
To get good student ratings should you only teach
programming courses? Investigation and

implications of student evaluations of teaching in a
software engineering context

Antti Knutas
LUT University

Lappeenranta, Finland
antti.knutas@lut.fi

Timo Hynninen
South-Eastern Finland University of Applied Sciences

Mikkeli, Finland
timo.hynninen@xamk.fi

Maija Hujala
LUT University

Lappeenranta, Finland
maija.hujala@lut.fi

Abstract—Student evaluations of teaching (SET) are commonly
used in universities for assessing teaching quality. However,
previous literature shows that in software engineering students
tend to rate certain topics higher than others: In particular
students tend to value programming and software construction
over software design, software engineering models and methods,
or soft skills. We hypothesize that these biases also play a
role in SET responses collected from students. The objective
of this study is to investigate how the topic of a software
engineering course affects the SET metrics. We accomplish this by
performing multilevel regression analysis on SET data collected
in a software engineering programme. We analyzed a total of
1295 student evaluations from 46 university courses in a Finnish
university. The results of the analysis verifies that the student
course evaluations exhibit similar biases as distinguished by
previous software engineering education research. The type of the
course can predict a higher SET rating. In our dataset, software
construction and programming courses received higher SET
ratings compared to courses on software engineering processes,
models, and methods.

Index Terms—quality of teaching, student evaluation of teach-
ing, software engineering education, multilevel modelling

I. INTRODUCTION

There are established recommendations of what should
be included in a software engineering curriculum [1] and
professionals have established a rough, evolving consensus
of what is included in the field of software engineering [2].
However, while the software engineering education community
and practitioners might agree on the content of the curriculum,
students completing these programs may not share this point of
view. In fact, studies have shown that in software engineering
and computing related fields students emphasize the importance
of programming, especially at the start of their studies, and
might devalue other parts of degree programs [3]–[6].

Student perceptions of the usefulness of the course topics is
important, not only for purposes of the student’s professional
growth and understanding of the field, but also for meaningful
dialogue about the content of the study program. One of the
most common ways universities engage in this dialogue is
through their quality control processes, which often use student

evaluations of teaching (SET) as the main source of data. It is
common for universities to use student evaluations of teaching
as an indicator of quality for both the teaching material and
teachers themselves [7], [8].

Sometimes universities connect teaching faculty performance
evaluation directly to student evaluation of teaching [8]. The
evaluations can affect the career prospects of the teaching
personnel because the administration can use the data col-
lected from SET questionnaires for decisions such as tenure,
promotion and merit-pay [9]. But; if students value certain
courses and topics over others, is there a built-in bias to the
SET metrics?

In addition to being treated as an objective data source by
administrative departments, SET is also being used by teachers
to reflect on their teaching practises [10]. For both reasons, it
is an important field of study. However, while SET has been
researched in general, it has received little attention in the field
of software engineering education (SEE). In this paper, we
address the research gap by exploring the statistical connection
between a software engineering course type and the SET.

We accomplish our research goal by performing multilevel
regression analysis on 1295 course evaluations from 46 software
engineering courses, gathered between autumn 2017 and spring
2020 in a Finnish university. Our main research question is as
follows:

How does the type of course affect student evaluation of
teaching in software engineering courses?

The rest of this paper is structured as follows. Section II
presents the related work on student evaluation of teaching, and
discusses the state of the art of SET in software engineering
education. Section II also establishes the research gap. Section
III presents the research approach, detailing the hypotheses,
data collection, and data analysis methods. The main results of
the study are presented in Section IV, while Section V discusses
these results. Finally, Section VI concludes the paper.

ar
X

iv
:2

10
2.

08
17

9v
1

 [
cs

.S
E

]
 1

5
Fe

b
20

21

II. BACKGROUND

A. Student evaluation of teaching (SET)

SET is a commonly used measure for teaching quality
in higher education [11]–[13]. In fact, according to many
articles, SET is the most common method to evaluate faculty’s
teaching performance in higher education institutions [13]–
[18]. It is surprising that SET is the only widely used method
for assessing teaching quality as there exists many different
methods of assessing teacher and teaching quality besides
student evaluations, including peer-rating, self-evaluation, stu-
dent interviews, learning outcome measures and teaching
portfolios [19].

SET is also a controversial measure for teaching quality,
as student ratings of teaching and student learning are not
related [12]. Previous research has shown that SET is a
multidimensional concept [11], [20]–[24], whose validity for
formative or summative purposes remains questioned [9], [17].
There is ample evidence that various student, teacher and
course characteristics play a role in SET [9], [11], [25], [26]:
For example, on average female students provide higher SET
ratings than males [27]. Some evidence also indicates that older
students appear to provide higher SET ratings [17]. Teachers’
charisma appears to be associated strongly with perceived
teaching ability [7], and physically attractive teachers are likely
to receive higher SET ratings [28]–[30].

As for how teaching methods affect SET ratings, previous
studies’ results are somewhat ambiguous. Some evidence
indicates that students rate online courses lower than face-
to-face courses [31], whereas results from Carle [32] indicate
no differences between instruction methods except for teachers
with racial minority status. A characteristic often found to
be important is course rigor, which Clayson [14] states is
associated negatively with SET ratings in general. Rigor has
been measured, e.g., through students’ perceptions of course
difficulty [33]–[36], course workload [22], [33], [34], and
course pace [33], [34].

B. SET in computer science and software engineering educa-
tion

Existing work on SET in a computer science education (CSE)
or SEE is scarce [37], and to our knowledge notable research
efforts in the cross-section of SET and computing education
have not been made in the past decade.

There are some recent works that deal with SET in software
engineering and computing education. Kavalchuk et al. [38]
analyzed data from RateMyProfessor.com to distinguish the
qualities of popular CS and SWE instructors. In a similar vein
Carbone and Ceddia mined student evaluations for improvement
areas in the ICT field [39].

The concept of SET has been used implicitly in many
computing education papers: In these works teaching tools,
pedagogical interventions, or curricular implementations have
been validated by using student feedback data. Often student
evaluations are used by researchers in the CSE/SEE commu-
nities to validate the design of courses. For example, among

(the many) recent software engineering papers the study of
Ralph [40] evaluates the implementation of a course in Software
Project Management, and Agneli et al. [41] a graduate course
in web service design.

The low number of studies related to the use of SET in
SEE is an essential research gap, since previous studies have
shown that software engineering and computer science students
value different areas of their fields differently. Research on
student misconceptions show that students emphasize hands-
on programming over other subfields, such as design or
engineering processes [3].

Furthermore, existing research presents evidence that stu-
dents consider particular skills as more central to software
engineering or computing. For example, Ivins et al. [3] found
that writing computer programs was emphasized as a skill
compared to requirements engineering or design. Similarly,
Gold-Veerkamp found [6] that implementation is considered
strongly part of software engineering, whereas some parts
of design, requirements engineering, and quality assurance
were not. Hewner [4] had similar outcomes in a related
field, computer science, where the role of programming was
emphasized over computer science theory.

III. METHODS

A. Research approach and hypotheses

In this study we examine whether student evaluations of
software engineering courses vary between different course
types. More specifically, we address a part of the research gap
presented in Section II-B by investigating whether the student
evaluations of teaching in software engineering courses reflect
the fact that students tend to value certain course topics over
others.

We base our course type categorization on the Guide to
the Software Engineering Body of Knowledge (SWEBOK)
[2]. SWEBOK was selected because the software engineering
curriculum at the studied university follows the ACM/IEEE
2014 joint task force guidelines [1], which in turn have been
based on empirical research and existing knowledge bases,
such as SWEBOK [2]. Furthermore, several other analyses in
the field apply SWEBOK [42].

Our hypotheses are as follows:

Hypothesis 1. The type of course (based on SWEBOK cate-
gorization) affects student evaluation of teaching in software
engineering courses.

Hypothesis 2. Courses related to software construction and
programming provide higher SET ratings than courses related
to other knowledge areas.

B. Data

We test our hypotheses using student feedback data from
the feedback surveys carried out at a Finnish university
between academic years 2017-2018 and 2019-2020. The data
was collected through two slightly different student feedback

questionnaires1: one for the academic year 2017-2018 and the
other for 2018-2019 and 2019-2020.

The first questionnaire (2017-2018) comprised of five Likert-
scale questions assessing students’ motivation, effort put
into learning, workload, and teaching methods and course
implementation in relation to perceived learning. Five open-
ended questions were included as well.

The second questionnaire (2018-2019 and 2019-2020)
comprised of four Likert-scale questions assessing students’
motivation, workload, and teaching methods and course as
a whole in relation to perceived learning. In addition, four
open-ended questions were included in the questionnaire.

The survey questionnaires were sent to students via email
after they completed the courses. The surveys mostly were
sent to all students enrolled in the courses, but teachers can
collect attendance and limit feedback surveys to only those
students who attended classes. Responding was anonymous
and voluntary for all students.

The sample is restricted to student feedback from software
engineering courses with ten or more student feedback ques-
tionnaires filled out. The sample includes 415 responses from
16 courses in 2017-2018, 395 responses from 15 courses in
2018-2019, and 485 responses from 15 courses in 2019-2020.
As four of the Likert-scale questions were identical, or very
similar, between the two student feedback questionnaires used,
we combined all responses from each three academic year
into one data set. The combined data set consists of student
feedback collected from 22 courses taught one to three times
over the three academic years studied. The total number of
course implementations is 46 and the total number student
feedback questionnaires filled out is 1295.

C. Measures

1) Dependent variable: We carried out an exploratory factor
analysis of the four SET items of the combined data set. Factors
were extracted using principal factor analysis with promax
rotation. A scree plot of eigenvalues was used to determine
the optimal number of factors.

One factor was identified. Two items reflecting student’s
perceptions about the course and its teaching methods in
relation to perceived learning had high loadings (> 0.8) on
this factor. The items exhibited good reliability (Cronbach’s
alpha = 0.856), and they were averaged together to form a
measure of student’s learning experience on a scale from 1
(the worse) to 5 (the best). This is our dependent variable in
Hypotheses 1 and 2.

Two items - ‘My motivation in this course was (1 = very
low; 5 = very high)’ and ‘The workload relative to the study
credits awarded was (1 = very light; 5 = very heavy)’ - did
not load on the factors and were used as single-item measures
of student’s motivation and perceived workload. These items
serve as control variables in the analysis because the previous
literature has found evidence that student’s motivation and
perceived workload play a role in SET. According to, for

1Survey questions are available at https://doi.org/10.5281/zenodo.4519256

example, Griffin [43] and Wachtel [26], students’ pre-course
motivation or prior subject interest is positively associated with
SET: interested students appear to give higher ratings. In turn,
“just right” level of workload leads to better SET ratings [22],
[33].

2) Course type: We classified the 22 courses into three
categories according to the course content. The categories are
based on SWEBOK knowledge areas (see Table I) and labeled
as A) Software construction and programming, B) Software
engineering process, models and methods, and C) Professional
practices for software engineering. The categories are referred
to here as course types. Course type is used as an independent
variable in the analysis.

D. Analysis methods

We use multilevel regression analysis [44] to address the
research questions. The main reason for employing multilevel
analysis is that the observations of the SET data presumably
are not independent. Student evaluations are nested within
course implementations and course implementations are nested
within courses (see Figure 1). In other words, for example,
SETs from the same course implementation presumably share
more similarities than they do with SETs from other course
implementations. Ignoring data clustering may lead to under-
estimated standard errors of regression coefficients and, thus,
overly small p-values. Multilevel analysis takes into account
this clustered structure of the data. In addition, it allows us to
examine the relationships between variables at different levels
of the data (course type and student’s learning experience).

Multilevel models allow for residual components at all levels
– at course level (level 3 in Figure 1), course implementation
level (level 2 in Figure 1) and student level (level 1 in Figure
1). However, in preliminary analyses we found out that the
amount of level-3 variation is very small. Only 0.86 percent
of the variance in the learning experience was situated at level
3 (course level). The rule of thumb is that if 5 percent or
more of the variance is attributable to the level it should not
be ignored [45]. Thus, we chose to ignore the third level and
fit two level (student level and course implementation level)
models instead.

Hypotheses 1 and 2 are jointly tested by fitting the following
random coefficient model with student’s learning experience
(LE) as the outcome variable and student’s motivation (MO),
perceived workload (WL) and course type (COURSETYPE)
as predictors:

LEij = β0 + β1MOij + β2WLij + β3WL2
ij

+ β4COURSETY PEj + u0j + u1jWLij + u2jWL2
ij + eij

(1)

The relationship between learning experience and perceived
workload is assumed to be curvilinear as suggested, for example,
by Centra [33]. In addition, the impact of perceived workload
on the learning experience is assumed to differ between courses.

We used Stata/SE 16.1 software for all analyses.

Table I
COURSE TYPES AND CORRESPONDING SWEBOK KNOWLEDGE AREAS

Course type SWEBOK knowledge areas

A. SW construction and programming SW construction
SW testing
SW maintenance

B. SW engineering process, models and method SW design
SW engineering models and methods
SW requirements
SW engineering process
SW quality

C. Professional practices for SW engineering SW engineering professional practice
SW engineering economics
SW engineering management

Figure 1. Illustration of the data structure

IV. FINDINGS

Descriptive statistics of the variables are presented in
Tables II and III. As shown in Table II, the average learning
experience (range = 1-5, mean = 3.46, SD = 1.13) is slightly
above the middle of the range indicating that, on average,
the software engineering students have rather good learning
experience. Furthermore, students’ average motivation is 3.67
(range = 1-5, SD = 1.06) and the average perceived workload
is 3.61 (range = 1-5, SD = 0.92). It thus seems that, on
average the software engineering students are reasonably well
motivated and, according to the them, the workload of the
software engineering courses is not too high or too low.

Table III shows the proportion of course implementations
within each course type and also the mean learning experience

for each of them. As shown, the mean learning experience
varies from 3.08 in SW engineering process, models and
method courses to 3.63 in SW construction and programming
courses.

As a preliminary analysis, a one-way ANOVA was was
conducted to compare the effect of course type on the learning
experience. An analysis of variance showed that the effect
was statistically significant, F(2,1279) = 24.27, p < 0.001
suggesting the need for a more thorough analysis of the role
of course type in students’ learning experience.

To determine how course type and control variables (student’s
motivation and perceived workload) relate to student’s learning
experience, all variables are considered jointly in a multilevel
regression model (1).

Table II
DESCRIPTIVE STATISTICS OF THE STUDENT LEVEL VARIABLES

Variable Mean SD Min Max n

Learning experience 3.46 1.13 1 5 1282
Motivation 3.67 1.06 1 5 1287
Perceived workload 3.61 0.92 1 5 1280

Table III
DESCRIPTIVE STATISTICS OF THE COURSE TYPE

Course type No. of course implementations Percent Mean learning experience

A. SW construction and programming 27 58.70 3.63
B. SW engineering process, models and method 10 21.74 3.08
C. Professional practices for SW engineering 9 19.57 3.27

Table IV
ESTIMATED PARAMETERS OF THE TWO-LEVEL RANDOM COEFFICIENT MODELS PREDICTING STUDENT’S PERCEPTIONS OF LEARNING

Learning experience

Fixed effects
Intercept 3.591*** (0.079)
Motivation 0.525*** (0.025)
Workload -0.062 (0.040)
Workload2 -0.121*** (0.028)
Course type

A
B -0.353* (0.149)
C -0.165 (0.147)

Random effects
var workload 0.021
var workload2 0.005
var u 0.110
var e 0.722

Observations 1268
No. of course occurrences 46

Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001

Table IV presents the estimation results for the random
coefficient model predicting student’s learning experience. As
shown, the coefficient for the course type B is negative and
statistically significant (b = -0.353, p < 0.05) meaning that
students rate their learning experience significantly worse in
type B (software engineering process, models and methods)
courses compared to type A courses (software construction and
programming). Thus, Hypothesis 1 is supported and the results
indicate that the type of course indeed has an effect on student
evaluation of teaching in software engineering courses. When
it comes to course type C (professional practices for software
engineering), there is no statistically significant difference
between the type C and type A courses in students’ learning
experience. Therefore Hypothesis 2 is only partly supported:
Courses related to software construction and programming
provide higher SET ratings than courses related to some, but
not all, other knowledge areas.

As to the control variables, student’s motivation positively
affects (b = 0.525, p < 0.001) learning experience. This finding
is in line with previous observations that students’ motivation

or subject interest is positively associated with SET [26], [43].
In turn, the coefficient for the effect of squared workload
on learning experience is negative (b = -0.121, p < 0.001),
indicating that too light or too heavy workload leads to worse
learning experience, and further confirming the findings of
Centra [33] and Marsh [22].

V. DISCUSSION

The objective of this study was to investigate the effect of the
type (or topic) of a course on the student evaluations of teaching
in a software engineering programme. We accomplished this
goal by performing a multilevel modeling analysis on a set of
1295 evaluations collected from SE students from a total of 46
different course implementations. Previous research maintains
that students value certain course topics, namely programming
and software construction, over others. At the same time,
universities often use SETs as their primary (or sole) metric
for teaching quality. Therefore, establishing how the type (or
topic) of a course affects the SETs is an important research
topic.

In summary, our results suggest that the course type plays
an essential role in SET responses of software engineering
courses. It seems that students give higher ratings to software
construction and programming related courses compared to
some other knowledge areas when evaluating their learning
experience. This result is in line with the works on student
perceptions and expectations of the different SE topics.

We used the SWEBOK knowledge areas as the basis of our
course categorization. Regarding our hypothesis, however, there
was no significant statistical difference between courses on the
professional practices for software engineering (category C) and
programming courses. This finding was somewhat surprising,
since based on the established literature we expected that
programming courses always get more positive ratings. This
suggests that while the course type does have an affect on
the SET ratings, there must also be other contributing factors
that have a significant effect on the SETs. During preliminary
analyses we tested the effect of two other level-2 factors,
teaching language and course size, on learning experience.
However, these variables were excluded from the final model
due to collinearity with course type.

In the following sections, we first discuss implications of
our findings and then address threats to validity.

A. Implications

Our findings have implications for both the field of research
in student perceptions of software engineering education, and
the software engineering education practise.

First, our findings connect the field of student evaluation of
teaching to the existing line of research in software engineering
education that examined bias in what students consider to be
essential courses [3]–[6].

Second, the findings have results for the practise of software
engineering education, due to the fact that many universities
use quantitative results from student surveys for their quality
control and lecturer job performance processes. Our findings
indicate that within our geographically limited dataset, students
have bias towards programming courses and systematically give
higher “learning experience” rating to practical programming
courses. This bias cannot be attributed to lecturer as predictor,
since examining course descriptions showed that lecturers
taught multiple types of courses and sometimes switched
courses over the duration of the datasets. Based on this, we
publish a series of recommendations for practitioners who use
SET in software engineering education:

• Consider the effect of student bias when evaluating
lecturers. When using quantitative student evaluation of
teaching to evaluate teachers, bias [27], [46] should be
corrected against and current critique of SET methods
should be considered before use.

• Evaluate the course evaluation instruments, and consider
also utilizing qualitative metrics in addition to numeric
data. As established in SET research, SET metrics are
seldom objective. Other, perhaps more qualitative metrics
to evaluate teaching quality, should also be included in a
holistic quality process.

• Give students a comprehensive vision of software engi-
neering work. As part of introduction courses, software
engineering students should be better introduced to the
entire field and any misconceptions addressed.

• Connect software engineering theory to practise. Fairly or
not, students currently indicate (in the studied organiza-
tion) that their “learning experience” was lower in theory-
based courses. This might be due to the fact that in the
studied organisation, most courses concentrate on a single
topic. Can best practises from the software engineering
education research community, such as problem-based
learning [47], be applied to connect theory with practise
better?

The main limitation in this study is that the dataset is
limited geographically to one organization and the findings
cannot be generalized quantitatively. However, Urquhart [48]
synthesizes a line of thinking and presents a concept of
theoretical generalization 2, where several qualitative or theory-
based contributions are related to each other. From this
perspective, our findings have wider utility in supporting similar
individual findings from Ivins et al. [3], Hewner [4], and Gold-
Veerkamp [50]. What is still required for future research is
confirming that the student bias, shown to exist, affects student
evaluation of teachers in other organizations.

B. Threats to validity
In this Section, we categorize and address threats to validity,

following recommendations Wohlin et al. [49] have summarized
from the seminal work by Campbell et al. [51] and Yin [52].

Conclusion validity: The used statistical analysis methods
are included in the best practises of survey outcome anal-
ysis [49]. The analysis outcomes have sufficient statistical
significance.

Construct validity: The student feedback questionnaires
used at the organization are based on accepted SET literature
and constructs such as learning experience [14], motivation [24],
[43] and perceived workload [33]. Additionally, the course
type categorization is based on SWEBOK and ACM curricula
recommendations.

Internal validity: The survey process itself is guided
by the organization’s quality assurance department and in-
dependent from the course lecturers. Student motivation and
workload were controlled factors. While lecturer demographics
or teaching methods were not controlled through the model, the
department did not have a large quantity of the lecturers at the
time and many lecturers taught courses across the SWEBOK
categories. Furthermore, lecturers swapped courses during the
data collection period, increasing diversity.

External validity: The findings have been related to
other studies in the field and confirm their findings using
the principles of theoretical and analytical generalization.

Reliability: The data analysis process was cross-checked
by a team of three researchers with experience in the field.
The data has been collected and validated by an independent
quality assurance department.

2Also known as analytical generalization [49]

VI. CONCLUSION

To answer our research question, how does the type of a
course affect student evaluation of teaching in software engi-
neering courses: The type (or topic) of the course can predict
a higher SET rating. Software construction and programming
courses receive higher SET ratings compared to some other
topics. However, programming courses do not always provide a
better SET rating. SET is a complex, multidimensional concept,
and its validity for evaluating teaching quality is debated in
the education research literature.

This paper establishes, to our knowledge, the first explicit
steps towards understanding the dimensions of SET in the
software engineering education context. Our study extends the
state of the art by synthesizing the established knowledge on
how students tend to value some knowledge areas over others,
and showing evidence of this in practice by analysing SET data.
The results should provide insights about the use of SET for
both software engineering educators and faculty administrators.
In an increasingly data-driven world, we call on the education
community to acknowledge the limitations and biases that exist
in the way teaching quality is most commonly measured.

In this paper, we follow Garcia-Martinez’s 2010 call [37]
for more research in student evaluation of teaching in fields
related to computing that has mostly gone unanswered. We
extend the state of the art by connecting findings in SET to the
previous research of student bias by Ivins et al., Hewner, and
Gold-Veerkamp [3]–[6]. In this manner, we extend the scope
of investigation from evaluating teacher characteristics [38] to
systematic evaluation of course characteristics.

The main limitation of this paper is the geographically
limited scope of the dataset. While the study covers data
from multiple years, collecting data from other organizations
would support generalizing the findings. For future research,
we recommend wider replication studies to investigate if the
phenomenon can be replicated in other software engineering
programs and closely related fields.

REFERENCES

[1] M. Ardis, D. Budgen, G. W. Hislop, J. Offutt, M. Sebern, and W. Visser,
“Se 2014: Curriculum guidelines for undergraduate degree programs in
software engineering,” Computer, no. 11, pp. 106–109, 2015.

[2] P. Bourque, R. E. Fairley et al., Guide to the software engineering body
of knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society
Press, 2014.

[3] J. Ivins, B. R. Von Konsky, D. Cooper, and M. Robey, “Software
engineers and engineering: A survey of undergraduate preconceptions,”
in Proceedings. Frontiers in Education. 36th Annual Conference. IEEE,
2006, pp. 6–11.

[4] M. Hewner, “Undergraduate conceptions of the field of computer science,”
in Proceedings of the ninth annual international ACM conference on
International computing education research - ICER ’13. San Diego,
San California, USA: ACM Press, 2013, p. 107. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2493394.2493414

[5] ——, “How CS undergraduates make course choices,” in Proceedings
of the tenth annual conference on International computing education
research - ICER ’14. Glasgow, Scotland, United Kingdom: ACM Press,
2014, pp. 115–122. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2632320.2632345

[6] C. Gold-Veerkamp, “A software engineer’s competencies: Undergraduate
preconceptions in contrast to teaching intentions,” in Proceedings of the
52nd Hawaii International Conference on System Sciences, 2019.

[7] M. Shevlin, P. Banyard, M. Davies, and M. Griffiths, “The validity of
student evaluation of teaching in higher education: love me, love my
lectures?” Assessment & Evaluation in Higher Education, vol. 25, no. 4,
pp. 397–405, 2000.

[8] F. Zabaleta, “The use and misuse of student evaluations of teaching,”
Teaching in Higher Education, vol. 12, no. 1, pp. 55–76, 2007.

[9] P. Spooren, B. Brockx, and D. Mortelmans, “On the validity of student
evaluation of teaching: The state of the art,” Review of Educational
Research, vol. 83, no. 4, pp. 598–642, 2013.

[10] T. M. Winchester and M. Winchester, “Exploring the impact of faculty
reflection on weekly student evaluations of teaching,” International
Journal for Academic Development, vol. 16, no. 2, pp. 119–131, 2011.

[11] H. W. Marsh, “Students’ evaluations of university teaching: Research
findings, methodological issues, and directions for future research,”
International journal of educational research, vol. 11, no. 3, pp. 253–388,
1987.

[12] B. Uttl, C. A. White, and D. W. Gonzalez, “Meta-analysis of faculty’s
teaching effectiveness: Student evaluation of teaching ratings and student
learning are not related,” Studies in Educational Evaluation, vol. 54, pp.
22–42, 2017.

[13] S. L. Wallace, A. K. Lewis, and M. D. Allen, “The state of the literature
on student evaluations of teaching and an exploratory analysis of written
comments: Who benefits most?” College Teaching, vol. 67, no. 1, pp.
1–14, 2019.

[14] D. E. Clayson, “Student evaluations of teaching: Are they related to what
students learn? a meta-analysis and review of the literature,” Journal of
Marketing Education, vol. 31, no. 1, pp. 16–30, 2009.

[15] A. Hoel and T. I. Dahl, “Why bother? student motivation to participate
in student evaluations of teaching,” Assessment & Evaluation in Higher
Education, vol. 44, no. 3, pp. 361–378, 2019.

[16] D. Kember, D. Y. Leung, and K. Kwan, “Does the use of student feedback
questionnaires improve the overall quality of teaching?” Assessment &
Evaluation in Higher Education, vol. 27, no. 5, pp. 411–425, 2002.

[17] P. Spooren, “On the credibility of the judge: A cross-classified multilevel
analysis on students’ evaluation of teaching,” Studies in educational
evaluation, vol. 36, no. 4, pp. 121–131, 2010.

[18] P. Spooren and F. Van Loon, “Who participates (not)? a non-response
analysis on students’ evaluations of teaching,” Procedia-Social and
Behavioral Sciences, vol. 69, pp. 990–996, 2012.

[19] R. A. Berk, “Survey of 12 strategies to measure teaching effectiveness,”
International journal of teaching and learning in higher education,
vol. 17, no. 1, pp. 48–62, 2005.

[20] H. W. Marsh, “The influence of student, course, and instructor charac-
teristics in evaluations of university teaching,” American Educational
Research Journal, vol. 17, no. 2, pp. 219–237, 1980.

[21] ——, “Students’ evaluations of university teaching: Dimensionality,
reliability, validity, potential baises, and utility.” Journal of educational
psychology, vol. 76, no. 5, p. 707, 1984.

[22] ——, “Distinguishing between good (useful) and bad workloads on
students’ evaluations of teaching,” American Educational Research
Journal, vol. 38, no. 1, pp. 183–212, 2001.

[23] ——, “Students’ evaluations of university teaching: Dimensionality,
reliability, validity, potential biases and usefulness,” in The scholarship of
teaching and learning in higher education: An evidence-based perspective.
Springer, 2007, pp. 319–383.

[24] H. W. Marsh, B. Muthén, T. Asparouhov, O. Lüdtke, A. Robitzsch, A. J.
Morin, and U. Trautwein, “Exploratory structural equation modeling,
integrating cfa and efa: Application to students’ evaluations of university
teaching,” Structural equation modeling: A multidisciplinary journal,
vol. 16, no. 3, pp. 439–476, 2009.

[25] J. S. Pounder, “Is student evaluation of teaching worthwhile?” Quality
Assurance in Education, 2007.

[26] H. K. Wachtel, “Student evaluation of college teaching effectiveness: A
brief review,” Assessment & Evaluation in Higher Education, vol. 23,
no. 2, pp. 191–212, 1998.

[27] J. Kohn and L. Hatfield, “The role of gender in teaching effectiveness
ratings of faculty,” Academy of Educational Leadership Journal, vol. 10,
no. 3, p. 121, 2006.

[28] R. A. Gurung and K. M. Vespia, “Looking good, teaching well? linking
liking, looks, and learning,” Teaching of Psychology, vol. 34, no. 1, pp.
5–10, 2007.

[29] D. S. Hamermesh and A. Parker, “Beauty in the classroom: Instruc-
tors’ pulchritude and putative pedagogical productivity,” Economics of
Education Review, vol. 24, no. 4, pp. 369–376, 2005.

http://dl.acm.org/citation.cfm?doid=2493394.2493414
http://dl.acm.org/citation.cfm?doid=2632320.2632345
http://dl.acm.org/citation.cfm?doid=2632320.2632345

[30] T. C. Riniolo, K. C. Johnson, T. R. Sherman, and J. A. Misso, “Hot
or not: Do professors perceived as physically attractive receive higher
student evaluations?” The Journal of General Psychology, vol. 133, no. 1,
pp. 19–35, 2006.

[31] P. Lowenthal, C. Bauer, and K.-Z. Chen, “Student perceptions of online
learning: An analysis of online course evaluations,” American Journal
of Distance Education, vol. 29, no. 2, pp. 85–97, 2015.

[32] A. C. Carle, “Evaluating college students’ evaluations of a professor’s
teaching effectiveness across time and instruction mode (online vs. face-
to-face) using a multilevel growth modeling approach,” Computers &
Education, vol. 53, no. 2, pp. 429–435, 2009.

[33] J. A. Centra, “Will teachers receive higher student evaluations by giving
higher grades and less course work?” Research in Higher Education,
vol. 44, no. 5, pp. 495–518, 2003.

[34] H. W. Marsh and L. A. Roche, “Effects of grading leniency and low
workload on students’ evaluations of teaching: Popular myth, bias,
validity, or innocent bystanders?” Journal of Educational Psychology,
vol. 92, no. 1, p. 202, 2000.

[35] R. Remedios and D. A. Lieberman, “I liked your course because you
taught me well: The influence of grades, workload, expectations and
goals on students’ evaluations of teaching,” British Educational Research
Journal, vol. 34, no. 1, pp. 91–115, 2008.

[36] K.-f. Ting, “A multilevel perspective on student ratings of instruction:
Lessons from the chinese experience,” Research in Higher Education,
vol. 41, no. 5, pp. 637–661, 2000.

[37] S. Garcia-Martinez, “Evaluation of teaching effectiveness in computer
science education and related fields: A brief review,” in EdMedia+
Innovate Learning. Association for the Advancement of Computing in
Education (AACE), 2010, pp. 1948–1953.

[38] A. Kavalchuk, A. Goldenberg, and I. Hussain, “An empirical study of
teaching qualities of popular computer science and software engineering
instructors using ratemyprofessor. com data,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering:
Software Engineering Education and Training, 2020, pp. 61–70.

[39] A. Carbone and J. Ceddia, “Common areas for improvement in ict
units that have critically low student satisfaction,” in Proceedings of
the Fourteenth Australasian Computing Education Conference - Volume
123, ser. ACE ’12. AUS: Australian Computer Society, Inc., 2012, p.
167–176.

[40] P. Ralph, “Re-imagining a course in software project management,”
in Proceedings of the 40th International Conference on Software
Engineering: Software Engineering Education and Training, 2018, pp.
116–125.

[41] L. Angeli, J. J. J. Laconich, and M. Marchese, “A constructivist redesign
of a graduate-level cs course to address content obsolescence and student
motivation,” in Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, 2020, pp. 1255–1261.

[42] V. Garousi, G. Giray, and E. Tuzun, “Understanding the Knowledge Gaps
of Software Engineers: An Empirical Analysis Based on SWEBOK,”
ACM Transactions on Computing Education, vol. 20, no. 1, pp. 1–33,
Feb. 2020. [Online]. Available: https://dl.acm.org/doi/10.1145/3360497

[43] B. W. Griffin, “Grading leniency, grade discrepancy, and student ratings
of instruction,” Contemporary educational psychology, vol. 29, no. 4, pp.
410–425, 2004.

[44] S. W. Raudenbush and A. S. Bryk, Hierarchical linear models: Applica-
tions and data analysis methods. sage, 2002, vol. 1.

[45] M. Mehmetoglu and T. G. Jakobsen, Applied statistics using Stata: a
guide for the social sciences. Sage, 2016.

[46] D. Feistauer and T. Richter, “Validity of students’ evaluations of teaching:
Biasing effects of likability and prior subject interest,” Studies in
Educational Evaluation, vol. 59, pp. 168–178, 2018.

[47] S. Ouhbi and N. Pombo, “Software engineering education: Challenges and
perspectives,” in 2020 IEEE Global Engineering Education Conference
(EDUCON). IEEE, 2020, pp. 202–209.

[48] C. Urquhart, H. Lehmann, and M. D. Myers, “Putting the ‘theory’back
into grounded theory: guidelines for grounded theory studies in informa-
tion systems,” Information systems journal, vol. 20, no. 4, pp. 357–381,
2010.

[49] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[50] C. Gold-Veerkamp, “Using grounded theory methodology to discover
undergraduates’ preconceptions of software engineering,” in 2018 IEEE

Global Engineering Education Conference (EDUCON). IEEE, 2018,
pp. 707–711.

[51] N. N. L. Gage and J. C. Stanley, Experimental and quasi-experimental
designs for research. Chicago: R. McNally, 1963.

[52] R. K. Yin, Case study research and applications: Design and methods.
Sage publications, 2017.

https://dl.acm.org/doi/10.1145/3360497

	I Introduction
	II Background
	II-A Student evaluation of teaching (SET)
	II-B SET in computer science and software engineering education

	III Methods
	III-A Research approach and hypotheses
	III-B Data
	III-C Measures
	III-C1 Dependent variable
	III-C2 Course type

	III-D Analysis methods

	IV Findings
	V Discussion
	V-A Implications
	V-B Threats to validity

	VI Conclusion
	References

