
Designing Divergent Thinking, Creative Problem Solving Exams

Jeff Offutt
Department of Computer Science, George Mason

University, USA

offutt@gmu.edu

Kesina Baral
Department of Computer Science, George Mason

University, USA

kbaral4@gmu.edu

ABSTRACT

This experience report paper reports on case studies of final exams

that used creative problem solving to assess students’ ability to apply

the material, and divergent thinking to ensure that each student’s

exam was unique. We report on two senior-level software engineer-

ing courses, taught a total of six times across three semesters. The

paper gives enough information for readers to adapt this method

in their own courses. Our exams include built-in divergence prop-

erties, which are elements or decisions that lead students to more

than one good answer. Based on our experience, divergent think-

ing, creative problem solving exams not only provide excellent

assessments of student knowledge, but ensure the integrity of the

exam process, even when students work without supervision. We

developed this strategy during the pandemic when all courses were

online, but find them to be better than our traditional exams and

are now using this strategy for in-person courses.

CCS CONCEPTS

• Applied computing→ Education.

KEYWORDS

final exam, e-learning

ACM Reference Format:

Jeff Offutt and Kesina Baral. 2022. Designing Divergent Thinking, Cre-

ative Problem Solving Exams. In 44nd International Conference on Software

Engineering:Software Engineering Education and Training (ICSE-SEET ’22),

May21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3510456.3514162

1 INTRODUCTION

This paper reports on experience with an unusual way to design

and deliver final exams in software engineering courses. The con-

cept was birthed by the needs of online teaching during the pan-

demic, and was successful enough to be used during our current

in-person courses. Our experience covers two different courses and

four semesters of use.

In March 2020, university teachers everywhere were subjected

to an abrupt and unanticipated switch to online teaching. For most,

this occurred mid-semester, well after the course had been designed.

Most of us had little or no experience teaching or learning online,

This work is licensed under a Creative Commons Attribution International 4.0
License.
ICSE-SEET ’22, May21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9225-9/22/05. . . $15.00
https://doi.org/10.1145/3510456.3514162

and were urgently scrambling to learn, adapt, and invent new ped-

agogies. Despite years of experience teaching thousands of univer-

sity students, this experience crystallized the phrase “building the

airplane while it is flying.”

Our most urgent week-by-week need was to find ways to ensure

students could keep learning–next week. But we also saw a large

challenge looming down the road: How can we run a final exam

that provides a valid assessment of our students’ learning, fairly, eq-

uitably, and securely? One thing was immediately clear–we would

not be the same room as our students during the exam.

We investigated lockdown browsers [8, 19], but identified many

problems. They are prone to false negatives, because students can

easily find many ways to cheat without being visible [9, 13, 18].

They are also prone to false positives, by flagging innocent behavior

like fidgeting, staring out a window, or even being interrupted by

pets and children This is particularly problematic for students with

ADHD, haptic learners, and students with dark-toned skins [11, 12,

16]. Students also complain that lockdown browsers constitute an

invasion of privacy [10], increase anxiety (already increased because

of Covid), and they are problematic for students with technology

limitations, including wifi problems.

The authors1 decided to go into a different direction. The inspi-

ration came from an international academic competition program

called Odyssey of the Mind (OM) [6]. Offutt had coached an OM

team of elementary students for several years, and had served as

judge several times. OM poses intellectual problems to a team of

students, who then design and implement solutions to those prob-

lems. For example, given a bag of different types of pasta noodles,

some nails, and chewing gum, build a tower as tall as you can.

OM is considered an effective way to teach children to be future

engineers and is supported by organizations such as NASA. OM

features two major tenets that can be very helpful in ensuring the

integrity of online exams.

First, Odyssey of the Mind emphasizes creative problem solving.

Students are expected to come up with solutions that may or may

not already be envisioned by the teachers. Second, OM requires

students to exhibit divergent thinking in their solutions. A divergent

problem has more than one solution, and divergent thinking means

that different students will come up with different solutions. Some

OM problems explicitly require divergent thinking, for example,

given three or items, find as many diverging ways as possible to

move a marble from one table to another.

Our key insight was that divergent thinking could ensure that

each student provides unique solutions. This is easier in a problem-

solving exam than with traditional questions, so we introduced

divergent thinking in the context of a “tech challenge” exam. That is,

we asked them to apply their knowledge in creative ways instead

of demonstrating their knowledge by answering questions. The

1Offutt was instructor for all courses and Baral was a graduate assistant.

82

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-
SEET)

http://creativecommons.org/licenses/by/4.0/

ICSE-SEET ’22, May21–29, 2022, Pittsburgh, PA, USA Jeff Offutt and Kesina Baral

expectation is that every student will have a unique solution, and

collaboration will be obvious to the instructor. The concept of

divergent thinking had been found to be very useful in introductory

programming courses [14] with programming assignments and in

crowded classroomswith quizzes, but we had not tried the approach

with a final exam before.

Our general concept started with dividing the exam into two

parts. Part 1, worth one-third of the final exam score, was an open-

book set of questions to check general knowledge. Part 2, worth two-

thirds of the final exam score, was a tech challenge problem whose

specifics depended on the course. It is important to note that the

first time we used this format, we were completely unsure whether

it would achieve our goals, including yielding a valid assessment

while ensuring integrity of the exam. But if there is any good time to

experiment with a creative, divergent thinking, teaching pedagogy,

a pandemic panic semester when we all teetered on the edge of

disaster seemed appropriate.

This paper starts with educational context of the reported ap-

proach in section 2. We then describe the goal, design and some

sample divergent thinking exams in section 3. Findings, discus-

sion, and assessment of our experience are described in section 4,

followed by reflections in section 5. Conclusions are presented in

section 6.

2 EDUCATIONAL CONTEXT

The overall context is important to any educational technique. Later

in the paper, we discuss how the divergent thinking exam can

be applied in other contexts, but here we describe how we used

divergent thinking exams in two different software engineering

courses across three semesters. Table 1 provides learning objectives

and other details of the courses.

The software testing course starts with a module on software

evolution, then teaches topics such as test automation, test driven

development, and test criteria. It is required for all software engi-

neering majors and is a senior elective for computer science majors.

The web development course teaches usability concepts, then how

to design and build web applications, primarily focusing on tech-

nologies such as J2EE [15] and React JS [7], and including concepts

such as maintaining state on the web, handling concurrency and

multiple users, and persisting data in databases. It is a senior elective

for software engineering majors and for computer science majors.

Our experience includes six online sections with a total of 299

students, and one in-person section in Fall 2021 with 41 students.

Enrollments are summarized in Table 2. All online meetings were

taught synchronously.

Previous final exams were always in-person as a group, in a

duration of 2 hours, 45 minutes. We call these “traditional” final

exams in this paper. The traditional exams contained a mix of

question types, including true-false, multiple-choice, short answer,

term definitions, and problem solving. For example:

(1) Faults and failures

A Java method returned the wrong value, because a pair

of parentheses was missing, causing the program to print

the wrong number.

(a) From the above description, what was the fault and what was the

failure?

(b) Suppose the operation was “A + B * C” when it should have been

“(A + B) * C”. Give test values for the variables A, B, and C that

would not cause the fault to result in a failure.

(2) Draw a diagram to illustrate what happens when a JSP is

accessed through a web browser

3 DIVERGENT THINKING EXAMS

The key goal of a divergent thinking exam is that each student’s

answers should be different from all other students’ answers. That

is, students are expected to diverge from each other. How this is

done depends on the course contents, the type of question, and

the number of students. Larger courses may need more divergence

properties, which we define to be an element or decision that allows

for more than one correct answer. This section explores case studies

of how we created divergence in our courses.

3.1 Goals of divergent thinking exams

We designed the exams to satisfy explicit goals. Sample final exam

are available as a “reusability” package on github2.

Goal 1: Exams should allow students to demonstrate that

they achieved the learning objectives. This is an essential goal

of all final exams, although it is possible that some LOs are assessed

prior to the final exam.

Goal 2: The exam’s design should ensure that each stu-

dent’s submission is different. This goal motivates our divergent

thinking strategy. If each student’s submission differs from other

students’ submissions, that goes a long way to ensure integrity of

the exams. At the very least, it eliminates the possibility of two

or more students developing their answers together and making

cosmetic changes to pretend the submissions are different.

Goal 3: Exams should be challenging, but reasonable for

well prepared students.While this goal probably applies to all

exams, we want to acknowledge this need as an initial starting

point. We were also concerned with our ability to estimate the

time it takes students to solve problems, as well as variation among

students.

Goal 4: It should be possible to grade exams in a reasonable

amount of time.We considered “reasonable” to be “not signifi-

cantly more” than a traditional exam for the same course. Time

to grade is, of course, subject to many variables and challenging

to measure. But it was also a significant source of concern. After

all, each submission is different (by design!), meaning each sub-

mission would need to be evaluated separately and individually.

Auto-grading was out of the question, as was pattern matching of

given answers. And if a divergent thinking exam takes significantly

more time to grade than a traditional exam, it would probably not

be a viable approach.

Goal 5: It should be possible to create exams in a reasonable

amount of time. This is similar to goal 4, and also quite difficult

to measure.

Goal 6: The exams should separate students who learned

the material at a high level as opposed to partial or minimal

understanding.

2https://github.com/Keshina/divergentThinkingExam

83

Designing Divergent Thinking, Creative Problem Solving Exams ICSE-SEET ’22, May21–29, 2022, Pittsburgh, PA, USA

Table 1: Course titles and learning objectives

Course SWE 437 SWE 432

Title Software Testing and Maintenance Design and Imp. of Software for the Web

LOs 1. Knowledge of quantitative, technical, practical

methods to test software

2. Testing techniques and criteria for all phases of

software development

3. Knowledge of how to apply test criteria

4. Knowledge of modern challenges and procedures

to update continuously evolving software

5. Understanding that maintainability and testabil-

ity are more important than efficiency

1. Knowledge of engineering principles for design-

ing usable web-based software interfaces

2. Understanding client-server andmessage-passing

computing for web applications

3. Knowledge for building usable, secure, and effec-

tive web applications

4. Knowledge of how web applications store data

5. Knowledge of component software development

technologies

Students 4th year, 25% software engineering, 75% computer

science

4th year, 25% software engineering, 75% computer

science

Prereqs Data structures, discrete math Data structures, discrete math

Table 2: Course sections taught

SWE 437 SWE 432 modality

S 2020 60 43 partially online

F 2020 60 online

S 2021 68 68 online

F 2021 41 in-person

Total 169 171

3.2 Part 1: Design of the open-book exam

Students were given the following instructions with the exams:
(1) You must answer these questions individually, without

any help

(2) You may submit anytime between when the exam is distribu-

ted and the day and time it is due

(3) You may submit answers as a text file, a PDF file, or a

word document

(4) You must include your name in your answers

(5) Make sure that your responses are clearly labeled as to

which question they answer

(6) You may not share this exam with anyone but yourself–doing

so will be considered an honor code violation

Exams were distributed as editable word documents and students

were encouraged to edit the document directly. Of course, we were

fully aware that we could not enforce or check rule 1, but the exam

was also take-home and open book, so the motivation for cheating

was low. We also required students to sign the following statement:

I have not discussed this exam with anyone

except the instructor, I will not share the

exam with anyone else, and I will destroy

all copies, both paper and electronic.

We made a change in fall 2021. The exam was in-person, so

students took part 1 in the classroom. The exam was still open-

book and open-notes.

Our key divergence property for part 1 is to allow students to

choose which questions to answer. We typically assigned 10 points

to part 1, and gave 10 1-point questions. Each question had three

choices, and students select which question to answer. An example

terminology question from the testing exam is:

(1) Use one of the following terms to answer one of the

three questions (1 point)

{happy path tests, invalid input tests, minimum viable

product, refactoring, spike, test suite}

(a) What does it mean to go through a period of intense

programming to “get ahead” of the TDD tests?

(b) What is a type of tests that often are not designed

when designing TDD tests?

(c) What is changing the code to improve a non-functional

quality, without changing the code’s behavior?

An example conceptual writing question from the web develop-

ment class is:
(1) Answer one of three (1 point)

(a) Explain the difference between HTTP GET requests and

HTTP POST requests.

(b) What does separation of concerns mean?

(c) Describe the benefits of a layered design pattern.

An example question about the technology Ajax is:
(1) Answer one of three (1 point)

(a) What essential ability does Ajax interaction provide

to web application developers?

(b) How does Ajax affect security?

(c) Explain the difference between authentication and

authorization. How are they related?

Having each question be one point reduces grading effort. We

tracked which of the three questions students answered in our

spreadsheet, making it relatively simple to identify patterns and

identify students who mostly answered the same questions. When

students answered many of the same questions, we looked for

similarities.

3.3 Part 2: Design of the problem solving exam

We called the problem solving part of our exams tech challenge,

borrowing the term from a technique used in industry to select

contractors. In both Spring 2020 courses, the entire exam was tech

challenge. In subsequent semesters, part 1 was one-third of the

exam and part 2 was two-thirds.

Here, students were given many choices to increase divergence.

Our divergence properties were quite different in the two courses to

reflect the different kinds of material. We describe them separately

to help readers apply this concept to different courses. Later in the

84

ICSE-SEET ’22, May21–29, 2022, Pittsburgh, PA, USA Jeff Offutt and Kesina Baral

paper we discuss how divergent thinking exams can be used in

other courses.

3.3.1 Software testing course. Students learned how to design tests

by hand (human-based), how to model software artifacts and use

test criteria to design tests (criteria-based), and how to automate

tests using common tools such as JUnit and Selenium.

For the Spring 2020 tech challenge exam, they were given a web

application that performed computations on numbers and strings.

The web app had previously been used as an assignment in the

web development course–we used the TA’s solution for this exam.

Students were given access to a running version3 and three source

Java files The files contained the front-end, the back-end, and a

small enum object. The code-based tests (2 and 3 below) were based

on the back-end module so that students did not need to understand

how web apps work.

Students were asked to design three sets of tests through the

following instructions (abbreviated here):

(1) Input space partitioning (ISP): Model the external UI

of the web app, develop an input domain model, then

apply the base choice criterion [1] to design abstract

tests. Transform the abstract tests into concrete tests

(with input values), then run them by hand and report

results.

(2) Graph-based testing: Draw the control flow graph for a

specific method, annotate each edge to connect it with

the source, then apply edge coverage (EC) to design

tests.

(3) Logic-based testing: Draw the control flow graph for a

different method, identify the logical predicates that

control the execution of the method, then design tests

to satisfy correlated active clause coverage (CACC)

[1] (equivalent to masking MCDC [3]) on each predicate.

Encode the tests in JUnit, then run the tests and capture

the results.

At each step, the students made numerous design and presen-

tation decisions. ISP requires design choices that results in many

dozens of possible good input domain models, hundreds of values

could be chosen, and they were free to choose how to represent

their designs. Graph-based testing starts with a control flow graph

and although the graph is unique to the method, any graph with

more than a few nodes has dozens of isomorphic representations.

They were also allowed to use any tool to draw the graph (includ-

ing by hand), introducing more divergence. Hundreds of values

could be chosen to satisfy each abstract test. Logic-based testing

again starts with a graph, and during the semester students were

encouraged to develop their own process for applying the criteria.

We used different programs in both Fall 2020 and Spring 2021.

We also added more divergence by allowing students to choose

from among two or three methods for graph-based testing and

logic-based testing.

3.3.2 Web development course. Students learned how to design

user interfaces for web applications (front-end), and how to design,

develop, and deploy back-end software for web apps. The primary

technologies were Java J2EE and ReactJS, although the course also

introduced several other technologies and referenced a few more.

3https://cs.gmu.edu:8443/offutt/servlet/computeExample.compute

In Spring 2020, students were assigned a problem to manipu-

late boolean predicates. To support divergent thinking, this exam

merged ideas from OM with software product families [5] by in-

cluding two “minimal required elements (MRE)” that every student

had to implement, and eight “optional required elements (ORE),”

from which each student selected four to implement. The MREs

were:

I. Your web app will accept a string that represents a

boolean predicate that has boolean variables and logical

operators, similar to ‘if’ statements in programs. Examp-

les include: “A OR B”; “x && y”; “M and N or Q”; and

“today | tomorrow”. Note that you are expected to design

the syntax and format, including the symbols used for

the logical operators. For MRE credit, your web app

only needs to handle ANDs and ORs, not parentheses,

relational expressions (“x>0”), or other logical operat-

ors.

II. Your web app will process the string to create and

display to the user a complete truth table for the

predicate. “ANDs” and “ORs,” using syntax you choose,

are logical operators. Clauses in the predicate evaluate

to boolean values, and are connected by logical operators,

but do NOT include logical operators. Thus, the above

4 examples have 9 clauses in total: A, B, x, y, M,

N, Q, today, tomorrow. The truth table for the first

predicate, “A OR B,” has 4 rows: true-true, true-false,

false-true, and false-false.

As can be seen, several minor design and formatting decisions

were left to the students as a way to increase divergence. We in-

cluded the note: “Note that you are to design the input and screens,

design how the truth tables are displayed, and design and write code

to find clauses within the predicates. I am intentionally not giving

you requirements about how the UI will look or behave.”

The MREs were worth 60% of the final exam score. Students

chose 4 of 8 OREs, at 10% per ORE, to complete their grade. The

OREs were:

(1) Input validation–report invalid strings.

(2) Allow parentheses in the predicates, for example, “((A

or B) and C)”.

(3) Evaluate the predicate for each combination of truth

values. For example, for the predicate “A OR B,” the

result values would be true, true, true, false; using

the same order as the rows in MRE #II above.

(4) Add an additional screen, after the truth table is

displayed, to evaluate specific truth-values. The user

can assign truth-values to the clauses, and your app will

return the value of the predicate. Your software will

need to maintain state through the multiple requests

(any method is allowed).

(5) Include an additional logical operator–exclusive or.

(6) Allow multiple syntaxes in the input box for logical

operators (for example, “&”, “&&”, “AND”, “and”).

(7) Allow constant binary values to be included in the

predicate (for example “((A and (TRUE or C))”).

(8) Give the user the option to display the truth-values

in the truth table in different formats, such as “t-f,”

“T-F,” “1-0,” “true-false,” etc.

Both authors took the exam early, resulting in several refine-

ments. We found that one small part took at least an hour and a

85

Designing Divergent Thinking, Creative Problem Solving Exams ICSE-SEET ’22, May21–29, 2022, Pittsburgh, PA, USA

half (a recursive algorithm that was not related to the course mate-

rial), so we provided the algorithm on the exam. It is a challenging

algorithm to design, but was also available on the web, and since

that was not the subject of the class, we saw no value in penalizing

students who did not find the algorithm online and struggled to

design it by hand.

This tech challenge exam had many divergence properties. Stu-

dents were allowed to use any technologies in their implementation.

They could deploy on github-heroku, AWS, or elsewhere. Theywere

required to submit a URL to a running program, and all source files,

including .js and .css files. Each requirement required design de-

cisions that could lead to multiple good answers. They chose 4 of

8 OREs, which allowed as many as 70 possible combinations. (In

practice, nobody understood or chose ORE #4, so it was really only

35 combinations.)

After our first semester’s experience, discussed later in the paper,

we created smaller and simpler problems for Fall 2020 and Spring

2021.

The Fall 2020 exam asked students to sort strings. The three

MREs asked students to (I) accept a list of strings and return them

in sorted order, (II) sort the strings in either ascending or descending

order, and (III) allow an unlimited list of strings. We only had 5

OREs and students selected 2:

(1) Numeric: The user can choose to sort in numeric order

(assuming the strings are actually numbers).

(2) Sanitize: Dangerous strings such as “<script>”, “<javas-

cript>”, and “onLoad” are removed before sorting.

(3) Unique: If the list has two identical strings, only one

will be returned in the sorted result. For example, if

the submitted list is [shirt, pants, shirt, shoes], the

web app will return the list [pants, shirt, shoes].

(4) Forward: Your backend uses the dispatcher.forward() met-

hod to forward the request from one servlet to another.

(5) Alternate sorts: The user can choose to sort based on an

additional quality, such as string length or character

position. Be sure to make it clear what the alternate

sort is.

The Spring 2021 exam ask students to build a web app to compute

averages. The MREs were (I) accept a list of integer values and

return the average, (II) the user can choose mean, median, or mode,

(III) the number of integers is not limited. For OREs, they could

(1) add standard deviation, (2) add double (non-integer) values,

(3) remove duplicates, (4) sanitize the inputs, or (5) use the J2EE

forward mechanism.

4 FINDINGS, DISCUSSION, AND ASSESSMENT

OF EXPERIENCE

This section presents findings and observations from giving six dif-

ferent divergent thinking final exams across four semesters. The an-

swers were somewhat different in different semesters as we learned

and evolved the strategy.

4.1 Findings from the testing class

We gave divergent thinking final exams in Spring 2020 to 60 stu-

dents (second half was online), in Spring 2021 to 68 students (com-

pletely online), and Fall 2021 to 41 students (completely in-person).

The format and procedure was slightly different in each semester.

In Spring 2020, the format of the exam was entirely tech challenge,

creative problem solving. In Spring 2021, we added part 1 of the

exam to assess and reinforce general knowledge, and gave part 1 in

the classroom in Fall 2021.

In our first exam in Spring 2020, we presented the exam online at

the beginning of the designated final exam period, and the students

were told to remain in the zoom session until they completed.

In our second exam in Spring 2021, we moved the tech-challenge

portion to a 24 hour format. Part 1 was given at the beginning of

final exam week, and students submitted anytime between then

and the beginning of the designated exam period. The class met

synchronously at the beginning of the designated final exam pe-

riod, and the tech-challenge portion of the exam was shared. The

instructor stayed online to answer questions throughout the period

(2 hours, 45 minutes), but students were allowed to submit anytime

during the following 24 hours. We did this to allow for technological

failures and as a general effort to reduce stress.

Goal 1 was that the exam should allow students to demonstrate

that they achieved the learning objectives. The problem-solving,

tech challenge, nature of the exam meant that it focused more

on skills (modeling and test generation) than on the abstract and

theoretical concepts. But since they had to start with source, then

create an abstract model, then design tests, and then automate those

tests, the exam was able to assess learning objectives 1, 2, and 3

from Table 1.

Goal 2 was that the exam’s design should ensure that each stu-

dent’s submission is different. The many choices and the amount of

design needed, including modeling input domains, drawing graphs,

choosing specific input values, and the structure of the automated

tests made it easy to see that all submissions were clearly unique.

Instead of a single answer, tens of thousands of good solutions

could have satisfied the requirements of this exam.

Goal 3 was that exams should be challenging, but reasonable

for well prepared students. In Spring 2020, almost all students were

able to complete all or most of the exam within the 2 hours and 45

minutes allotted. The scores were high (average 91%) but students

were clearly challenged on several parts. The time to complete

ranged from 75 minutes to 3 hours, and fewer than 10 students used

a 15 minute grace period. There were two outliers, both of whom

had technical problems during the exam period. One student’s com-

puter crashed during the exam and another student lost electricity.

We granted both 24 hours to complete, an ad-hoc adaptation that

was codified the following semester.

A few students complained about stress from writing JUnit tests

(which requires some programming), but most did fine. Even stu-

dents who vented on the chat about the JUnit were able to finish

on time. One sent the following message before dropping off: “Prof,

thanks for letting me ‘complain,’ that helped me calm down.” One

student who was not able to complete the JUnit tests admitted

to having allowed his partners to do all the JUnit programming

through the semester. That’s a good lesson about the impact of col-

laborative assignments on student performance, although perhaps

not related to the format of this exam.

In Spring and Fall 2021, student performance was similar (av-

erages of 87% and 88%), and most students reported spending less

than two hours during the 24 hour period.

86

ICSE-SEET ’22, May21–29, 2022, Pittsburgh, PA, USA Jeff Offutt and Kesina Baral

The choice of the program to test was crucial to goal 3. Students

created system tests and unit tests, so the software had a simple

UI but with enough choices to lead to variations in how to model

it. In both semesters, we had them test a small program (one Java

class with a few hundred lines of code) that was deployed as a

web application so they could easily run it. Both programs had at

least one method whose control flow had enough branches to test

their knowledge of graph-based testing, and another method with a

predicate complicated enough to ensure the logic testing was non-

trivial. They wrote automated tests for a method that modified class

level variables that needed to be checked in assertions, which are

often overlooked. More than half of the students did that correctly,

even though this is a very common mistake in industry [2].

Goal 4 was that it should be possible to grade exams in a rea-

sonable amount of time. All exams in all semesters were graded by

Offutt. This was the big surprise of the divergent thinking exam.

We assumed grading exams where each submission was different

would take more time than grading traditional exams; hopefully not

too much more time. We completed the entire exam as preparation,

doing all optional parts. With this preparation, the grading was

not only surprisingly fast, it was faster than grading traditional

exams! It took on average about 10 minutes per exam. After 5 or 10

exams, we were able to construct a short list of common mistakes,

which increased the speed. As a comparison, we have found that

traditional exams for this course usually take about 30 minutes to

grade per exam.

Goal 5was that it should be possible to create exams in a reason-

able amount of time. Evaluating this goal is quite complex, because

the process was completely different. A common process with a

traditional exam is to review all class materials, formulate questions

based on the knowledge and concepts, then refine and format those

questions for the exam. A separate pass checks for consistency and

coverage of the learning objectives. This takes several hours and

is usually done between the last class meeting and the final exam.

Creating a divergent thinking, problem solving, exam is completely

different. The first step is to find or invent a program that students

can understand and analyze in a reasonable amount of time, and

that has enough features to demonstrate the knowledge of testing.

This is a very creative step that could take very different amounts

of time for different instructors and different topics. We found that

reusing assignments in one class in another class’s final exam was

very helpful. Overall, designing divergent thinking exams took less

time for us, but your mileage may vary.

Goal 6was that the exams should separate students who learned

the material at a high level as opposed to partial or minimal under-

standing. We compared final exam scores with quiz and assignment

scores, and they were generally consistent. Most mistakes were

clear and usually easy to connect to gaps in students’ knowledge. By

asking them to demonstrate their knowledge by designing tests, we

were going beyond memory tricks, and checking both the “apply”

and the “create” levels of Bloom’s taxonomy [17]. After grading the

exams, we were confident that we were effective at determining

who is able to model software, design tests, and implement those

tests well.

4.2 Findings from the web development class

We gave divergent thinking final exams in three sections of the web

development class, in Spring 2020 to 43 students, in Fall 2020 to

60 students, and in Spring 2021 to 68 students. As with the testing

exam, Spring 2020 was entirely tech challenge exam, and a question

part was added in Fall 2020 and Spring 2021.

As in the testing course, in Spring 2020, we presented the exam

online at the beginning of the designated final exam period, and

the students were told to remain in the zoom session until they

completed. In Fall 2020 and Spring 2021 we followed the same

schedule as with the testing exam.

Goal 1 was that the exam should allow students to demonstrate

that they achieved the learning objectives. As with the testing

exam, this exam assessed practical skills (they built and deployed a

complete web app!), but did not assess deep knowledge of theory or

abstract concepts. This covers LOs 1-4 from Table 1, and partially

LO #5.

Goal 2 was that the exam’s design should ensure that each stu-

dent’s submission is different. This goal was met exceedingly well.

The students designed different UIs, used different technologies

(mostly J2EE and ReactJS), implemented different sets of features,

and had very different designs. We could not rule out the possibil-

ity of students helping each other debug, but we’re not sure that

matters. It was very clear that everyone did something completely

different.

As an example of the diversity, in Spring 2020, 33 students used

J2EE (servlets), 8 used ReactJS, 3 used other JS frameworks (includ-

ing NodeJS and Angular), 9 used plain JavaScript, and one used PhP

(which was not taught in the course). Some students used multiple

technologies. The Spring 2020 exam had eight optional elements

and students selected four. Only a few selected the same four, and

only one combination was selected by more than three students.

Goal 3 was that exams should be challenging, but reasonable

for well prepared students. In Spring 2020, the time to complete

varied greatly, much more than the testing exam. This exam was

mostly programming, and it is likely we discovered, just like many

before us, that different people need dramatically different amounts

of time to write the same program. More than half the students

finished between 60 and 120 minutes, and most of the rest finished

within the allotted 2 hours 45 minutes. Yet some took many hours,

and we made an ad-hoc decision to not enforce the deadline. Six

students took more than 8 hours to complete. We also saw almost

no correlation between time to complete and quality of the program.

Of the last three submissions, one was in the top 10%, one was in

the middle, and one was near the bottom. As a comparison, the

exams with the two lowest grades were submitted in under two

hours.

As a result of these observations, in Fall 2020 and Spring 2021

we designed simpler problems and explicitly allowed 24 hours to

complete. This not only allowed for the divergence in programming

speed, but also reduced stress.

Goal 4 was that it should be possible to grade exams in a rea-

sonable amount of time. As with the testing exam, we were very

pleasantly surprised at the ease of grading. Every UI was different

and students implemented different features, so using automated

tests to grade was not possible. Instead, we created sets of standard

87

Designing Divergent Thinking, Creative Problem Solving Exams ICSE-SEET ’22, May21–29, 2022, Pittsburgh, PA, USA

tests in a spreadsheet, then entered the relevant values by hand.

Each exam took about 10 minutes to grade, including a review of

the design and quality of code. The only exceptions were a few

students whose deployment failed (we used github with Heroku).

Most fixed the problem within a few minutes and only one was not

able to get their program to work.

Goal 5 was that it should be possible to create exams in a rea-

sonable amount of time. Most of the comments from subsection

4.1 are the same for this course. The process is even more creative,

as the instructor is creating a separate project. However, the idea

generation can happen at any time, including before the class starts.

Creating the actual exam only takes a few minutes, as most of the

text is the same each semester.

Goal 6was that the exams should separate students who learned

the material at a high level as opposed to partial or minimal un-

derstanding. We learned who could design and build small web

applications. However, the course taught small and subtle concepts

that did not show up in this tech challenge. Most were covered in

quizzes throughout the semester, but if we had tried to embed them

in this challenge, the project would have been bigger and harder to

finish.

5 REFLECTIONS

This section reflects on our findings from the case studies, and

includes opinions that are based on our experience. The most sur-

prising finding was that these exams took less time to grade than

traditional exams. While grading, the goals and expectations were

clear and evaluating the results took less judgement than with tra-

ditional exams. Very importantly, the divergent thinking exams

included very little writing. We are not English teachers and our

students are not writing students, so it is sometimes a challenge to

understand our students’ free form text answers.

A more interesting conclusion is that, in our judgement, diver-

gent thinking exams are better at assessing students’ knowledge

of the material. More than anything else, software engineering

students are learning how to build high quality software. Assess-

ing conceptual and theoretical knowledge is fine, but what really

matters is whether these students can join a software company and

apply their knowledge. A creative problem solving exam assesses

that ability to apply, and a divergent thinking exam ensures that

each student’s work is unique.

We next consider weaknesses of divergent thinking exams. As

to integrity of the exams, we have to recognize that all work was

unsupervised. It is possible that a student could have someone else

do the entire exam. We believe that risk is low and are willing to

accept it.

Another loss is that we have traditionally used challenging ques-

tions to separate the top few students from the really good students.

We usually ask questions about theoretical knowledge and do not

allow students to look the answers up. Four semesters of diver-

gent thinking exams has made us question how much this matters.

While PhD programs may need to differentiate “the best” from

“the good” student applications, industry usually does not. In most

organizations, only the software architects need to know the deep

theory and its application–and companies do not hire entry-level

new graduates to be software architects.

6 CONCLUSIONS

Based on the positive experience through online teaching, we

elected to continue with divergent thinking exams for an in-person

class in Fall 2021. The results were just as positive and, in our judge-

ment, the exams were just as effective both as assessment devices

and as learning devices as traditional exams were.

This paper presents the model of a divergent thinking, creative

problem solving exam, and explores how we applied it to two

quite different courses. Creating divergence properties would be

different for other courses. To generalize our approach, we sought

elements of the exams where teachers could made decisions when

formulating the questions, and pushed the decisions to the students.

This works particularly well for design decisions, presentation

choices, and cosmetic options. For example, in a lower-division

programming course, students could be given a partial program,

then asked to select one or two out of a number of features (similar

to the OREs of the web development course). With larger classes, we

simply need more choices or more divergent properties. Divergent

thinking is a powerful and general concept that can be applied in

many situations.

A basic tenet of Universal Design for Learning (UDL) [4] is

that accommodations made for disadvantaged people are almost

invariably good for non-disadvantaged people. We found that to be

true here. We made massive changes to our traditional final exams

to accommodate our online learning approach where we were all

disadvantaged, and concluded that these change are good for all.

From now on, divergent thinking, tech challenge, creative problem

solving exams is our new traditional model.

REFERENCES
[1] Paul Ammann and Jeff Offutt. 2017. Introduction to Software Testing (2nd ed.).

Cambridge University Press, Cambridge, UK. ISBN 978-1107172012.
[2] Kesina Baral and Jeff Offutt. 2020. An Empirical Analysis of Blind Tests. In 13th

IEEE International Conference on Software Testing, Validation, and Verification
(ICST). IEEE Computer Society, Porto, Portugal, 254–262.

[3] John Chilenski and L. A. Richey. 1997. Definition for a Masking Form of Modified
Condition Decision Coverage (MCDC). Technical Report. Boeing, Seattle, WA.
http://www.boeing.com/nosearch/mcdc/.

[4] D. L. Edyburn. 2013. Critical issues in advancing the special education technology
evidence base. Exceptional Children 80, 1 (2013), 7–24. https://doi.org/10.1177/
001440291308000107

[5] Hassan Gomaa. 2005. Designing Software Product Lines with UML. Addison
Wesley Object Technology Series, Boston, MA.

[6] Creative Competitions Inc. 2021. Odyssey of the Mind. Online.
https://www.odysseyofthemind.com/, last access October 2021.

[7] Facebook Inc. 2021. React. Online. https://reactjs.org/, last access October 2021.
[8] Respondus Inc. 2021. Respondus. Online.

https://web.respondus.com/he/lockdownbrowser/, last access October
2021.

[9] Jessica Kasen. 2021. Gradebees. Online. https://gradebees.com/cheat-online-
tests/, last access October 2021.

[10] Eleni Kopsaftis. 2020. Over 4700 signatures against the LockDown Browser at U
of G. Online. https://theontarion.com/2020/12/04/over-4700-signatures-against-
the-lockdown-browser-at-u-of-g/, last access October 2021.

[11] Hugo Smith Maddy Andersen. 2020. “Essentially Malware”: Experts
Raise Concerns about Stuyvesant’s Lockdown Software. Online.
https://www.stuyspec.com/quaranzine/essentially-malware-experts-raise-
concerns-about-stuyvesant-s-lockdown-software, last access October 2021.

[12] Callie McNorton. 2020. LockDown Browser is an invading privacy. Online.
https://georgiastatesignal.com/lockdown-browser-is-an-invading-privacy/, last
access October 2021.

[13] Sean Miller. 2020. Lockdown Browser is bad software and should be scrapped.
Online. https://mytjnow.com/2020/12/02/lockdown-browser-is-bad-software-
and-should-be-scrapped/, last access October 2021.

[14] Jeff Offutt, Paul Ammann, Kinga Dobolyi, Chris Kauffman, Jaime Lester, Upsorn
Praphamontripong, Huzefa Rangwala, Sanjeev Setia, Pearl Wang, and Liz White.

88

ICSE-SEET ’22, May21–29, 2022, Pittsburgh, PA, USA Jeff Offutt and Kesina Baral

2017. A Novel Self-Paced Model for Teaching CS1 and CS2. In Learning at Scale.
ACM Press, Boston, USA, 1–4.

[15] Oracle. 2021. Java 2 Platform, Enterprise Edition (J2EE) Overview. Online.
https://www.oracle.com/java/technologies/appmodel.html, last access October
2021.

[16] Vivian Pham. 2021. Lockdown browsers fail to create a culture of academic
integrity. Online. https://retriever.umbc.edu/2021/04/lockdown-browsers-fail-to-
create-a-culture-of-academic-integrity-they-invade-student-privacy-and-harm-
student-health/, last access October 2021.

[17] Terry Scott. 2003. Bloom’s taxonomy applied to testing in computer science
classes. Journal of Journal of Computing Sciences in Colleges 19, 10 (October 2003),
267–274.

[18] Superamaz. 2021. How to cheat on Respondus lockdown browser without getting
caught. Online. https://amazfeed.com/how-to-cheat-on-respondus-lockdown-
browser-without-getting-caught/.

[19] webassign/cengage. 2021. Webassign. Online.
https://webassign.com/instructors/features/secure-testing/lockdown-browser/,
last access October 2021.

89

