NOTE THAT WE ADDED A NEW OPTION TO THE QUESTIONS SQ1 AND SQ3
(THOSE ARE MARKED WITH ’-’ IN THE COLUMN Oliv.)

# Question Answers Result

SQ9

How did you find designing test cases manually - Easy, in general 25%
without the aid of any testing tool? - Hard, especially ensuring that the code was covered appropriately 50%

- Hard, especially following a logic order in the design of test cases 25%

SQ10

What is your perception after applying - It changed my perception of test suite design 8.3%
mutation testing to your test suite? - It allowed me to discover fault-prone code areas not properly covered 75%

- Mutants do not seem particularly useful in improving test quality 16.7%

SQ11

Considering your self and peer assessments, do you think - Yes 50%
that we tend to value our own developments positively - Yes, but only as far as design and legibility criteria are concerned. 8.3%
and overlook certain shortcomings in them? - No, the assessments were fair. 41.7%

SQ12
From a practical viewpoint, mutation testing: - Is very useful 58.3%

- Is very useful, but is not comfortable to use 33.3%
- Does not compensate for the effort required. 8.3%

TABLE V
SECOND PART OF THE QUESTIONNAIRE, WITH SPECIFIC QUESTIONS ABOUT THE EXPERIENCE.

might benefit the programming habits (SQ7), while only 59%
of the subjects in the study by Oliveira et al. marked that op-
tion. Also, 100% and 83% of the students deemed that regular
(SQ4) and mutation testing tools (SQ5), respectively, would
be useful to teach program foundations (mainly focusing on
the basic functionalities). This result contrasts with that of the
study by Oliveira et al., where 61% of the students did not
find mutation testing as a useful technique to that end. These
results make us believe that our experience had a great impact
on their perception of the importance of software testing.

We completed the survey with four additional questions,
shown in Table V. Most of the students (75%) found it hard
to design test cases manually (SQ9) and they realized that
some areas were not properly covered by them thanks to the
mutants (SQ10). There is not a great difference between the
option ‘yes’ and ‘no’ regarding the fairness of the assessments
(SQ11); this is in line with the analysis of the self and peer
assessments in the previous section. In contrast, only 8%
recognized a possible bias when assessing the design and the

legibility, as Table III revealed. This shows that we often fail to
realize that our designs might not be as readable as we tend to
think. Finally, almost 92% found mutation testing very useful,
but 33% of them also found it uncomfortable to use (SQ12).

D. Relation between the test suites and mutation testing

In this section, we analyze the student-written test suites in
relation to the mutation score. First, we run the Pearson’s test
to evaluate the correlation between the number of test cases in
the test suites and their mutation score. The result (r: 0.673;
p-value: 0.001) reveals that, as we could expect, there is a
significant positive correlation between these two measures,
but the association between both variables is far from being
perfect. In fact, if we look at the scatter plot in Figure 4, we can
observe that two of the students designed 14 test cases with a
very different outcome: 31% and 61% of mutation score. Also,
the student’s test suite with more test cases (17) achieved a
lower score than another one with 10 test cases (49% vs 51%).



Operator Description Mutants Students Mean
IPC Explicit call of a parent’s constructor deletion 1 19 96.4%
OMR Overloading method contents replace 3 20 90.4%
IHI Hiding variable insertion 1 13 79.9%
CTD this keyword deletion 1 11 63.5%
CTI this keyword insertion 1 11 63.5%
COD Conditional operator deletion (e.g., !) 1 11 63.1%
ARS Arithmetic assignment operator replacement (e.g., + = by − =) 4 14 56.6%
IOD Overriding method deletion 1 6 41.0%
ROR Relational operator replacement (e.g., > by >=) 5 13 40.2%
AIS Increment/decrement operator insertion (e.g., ++) 8 14 33.2%
CCA Copy constructor and assignment operator overloading deletion 1 2 17.7%
IOP Overriding method calling position change 3 3 12.6%
ARB Arithmetic operator replacement (e.g., + by −) 7 6 9.4%
CDD Destructor method deletion 1 1 8.8%
PVI virtual modifier insertion 1 0 0%

TABLE VI
ANALYSIS BY MUTATION OPERATOR. Students SHOW THE NUMBER OF STUDENTS THAT DETECTED SOME MUTANTS OF THE OPERATOR AND Mean

REPRESENTS THE WEIGHTED MEAN MUTATION SCORE (SUM OF THE MUTATION SCORE IN THE OPERATOR OF EACH STUDENT MULTIPLIED BY HER TOTAL
MUTATION SCORE, DIVIDED BY THE SUM OF THE TOTAL MUTATION SCORES OF ALL STUDENTS).

Fig. 4. Scatter plot - Relation between the number of test cases in the test
suites and their mutation score.

Second, we sought to evaluate whether the mutation score
was evenly distributed among the mutation operators. In other
words, we wanted to observe whether the students’ test suites
had covered the mutants from all of the operators or some
mutants were prone to remain undetected. To this end, we
computed the mutation score obtained by each student in each
operator, and then we calculated the mean mutation score for
each operator. Note that this is a weighted mean so that those
students that achieved higher mutation scores (and therefore
worked harder on the test suite) contribute more to this result.

Table VI presents the list of mutation operators, followed
by a brief description (further details can be found in [29])
and ordered by the mean mutation score. From the data in
this table, it seems that the features related to the construction
of objects were covered in general, such as the initialization
(IPC), the presence of several constructors (OMR) and, to a
lesser extent, the use of the this keyword (CTD and CTI).
Also, many of the students (between 11 and 14) were able
to detect some of the mutants generated by the traditional
operators (COD, ARS, AIS and ROR) except for ARB, whose
mutants mainly affected the computation of memory allocation
for different arrays. However, their mutation score is not as
high as the score of the operators at the top of the table because

they generated more mutants and most of those students only
detected some of them. On the contrary, some particular OO
features addressed by class operators (see Section IV-D) were
not exercised by most of the students (between 0 and 6), such
as the copy (CCA) and destruction (CDD) of objects, class
inheritance (IOD and IOP) and the polymorphism (PVI). This
shows that some advanced features may easily go unnoticed,
probably because students are less accustomed to working with
them and put emphasis on the most common operations.

E. Threats to validity
A common threat of this kind of study stems from the

number of subjects participating in the experiment. There is
a wide choice of branches and courses in the Degree and,
as a result, the number of students enrolled in each course
is usually low. To counter this threat, we repeated the same
experience in three consecutive years until we had a significant
number of students to accomplish this study.

With regard to peer testing, there is the threat that those
students who obtained a higher mutation score than the one
of the assigned peer feel that they did an acceptable job, even
though their mutation score is still very low. We see no easy
way to completely avoid this issue; however, they had been
taught during the whole course that they should aspire to 100%
in the score to increase the confidence that their test suites
will be able to detect faults. The positive results in favor of
the use of mutation testing in the questionnaire lead us to
think that they mostly regarded this experience as useful. It
is also possible that mentioning to students that the SUT was
supposed to be correct may have affected their motivation to
test the system comprehensively. However, this was necessary
to avoid that they focused on making changes to the code
or even optimizing it instead of on designing the required
tests. Nonetheless, this practice takes place at an advanced
stage of the course, when they have been repeatedly told that
they should always strive to develop a test suite as strong as
possible, independently of their belief in the absence of faults.

As for the assessment criteria, we told them to value
different aspects related to test suites to guide them as much as



possible in their assessments so that the marks among students
were comparable; we also assigned a weight to each criterion
to calculate a mean mark. Had these criteria or their respective
weights been different, the mean scores in the assessments
could have been different too. However, we took five desirable
properties of a test set and assigned weights to better observe
differences between the pre-MS and post-MS assessments.

Finally, the available mutants in the SUT might not be
representative of the features they target both because of the
few mutants generated and because the difficulty to reveal each
mutant depends on the fragment of code. However, the main
purpose in RQ4 was to observe whether there were mutants
hardly covered by the students more than pointing to specific
uncovered features. Being this the situation, this fact reveals
that there are cases to which students, in general, do not pay
special attention or do not associate with possible faults.

VI. LESSONS LEARNED

a) Effect of knowing the mutation score: The results
of this experience reveal that the knowledge of the mutation
score significantly decreased the expectations the students had
on the test suites, especially concerning their coverage of
functionalities and possible changes in the internal state of the
program. It is interesting to observe the high correspondence
between the mutation score and the values assigned in the post-
MS assessments as that shows the extent to which the mutation
score had an impact on their subjective perception. The survey
reaffirms this conclusion as they mostly found mutation testing
useful and recommended the integration of testing concepts
and tools into introductory programming courses.

As the main lesson learned, this experience shows that
applying mutation testing after the manual design of test cases
is an effective method to make students more aware of the need
of using advanced testing techniques to increase the quality
of the test suites. However, the survey also reveals a need
to develop or adapt testing tools for educational purposes,
probably engaging them with more attractive GUIs.

b) Effect of introducing self and peer review: The fact
that half of the students recognized that their test suites were
worse than the peer’s test suite is an interesting finding that
supports the introduction of peer review in the classroom. The
results show that the differences between the self and peer
assessments matched well with the differences in the mutation
score of both test suites. Thus, the application of self and peer
assessments can be a useful method to help students calibrate
the relative quality of their manually-designed test suites.

The analysis of the assessment criteria allows us to observe
that our students mainly found shortcomings in the complete-
ness and the set of assertions of their tests; in contrast, they did
not detect as many deficiencies in their own test cases when
evaluating the criteria related to their clarity. Although more
than half of the students later acknowledged a possible bias in
their assessments, this gives evidence that the importance of
the design and legibility aspects should be reinforced in testing
courses as they might not be given the necessary attention.

c) Fault detection capability of the designed test cases:
The results show a significant correlation between two mea-
sures: the mutation score and the number of test cases. Still,
we can observe some cases where a high number of test cases
did not turn out in a higher mutation score when compared
with other more reduced test suites. It can be useful to stress
this result in the classroom to show students that it is not only
the quantity but also the quality of the test cases that matters.

The analysis of the execution matrices indicates that most of
the students paid more attention to some features and areas of
code than others, especially forgetting about advanced features
like those of the OO paradigm. This outcome is consistent with
the findings by Edwards and Shams [8], who observed that
several bugs introduced by the students in their solutions went
unnoticed by most of their test suites. Thus, a lesson learned
is that programming courses should underscore the problems
derived from the wrong use of these features and how to check
if an OO program presents the expected behavior.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented the results of an experience
based on the concepts of self and peer assessment and the
application of mutation testing in contrast to manual review.
The results derived from their combination lead us to think that
our students have now better understood the importance of the
coverage criteria taught throughout the course and of applying
advanced software testing techniques and tools in general. As
the main finding, this paper evinces the effect that the mutation
score had on their perception of the developed test suites when
compared to their initial expectations. This impact on their
perception can be drawn from the change in the evaluation of
the same test suite before and after applying mutation testing,
and from their support to an increase of software testing
education in the questionnaire. Another remarkable finding
is that our students were able to perceive the differences
between their test suites and the peer’s test suite, as there
is a notable correlation between the mutation coverage and
the assigned marks. Additionally, we could observe that our
students found their own tests more readable, that the test
suite size is not always related to the fault detection power,
and that some language features were less covered than others.
All this information could be wisely used to provide general
feedback to the group, discuss with them the reasons behind
these results, and make them more aware of the shortcomings.

In the future, we would like to investigate whether this
experience has any beneficial effect in subsequent sessions
where they have to develop tests for other programs. It would
be equally interesting to analyze whether reviewing the test
suites designed by their peers leads to a significant change or
improvement in their tests afterward, especially with regard to
the design and legibility criteria. We should also find ways to
make evident to them that an increase in the SUT complexity
would require greater testing efforts. Finally, a pending task
is to adapt the mutation tool with a focus on education, thus
making mutation testing more engaging to encourage students
to use it in their future developments as professionals.
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