2204.09036v1 [cs.CY] 19 Apr 2022

arxXiv

Write a Line: Tests with Answer Templates and String
Completion Hints for Self-Learning in a CS1 Course

Oleg Sychev
Volgograd State Technical University
Volgograd, Russia
oasychev@gmail.com

ABSTRACT

One of the important scaffolding tasks in programming learning is
writing a line of code performing the necessary action. This allows
students to practice skills in a playground with instant feedback
before writing more complex programs and increases their profi-
ciency when solving programming problems. However, answers in
the form of program code have high variability. Among the possible
approaches to grading and providing feedback, we chose template
matching. This paper reports the results of using regular-expression-
based questions with string completion hints in a CS1 course for
4 years with 497 students. The evaluation results show that Perl-
compatible regular expressions provide good precision and recall
(more than 99%) when used for questions requiring writing a single
line of code while being able to provide string-completion feedback
regardless of how wrong the initial student’s answer is. After in-
troducing formative quizzes with string-completion hints to the
course, the number of questions that teachers and teaching assis-
tants received about questions in the formative quizzes dropped
considerably: most of the training question attempts resulted in
finding the correct answer without help from the teaching staff.
However, some of the students use formative quizzes just to learn
correct answers without actually trying to answer the questions.

CCS CONCEPTS

« Social and professional topics — Software engineering ed-
ucation; « Applied computing — Interactive learning envi-
ronments; « Computing methodologies — Discrete calculus
algorithms.

KEYWORDS

regular expressions, short-answer questions, feedback generation,
online learning, introductory programming courses

ACM Reference Format:

Oleg Sychev. 2022. Write a Line: Tests with Answer Templates and String
Completion Hints for Self-Learning in a CS1 Course. In 44nd International
Conference on Software Engineering: Software Engineering Education and
Training (ICSE-SEET °22), May 21-29, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3510456.3514159

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE-SEET °22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9225-9/22/05...$15.00
https://doi.org/10.1145/3510456.3514159

1 INTRODUCTION

Introducing students to the programming domain is a complex
process, requiring the development of a significant number of cog-
nitive skills [27]. It spans all levels of revised Bloom’s taxonomy
of educational objectives [2] from "remember" to "create", having
strict constraints of logical correctness on all the levels to get a
correct solution. Different e-learning tools may be used to support
students while mastering different kinds of learning tasks.

One of these tasks is writing simple statements or headers, learn-
ing both syntax and semantics of the programming language [9].
These exercises belong to the application level of Bloom’s taxonomy
because they require applying syntax rules in typical situations.
They lay the foundation for higher-level tasks such as analysis of
existing programs and synthesis of new programs. While some of
the students can write programs directly after being introduced to
a text-based programming language, many others need scaffolding
to get used to the syntax before attempting more complex tasks.
Automated "write a line of code" assessments give them a conve-
nient playground to acquire and reinforce basic skills. Without
good skills in writing single lines of code, students make a lot of
mistakes in programming assessments when they are focused on
higher-level planning of the algorithm.

E-assessment is a good solution for the exercises requiring writ-
ing a single line of code because grading the required amount of
questions manually requires too much time. However, simple short-
answer question software is poorly suited for this situation because
the response in the form of a line of code has high variability; many
programming-language features can increase the set of correct
answers — from the ability to insert any number of white space
characters almost in any place allowing them without changing
the answer — to the problem of extraneous (but correctly opened
and closed) parentheses in expressions. Without a way to define
the set of correct answers using templates or other mechanisms,
code-writing short-answer questions become restrictive, giving a
lot of false-negative grades and frustrating students.

When code-writing questions are used for formative assessments,
it is necessary to provide feedback to the students about their mis-
takes and the ways to correct them. Otherwise, the students be-
come stuck, requiring intervention from the teacher to understand
how to complete their current exercise. Ott [30] supposes using
targeted questions and hints to guide students in the process of
finding the answer to a problem. Automatically generated feedback
allows using formative assessments as homework with a signifi-
cantly higher amount of completed questions than while utilizing
teacher-provided feedback.

Some authors argue for parsing and executing program code
to assess it (e.g., [1]), a template-based approach can be useful

https://orcid.org/0000-0002-7296-2538
https://doi.org/10.1145/3510456.3514159
https://doi.org/10.1145/3510456.3514159

ICSE-SEET °22, May 21-29, 2022, Pittsburgh, PA, USA

for smaller problems involving writing a few lines of code. When
the student’s task is to write a single line of code, executing it
often requires a significant number of enclosing code that must be
supplied by the teacher, and testing errors often correspond poorly
with the original task.

It is possible to parse students’ code and compare resulting syntax
trees, but this method also has significant disadvantages. First,
there is no single starting symbol of the grammar for parsing a
single line of code - the starting symbol depends on the particular
question. Sometimes, a line of code cannot be reduced to a single
symbol at all. Also, parsing does little to account for variation
in the programming language (for example, in the C++ language,
there are 6 ways to add 1 to a variable) so the teacher still has
to provide all correct solutions. This is especially problematic if
the answer contains several parts that can be written differently,
as the number of correct answers rises multiplicatively. Template-
based systems can solve this problem by letting to describe the
variants of each part separately, significantly decreasing the effort
required to create a question. Error-correcting parsers are also
computationally expensive [31] while pattern matching can be
implemented efficiently using, for example, finite automata.

The most important advantage of string templates over parsing
is that they allow easy generation of completion hints. While there
are works on generating data-driven feedback based on compar-
ing syntax trees [29], they only work for fairly close syntax trees.
However, sometimes a single wrong character can lead to a sig-
nificantly different syntax tree. Also, as we often saw in teaching
practice, some poorly-performing students who need hints most
give answers that are very far from the expected line of code while
error-correcting parsers are only good if there are a few errors.
Errors of this kind happen more often in the first stages of learning
programming (or when moving from a block-based programming
language to a text-based language) where the questions requiring
writing a single line of code are used. Novice programmers also
rarely think about their programs in the terms that are expressed
in the language grammars. So for short answers, comparing string
representation of the program code may yield better hints than
comparing syntax trees for the courses introducing students to the
text-based programming language.

A commonly-used way to specify string-matching templates is
regular expressions; they are expressive and relatively compact.
Regular expressions were used in automated programming assess-
ment to verify the output of the tested program [21]; they were
also used for implementing short-answer questions [8]. However,
most question-building tools do not allow combining advanced
regular-expression syntax with string completion hints.

In this paper, we describe our experience of introducing for-
mative quizzes with string completion hints into a CS1 course of
Volgograd State Technical University, analyzing the results of four
years of teaching. The quizzes were created using the Preg ques-
tion type for Moodle LMS: a short-answer question software using
Perl-compatible regular expressions to define correct answers and
providing advanced feedback, showing partial matches (i.e., the
correct beginning of the student’s answer up to the first error) and
providing string-completion hints (next correct character and next
correct lexeme). The rest of the paper is organized as follows. Sec-
tion 2 describes the state of the art in template-based assessments

Sychev O.

and string completion hints; section 3 provides the background in
regular expressions; section 4 describes the developed software; sec-
tion 5 shows our findings while analyzing our experience followed
by discussion in section 6 and conclusion in section 7.

2 RELATED WORK

2.1 Template-based short-answer assessment

Existing systems and approaches use different ways to specify
patterns for short answers [7, 34]. Some of those systems calculate
grades by performing a word-by-word comparison of weighted
words, other systems use specific languages to describe patterns.

WebLAS identifies important segments of correct answers in
parsed representations and asks the teacher to confirm each of
them and assign weights to them [3]. The teacher is also asked to
accept or reject semantically similar alternatives. Each segment of
the student’s answer is detected using regular expressions. Each
segment is graded separately, so it is possible to grade partially-
correct answers.

eMax uses a similar approach - it requires the teacher to markup
semantic elements [11]. Teachers can also accept or reject synonyms
and assign weights to each answer element. The grading approach
is combinatorial, i.e. all possible formulations are pattern-matched.
The assigned scores can be forwarded for manual review in difficult
cases.

FreeText Author requires teachers to describe answers with
syntactic-semantic templates for the student answers to be matched
against [22]. Such templates are automatically generated from the
plain-text representation of the teachers’ answers. Through the
interface, the teacher can specify mandatory keywords from the
correct answers and select synonyms provided by thesauri support.
Both acceptable and unacceptable answers can be defined.

IndusMarker uses word- and phrase-level pattern matching to
grade student answers [32]. Credit-worthy phrases are defined
using an XML-based markup language called the Question Answer
Markup Language. Using the “structure editor”, the text and number
of points can be specified for each phrase.

OpenMark uses its own template language [8]. It can be used for
specifying alternative words (e.g., synonyms) or word groups. The
system also supports typo detection.

Most of these systems are aimed specifically at grading natural-
language answers and are poorly suited for programming-language
answers.

2.2 String-completion hints

Providing detailed feedback is an important requirement for short-
answer grading systems. When a student makes a mistake, it is not
enough to simply tell them that the answer is wrong [5, 18, 20].
They still have to either read their lecture materials to identify their
mistakes or wait for the opportunity to consult with their teacher.
Falkner et al. [15] suggested that increasing feedback granularity
impacts performance positively. Automatic feedback, including
the information about possible mistakes and the ways to fix them,
significantly increases the efficiency of student efforts, allowing
them to understand and correct their mistakes during an online
session at a convenient time for them.

Pattern Matching and String Completion for Teaching Programming

There are several well-known automatic feedback generation
techniques [23].

o Intelligent Tutoring System model-tracing feedback genera-
tion technique that uses comparison of student’s steps with
buggy production rules [10, 17].

e Constraint-based feedback generation technique that checks
student’s answer against predefined constraints and gener-
ates feedback messages for failed ones [26].

e Natural Language Processing and Machine Learning feed-
back generation technique that provides feedback using
datasets of students’ answers [12, 25, 28].

3 BACKGROUND

Regular expressions are a standard method of specifying string
patterns [16]. Applied to teaching programming, one of their un-
doubted advantages is their versatility regarding answer languages.
They allow creating complex patterns that cover wide ranges of
possible correct answers. Many tutorials and software tools for
creating and debugging regular expressions are available [4, 6], but
let us explain the very basics for the reader to be able to continue
reading on.

Regular expressions, just like any other expressions, consist of
operators and operands. The simplest operand is a Latin charac-
ter: it matches itself. There are also character sets written like
[0-9a-fA-F] (matches hexadecimal digits), meta-characters (a dot
matches any character except line breaks), escape-sequences (\s
matches whitespaces and \d matches decimal digits), and so on.

Operands can be concatenated to match a sequence of characters:
\d\s\d matches any two decimal digits with whitespace between
them. They also can be quantified to match a sequence of repeated
strings: (\d\s)+ matches a digit followed by a whitespace, repeated
any number of times (but at least once). The * matches zero or more
repetitions of its operand, and the ? matches 0 or 1 repetitions.
Finally, operands can be alternated: ab|cd+ matches either “ab”
or “cd”, “cdd”, “cddd” and so on. Note that concatenation takes
precedence over alternation, and quantification takes precedence
over concatenation.

Perl-compatible regular expressions (PCRE) have the richest
syntax and most powerful features [19]. In addition to the above-
mentioned features, they support such powerful features as named
subpatterns, backreferences, recursive subpattern calls, look-around
assertions, lazy and possessive quantifiers, extended syntax for
character classes, and others. In the following sections, regular
expressions will mean Perl-compatible regular expressions.

4 PREG QUESTION’S FEATURES AND THEIR
USES IN INTRODUCTORY PROGRAMMING
COURSES

4.1 Regular Expressions as Templates for
Program Strings

4.1.1 Basic Regex Features. The first problem to solve when check-

ing a student’s program string is accepting any correct whitespace

placement: most of the programming languages allow any number
of whitespace characters between any lexemes and require at least

ICSE-SEET °22, May 21-29, 2022, Pittsburgh, PA, USA

one whitespace between some.We can use repetition of\s character
class to specify this e.g., int\s+([_a-zA-Z]\wx)\s*;

Another useful regular expression feature is alternation. If a stu-
dent was asked to write a floating-point variable declaration, both
“float” and “double” types should be accepted, so our previous exam-
ple would turn into this: (float|double)\s+[_a-zA-Z]\wx\s%*;.
While this can be solved without regular expressions by providing
a set of correct answers, their number increases multiplicatively
when the answer contains several sections with independent alter-
natives and quickly becomes impractical.

4.1.2 Advanced Regex Features. One more useful feature of regular
expressions is back-referencing. A back-reference works in pair
with a subpattern (a parenthesized part of the regular expression)
and matches exactly the same string as its corresponding subpat-
tern does. Assume that a student needs to write a “for” loop with
an integer counter running from 0 to 9 and an empty body in the
C or C++ languages. The counter’s name should appear in the
answer 3 times unmodified, and this can be achieved by enclos-
ing the variable name in parentheses (thus creating a subpattern)
and then referencing it two times later in the expression like this:
for\(int ([_a-zA-Z1\w*x)=0;\1(<=9[<10);\1\+\+\) (; |\{\})
where \1 is a backreference to the first subpattern (i.e., the ex-
pression inside the first set of unescaped parentheses counting
opening parentheses from the left). Correct whitespace match-
ing is ignored here for the purpose of readability. This pattern
matches student answers like “for (int i=0;i<=9;i++);” and “for (int
myVar=0;myVar<10;myVar++){}”.

One of the biggest challenges with grading students’ answers
containing formulas and program code using string templates is
matching an arbitrary but correct placement of parentheses around
expressions, i.e., “5” and “(((5)))” should be graded the same. Regu-
lar expressions using recursive subpattern calls (an exclusive fea-
ture of Perl-compatible regular expressions) can solve this prob-
lem, though the expressions become a lot harder to understand.
Here is a regular expression matching the parenthesized digit 5:
5] (\s*\(\s*(?2:(?-1)|5)\s*\)\sx*).

It is clear that recursive regular expressions cannot be used
for real-life questions “as is”, because usually there are several
subexpressions that need to be parenthesised so the whole regular
expression becomes less and less readable. To solve this problem,
we introduced a set of special regex comments in Preg which look
like the following:

o (?#tparens_opt<)body (?###>);
o (?##tparens_reqg<)body (?###>).

These expressions define patterns match everything that their
“body” matches, but is enclosed in zero or more(parens_opt) or
one or more (parens_req) parentheses. There is also a number of
other predefined patterns for matching brackets, custom parenthe-
ses (with any opening/closing symbols), identifiers, etc. With this
feature, strings like “5” and “(((5)))” can be matched by a simple and
readable regular expression: (?###parens_opt<)5(?###>).

In Figure 1 a regular expression from an actual code writing
question is shown. The expression is entered in a multi-line text field
and is still readable because of using the comment-based patterns.
Below is a testing tool for debugging the expression, showing the

ICSE-SEET °22, May 21-29, 2022, Pittsburgh, PA, USA

range of possible correct answers these expressions match. The
tool highlights the matched and unmatched parts of the answers.

Regular expression

Enter your regex here: \s*(?###parens_opt<)text(?###>)\s*=\s*(?# ##parens_opt<)
(?\'s*(7#ax#parens,out<)wvdget(?###>)\s*->
(2###parens_req<) \¥\s* (?#4##parens_opt<)widget(?###>)(?###>)\s*\.
is*nem\s*\(\s*(?w#parens,npz<)o+(7w#>)\s*,\s*(?#Mparens,ap«)n+(?w#>)\s*\)
S emensriner
\s*;+\s*

Show = Savechanges = Cancel

Regular expression testing

Input strings to match (one | text = ((widget)) -> item(((0)), ((0)))->text(); |+ text = ((widget)) -> item(((0)), ((0)))->text();
perline) | text = (*(widget)). item(0, 0)-> text(); text = (*(widget)). item(0, 0)-> text();
text = (*(widget). item(0, 0)-> text(); Xtext = (*(widget). item(0, 0)-> text();
((text)) = ((widget->item(0, 0)))->text(); ((text)) = ((widget->item(0, 0)))->text();
((text)) = ((widget->item(0, 0))->text(); | X((text)) = ((widget->item(0, 0) JSEEXE0:

Figure 1: The tool for editing and debugging regular expres-
sions in Preg questions

4.1.3 Partial Matching. Unlike the commonly-used regex libraries,
the Preg question’s engine supports finding partial matches, i.e.,
matches starting at the beginning of the regex and breaking off
somewhere in the middle. With this feature, on the higher level
Preg highlights correct and incorrect parts of students’ answers in
green and red, respectively.

4.2 String Completion Hints

The Preg question type is capable of generating completions of
partial matches, leading to full matches. The completion is always
chosen so that they will lead the student to the correct answer
adding the minimum number of characters. Based on this, Preg can
show two hints: the next correct character and the next correct
lexeme. Hints may be turned off (for summative quizzes); a penalty
score can be specified for each hint usage to discourage students
from overusing the hints.

Figure 2 demonstrates how the next correct lexeme hint looks
in Preg questions. Here, a student asks to complete the name of the
method to call; the hinted part is highlighted yellow. The ellipsis
after it shows the student that the answer is not complete after
adding it.

Given the vector object of the QVector class, write a statement that will insert
the value of its first element to the end of the vector. Do not use iterators and
square brackets.

Answer: vectora
Check

Hint next correct character

vector.append...

Incorrect
Marks for this submission: 0.00/1.00. This submission attracted a penalty of 0.33.

Figure 2: Next correct lexeme hint in a Preg question

Sychev O.

5 CASE STUDY

Volgograd State Technical University uses Preg questions in the two-
semester CS1 course “Programming basics” for the first- and second-
year undergraduate students. The following data was gathered
from the first semester of this course (first year, spring semester)
unless explicitly state otherwise because the first semester had
more academic hours and so more quizzes; the first semester of
this course is also focused introducing students to the syntax of the
C++ programming language that is better suited for the questions
requiring writing a line of code.

5.1 Course Quiz Setup

The first semester of the CS1 course “Programming basics” con-
tains 6 major programming assignments for topics ranging from
alternative statements to user-defined data types. Each of them
has an associated summative quiz (10 questions, about 15 vari-
ants each) that the student must pass in class before attempting
the assignment. These quizzes help to make sure that the student
knows the topic enough to attempt writing a program. Hints are
disabled in summative quizzes, and students cannot re-attempt sum-
mative questions once they are graded. The questions in summative
quizzes include code-writing Preg questions (from 1 to 5 questions
per quiz), multiple-choice questions “find the code lines containing
errors”, and short-answer questions “determine the results of code
execution”.

Originally, to prepare students for the summative quizzes, for
each summative quiz there was created a regular formative quiz,
offering a few variants of the difficult questions, and a demonstra-
tion quiz with one variant of each question of the summative quiz.
All the questions in these formative quizzes were supplied with
teacher-defined natural-language feedback, explaining which an-
swer is correct and why. The students actively used the formative
quizzes, however, the natural language explanatory feedback was
not enough: each lab assignment started from answering students’
questions about the formative quizzes they were stuck at which
reduced the time for actual programming. The main problem for
the code-writing questions was that the basic Moodle short-answer
questions just reported the fact of error; the students had to choose
between trying to fix their error by guessing and learning the cor-
rect answer.

To enhance the students’ abilities to train during homework,
we developed Preg formative quizzes for each code-writing ques-
tion of each summative quiz with string-completion hints enabled.
Students can use formative quizzes as much as they want during
homework but have no obligation to attempt them. Each formative
quiz usually has about 5 variants of each question. While attempt-
ing a formative quiz, the student can correct their answer and
re-grade it as many times as they want. They also can use the
string-completion hints that the Preg question type provides.

The summative quizzes are graded, but their influence on the
course grade is minimal (less than 10% of the course grade). Their
main function is being the threshold to cross before attempting
more complex tasks. This was done to limit the grade loss caused
by attention slips during testing as the students cannot debug their
code while attempting summative quizzes. The formative quizzes
are provided for training purposes and do not affect the course

Pattern Matching and String Completion for Teaching Programming

Table 1: Quantitative analysis of the regular expressions
used in “Programming Basics” course

Parameter Min Max Mean Stdev
characters in answer 2 109 31.08 19.8
tokens in answer 1 70 14.22 875

paths through the expression 1 18 1.58 1.86

grade. All quizzes showed the correct answers and natural-language
feedback once the quiz is completed.

The students who fail a summative quiz (by scoring less than
60%) are given time to improve their skills and should re-attempt
the quiz until passing it (up to 5 attempts). They can use formative
quizzes while preparing for the second and later attempts. As a
part of the final exam, students pass the exam quiz containing 18
questions from all 6 summative quizzes, providing a broad overview
of their knowledge of the whole course.

After introducing Preg formative quizzes, the main students’
complaint about them was its lack of handling of extra parentheses
in expressions which produced false-negative grades. To resolve
this problem, we enhanced the existing regular expressions with
recursive subpattern calls using the special Preg syntax described
in the section 4.1.2. It resolved the problem, significantly lessening
the number of false-negative grades.

The results presented below are based on the data collected over
four years (2016, 2017, 2019, and 2020) of teaching an introductory
programming course in Volgograd State Technical University to
the first-year students specializing in “Informatics and Computing”
and “Software Engineering” with 479 students in total.

We gathered all the data about the question attempts, including
their sequence, students’ responses to each question, and the hints
they requested. We also conducted informal interviews with the
staff teaching the course.

5.2 Answer templates

The course contains 722 Preg questions using 1160 regular expres-
sions in total. One Preg question contained from 1 to 13 regular
expressions (mean 1.5 regular expressions per question) used to
test various correct answers. These regular expressions described
program codes of varying lengths that can be measured in charac-
ters and tokens. In Table 1 we provided measures for the shortest
correct answer and the length of the longest correct answers for
most of the regular expressions is (theoretically) not limited be-
cause of quantifiers “*”
characters. Another important measure of the regular expression
complexity is the number of possible alternative paths through the
expressions, showing the variability of code described by them.
The students gave 4952 unique answers that were matched by
these regular expressions between 1 to 67 unique answers per
regular expression, 4.9 unique answers per expression on average.
Some of these unique answers differed only in whitespace char-
acters. Considering all answers that differ only in whitespaces the
same, we found 2107 unique answers, between 1 to 40 answers per
regular expression, 2 answers per expression on average. The dis-
tribution of the number of unique answers per regular expression

« »

and “+” allowing any number of whitespace

ICSE-SEET °22, May 21-29, 2022, Pittsburgh, PA, USA

Table 2: Attempts of formative quizzes

Tried to answer Answered Number of Percentage

questions correctly attempts
No No 87 2.8%
Some No 76 2.5%
Some Some 239 7.7%
All Some 738 23.8%
All All 1960 63.2%

is shown in Fig. 3: the number of unique answers on the X-axis,
and the number of regular expressions with this number of unique
answers on the Y-axis. The majority of regular expressions had
from 1 to 5 unique answers; the number of expressions matching
more than 15 unique answers is small. It shows that using regular
expressions allowed us to cover a wider range of correct answers
than it would be possible using simple open-answer questions with
string matching.

As we said before, the main cause of false grades for regular
expressions questions were extraneous parentheses. The usage of
recursive subpattern calls to catch extraneous parentheses increased
recall for the Preg question in the entire course from 0.88 to 0.99
and F-measure from 0.937 to 0.995. The few remaining cases of false-
negative grading are solved by teachers individually; sometimes
regular expressions were upgraded to match a new solution found
by a student.

5.3 Formative Quizzes and Hints

When evaluating Preg formative quizzes’ effect on the students’
performance, it must be taken into account that Preg quizzes were
working with only one kind of question - open-answer string ques-
tions - which comprised roughly one-third of the summative quizzes.
About 43% of the students chose not to use Preg quizzes at all. To
understand the next two tables better, it is good to keep in mind
the difference between the number of quiz attempts and the num-
ber of question attempts: each formative quiz contains from 1 to 5
questions depending on the topic.

Out of 464 students who attempted at least one quiz in the course,
207 (44.6%) chose to not use Preg formative quizzes at all. The
remaining 257 students used Preg quizzes for training from 1 to
107 times (mean 9.16, standard deviation 13.98). They made 3100
quiz attempts. Table 2 summarizes the ways the students used Preg
formative quizzes. Given that they could improve their answers
until answering correctly or giving up, we can consider correct
answers as the student being able to complete their attempt (or
some questions in it).

It can be seen see that more than half of the training attempts
ended in answering all questions correctly. In more than three-
quarters of attempts, the student answered correctly at least some
questions. Only in 5.3% of attempts the student gave up without
answering at least one question correctly. Half of them simply used
formative quizzes to learn the correct answers, clicking the button
to complete the quiz right after it started.

Looking at how the individual questions were attempted, we
found 8291 question attempts. The summary is shown in Table 3.

ICSE-SEET °22, May 21-29, 2022, Pittsburgh, PA, USA

Sychev O.

unique answers
suppressing difference in white spaces

600

400

number of regular expressions

2 4 6 8 10

15 20 25 30

number of unique answers

Figure 3: Distribution of regular expressions by the number of unique covered answers

Table 3: Attempts of formative questions

Final Number of Percentage Attempts with

answer attempts hints

Absent 581 7% 0
Incorrect 1126 13.6% 304

Correct 6584 79.4% 2000

Note that for individual questions, the number of attempts without
even trying to answer should be interpreted differently: it is a valid
strategy to answer only some questions during a quiz attempt meant
for training if the student is sure in their ability to answer the other
questions. The students were able to find correct answers to almost
80% of the questions without support from the teaching staff. About
one-third of the completed attempts used hints. In 13.6% of attempts,
the student gave up solving a question. In 27% of these attempts,
the student used hints but still did not find the correct answer. The
percentage of not completed attempts is almost the same for the
attempts with hints (13%) and the attempts that did not use hints
(15%).

To assess the effect of using Preg quizzes on the overall perfor-
mance of the students, we studied average exam quiz scores for
different groups of students. The exam quiz was not obligatory,
and some students were not allowed to take exams because of not
completing enough assignments during the semester. We found
272 attempts of the exam quiz. Its results depending on the number
of attempts of Preg formative quizzes are shown in Table 4, while
depending on the frequency of hint usage are shown in Table 5.
Paired, 2-tailed t-test does not show any significant difference in
the exam quiz scores according to the number of attempts of Preg
formative quizzes. However, the students who used hints sparingly
performed significantly better than those who did not use hints
at all (p=0.02) and those who used hints often (p=0.05). It is clear
that no significant influence of Preg training on the exam quiz can
be found. This may be unsurprising, given that the students had
other means of training for the exam quiz and other means to get
help. When we consider hint usage, the small group of students
who used hints sparingly showed marginally better performance
than the students who did not use hints or used them often. How-
ever, the small size of this group and the weak effect size require
further research to validate this finding. The interviews with the
teaching staff indicated that the main advantage of introducing
Preg formative quizzes was significantly reducing the number of

Pattern Matching and String Completion for Teaching Programming

Table 4: The exam quiz score by the activity in using forma-
tive quizzes during the semester

Student Group Students Mean Stdev

no Preg training 99 0.73 0.16
low Preg training (<= 7 attempts) 114 0.729 0.16
active Preg training (> 7 attempts) 59 0.76 0.16

Table 5: The exam quiz score by the percent of hints used
during the semester

Student Group Students Mean Stdev
did not use hints 142 0.72 0.15
low hint usage 30 0.78 0.13
(< 33% of attempts used hints)
active hint usage 100 0.73 0.16

(> 33% of attempts used hints)

questions about homework formative quizzes they had to answer
as the students, with the help of string-completion hints, could
resolve many problems on their own.

6 DISCUSSION

While automatic feedback generation for programming exercises
was researched extensively (see [24]), the effects of smaller-size
tasks like writing a single line of code did not receive the same
attention. The reports on the effects of voluntary programming
practice in introductory programming courses differ. Spacco et al
[33] reported a weak correlation between exam performance and
the number of voluntarily completed programming exercises. Estey
et al [14] reported a negative correlation between the number of re-
quested hints and exam performance while no relationship between
practice time and exam performance. Edwards et al [13] divided
students into three groups (no practice, some practice, and full
practice) and found that students from the “some practice” groups
performed worst in both code-writing exercises and multiple-choice
questions in final exams. However, all this research regarded vol-
untary solving program-writing exercises.

We found that regular expressions are suited well for program-
ming questions with short answers (about one line of code; from 1
to 70 tokens) which are used in introductory programming courses
during quizzing. Regular expressions allowed teachers to create
questions with up to 18 significantly different answers (i.e., the
answers that are different in more than just extra whitespaces and
parentheses) per expression which would be time-consuming if
using string matching or parse trees matching. However, most of
the developed regular expressions had 1 or 2 significantly different
answers.

Most of the teachers participating in developing Preg questions
found creating a regular expression from a program string simple
and straightforward: the best and common practice was writing the
program code as it is first, then escaping special characters, then
introducing alternative parts, followed by adding the notation for
extra parentheses and optional whitespaces. While this process can

ICSE-SEET °22, May 21-29, 2022, Pittsburgh, PA, USA

be automated, developing a special tool for creating this question
bank was found unnecessary. The regular-expression editing, visu-
alizing, and testing interface of Preg questions were adequate to
the task of developing expressions for a string of code.

While normal regular expressions often (about 11% of times)
produced false-negative grades because of extraneous parenthe-
ses in expressions, Perl-compatible regular expressions can handle
these using the recursive subpattern calls feature. Practical usage
of recursive subpattern calls requires special syntax for typical ex-
pressions to keep the resulting expressions human-readable; we
developed several patterns using special regular-expressions com-
ments to achieve that. After this, the amount of false-negative
grades dropped to 0.8% which can be handled by the teaching staff
even in large courses. False-positive grades were extremely rare as a
regular expression allows defining a set of correct answers precisely.
One regular expression matched 4.9 unique students’ answers on
average, up to 67 unique answers matched by one expression.

Analyzing attempts of the formative quizzes for training pur-
poses, we found that when using Preg questions, the students solved
at least one question correctly in almost all the attempts and solved
all questions correctly in almost two-thirds of the attempts. This
means that most of the students used the formative quizzes actively,
answering the questions repeatedly until solution if necessary. Only
about 5% of attempts were given up without answering correctly
a single question. The relatively big number of attempts where
not all questions were answered correctly may be not a big issue
because sometimes students omitted the questions they knew well,
concentrating on the difficult questions while training. A significant
number of the students’ first (starting) answers contained major
syntax errors (up to omitting or misplacing more than half of the
answer’s tokens) that would prevent a question based on error-
correcting grammar from providing meaningful feedback, while
Preg question could provide enough support to solve the task.

Studying question attempts, we can see that almost 80% of them
ended in a correct answer. Students used hints in about each third
attempt to answer a question; the relatively low frequency of using
hints can partially be attributed to the easiness of some questions.
The teachers during interviewing also noted that sometimes very
poorly performing students were not even aware that they can use
hints. These were mostly the students who either skipped classes
often or learned in the second language and had trouble under-
standing what was going on in the class. This last group, according
to the teachers, gained a lot from using hints once they were shown
how to use hints personally.

However, there is no significant difference between the percent-
age of attempts using hints among correctly answered and incor-
rectly answered attempts. In more than 13% of cases, students gave
up answering even having access to the hints that led to the correct
answer if used enough times. In 73% of the attempts when students
gave up, they did not even try to use hints. This may mean that
the teaching staff should spend more time teaching the students
how to use hints. Still, the teachers reported a sharp decrease in
the number of students’ questions about formative quizzes once
the hints were enabled. About 500 training questions per semester
were answered correctly using hints; without hints, the students
would need to ask their teacher or teaching assistant about solving

ICSE-SEET °22, May 21-29, 2022, Pittsburgh, PA, USA

the problematic question. This saves the teaching time to spend on
actual programming.

We did not find any link between using Preg questions for train-
ing and the students’ performance in the exam quiz. However, the
students had two other kinds of formative quizzes to train (which
the teachers found unethical to turn off) and Preg questions ac-
counted only for open-answer questions which comprised about a
third of the exam quiz. There seems to be a weak link between using
hints sparingly (less than once in every 3 attempts) and perform-
ing better in the final quiz. This means that overuse of completion
hints is mostly done by poorly performing students; saying simply,
repeated clicks on “show me what to type next” does not stimulate
learning. So Preg questions can be improved by adding a limiter
to the number of hints the student can use. The high frequency of
hint usage can serve as a warning sign about learning problems;
students who do it require special attention from teaching assis-
tants. The teachers can discourage students from using hints too
often by applying grade penalties for their use as the Preg software
allows.

The main positive effect of introducing regular-expression ques-
tions with string-completion hints was saving teachers’ class time
that was previously spent on answering students’ questions about
their homework quizzes. Some teachers noted that foreign students
who learned in their second language and so had trouble under-
standing teachers gained from using Preg questions most as the
string-completion hints do not require reading and understanding
natural-language texts. It increased the course’s inclusivity and
saved a lot of teachers’ time because explaining problems to these
students often take a lot of time. The immediate automatic hints
in code-writing quizzes worked well because the tasks are rela-
tively simple and do not require prolonged thought. It was also
very valuable during COVID lockdowns.

7 LIMITATIONS AND CONCLUSION

We found that regular expressions matching is a viable way to effec-
tively implement short-answer questions requiring writing a single
line of code (up to about 70 tokens). A single regular expression can
cover up to 18 different answers. Using regular expression to grade
program code requires solving the problem of extraneous paren-
theses in expressions that is possible using Perl-compatible regular
expressions. We used the Preg question-type plug-in for Moodle
LMS as a tool implementing the necessary features and able to give
hints on completing partially correct students’ answers. Formative
quizzes with string-completion hints allow students to practice
writing lines of program code performing a particular task on their
own without being stuck. However, too frequent usage of hints
may hinder students’ progress and should be discouraged or used
as a marker of poorly-performing students needing more attention.
This requires further research. The main effect of training with
hints seems to be saving teachers’ time rather than learning gains
in answering the same questions on exams: the students learned
the same without consulting their teacher and teaching assistants.

These open-answer questions work only on the application level
of Bloom’s taxonomy of learning objectives and should be sup-
ported by other learning tools and techniques. For the assignments
requiring writing more code, it is better to switch from matching

Sychev O.

strings to testing the developed code. Summative quizzes, however,
stimulate mastering low-level skills before attempting high-level
tasks (like solving coding assignments) and ensure a certain level
of knowledge before the student attempts complex tasks requiring
more attention from the teaching staff.

Further work on the Preg question type will include adding typo
detection features: the most common students’ complaint was about
a typo causing the whole answer to be graded as wrong. Adding
more features of Perl-compatible regular expressions (like complex
assertions) to the hinting engine will improve its templating ability.
The Preg question type is available for the widely-used Moodle
LMS under General Public License and can be downloaded from
the link is anonymised.

ACKNOWLEDGMENTS

The reported study was funded by RFBR, project number 20-07-
00764.

REFERENCES

[1] Kirsti Ala-Mutka. 2005. A Survey of Automated Assessment Approaches for
Programming Assignments. Computer Science Education 15 (2005), 102 — 83.
https://doi.org/10.1080/08993400500150747

[2] Lorin W. Anderson and David R. Krathwohl (Eds.). 2001. A Taxonomy for Learning,
Teaching, and Assessing. A Revision of Bloom’s Taxonomy of Educational Objectives
(2 ed.). Allyn & Bacon, New York.

[3] Lyle F Bachman, Nathan Carr, Greg Kamei, Mikyung Kim, Michael J Pan,

Chris Salvador, and Yasuyo Sawaki. 2002. A Reliable Approach to Auto-
matic Assessment of Short Answer Free Responses. In COLING "02: Proceed-
ings of the 19th international conference on Computational linguistics (Taipei,
Taiwan) (COLING ’02). Association for Computational Linguistics, USA, 1-4.
https://doi.org/10.3115/1071884.1071907

[4] Fabian Beck, Stefan Gulan, Benjamin Biegel, Sebastian Baltes, and Daniel
Weiskopf. 2014. RegViz: Visual Debugging of Regular Expressions. In Com-
panion Proceedings of the 36th International Conference on Software Engineering
(Hyderabad, India) (ICSE Companion 2014). Association for Computing Machinery,
New York, NY, USA, 504-507. https://doi.org/10.1145/2591062.2591111

[5] Paul Black and Dylan Wiliam. 1998. Assessment and Classroom Learning. As-
sessment in Education: Principles, Policy & Practice 5, 1 (1998), 7-74. https:
//doi.org/10.1080/0969595980050102

[6] I Budiselic, S. Srbljic, and M. Popovic. 2007. RegExpert: A Tool for Visualization
of Regular Expressions. In EUROCON 2007 - The International Conference on
"Computer as a Tool". IEEE, Warsaw, Poland, 2387-2389. https://doi.org/10.1109/
EURCON.2007.4400374

[7] Steven Burrows, Iryna Gurevych, and Benno Stein. 2015. The Eras and Trends of
Automatic Short Answer Grading. International Journal of Artificial Intelligence in
Education 25,1 (01 Mar 2015), 60-117. https://doi.org/10.1007/s40593-014-0026-8

[8] Philip G Butcher and Sally E Jordan. 2010. A comparison of human and computer
marking of short free-text student responses. Computers & Education 55, 2 (2010),
489-499. https://doi.org/10.1016/j.compedu.2010.02.012

[9] Aparna Chirumamilla and Guttorm Sindre. 2019. E-Assessment in Programming

Courses: Towards a Digital Ecosystem Supporting Diverse Needs?. In Digital

Transformation for a Sustainable Society in the 21st Century, Ilias O. Pappas,

Patrick Mikalef, Yogesh K. Dwivedi, Letizia Jaccheri, John Krogstie, and Matti

Mintyméki (Eds.). Springer International Publishing, Cham, 585-596. https:

//doi.org/10.1007/978-3-030-29374-1_47

Albert T. Corbett and John R. Anderson. 2001. Locus of Feedback Control in

Computer-Based Tutoring: Impact on Learning Rate, Achievement and Attitudes.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

(Seattle, Washington, USA) (CHI ’01). Association for Computing Machinery,

New York, NY, USA, 245-252. https://doi.org/10.1145/365024.365111

Dezso Sima, Balazs Schmuck, Sandor Szollosi, and Arpad Miklos. 2007. Intelligent

short text assessment in eMax. In AFRICON 2007. IEEE, Windhoek, 1-7. https:

//doi.org/10.1109/AFRCON.2007.4401593

Myroslava Dzikovska, Natalie Steinhauser, Elaine Farrow, Johanna Moore, and

Gwendolyn Campbell. 2014. BEETLE II: Deep Natural Language Understanding

and Automatic Feedback Generation for Intelligent Tutoring in Basic Electricity

and Electronics. International Journal of Artificial Intelligence in Education 24, 3

(01 Sep 2014), 284-332. https://doi.org/10.1007/s40593-014-0017-9

Stephen H. Edwards, Krishnan P. Murali, and Ayaan M. Kazerouni. 2019. The

Relationship Between Voluntary Practice of Short Programming Exercises and

[10

[11

[12

ey
&

https://doi.org/10.1080/08993400500150747
https://doi.org/10.3115/1071884.1071907
https://doi.org/10.1145/2591062.2591111
https://doi.org/10.1080/0969595980050102
https://doi.org/10.1080/0969595980050102
https://doi.org/10.1109/EURCON.2007.4400374
https://doi.org/10.1109/EURCON.2007.4400374
https://doi.org/10.1007/s40593-014-0026-8
https://doi.org/10.1016/j.compedu.2010.02.012
https://doi.org/10.1007/978-3-030-29374-1_47
https://doi.org/10.1007/978-3-030-29374-1_47
https://doi.org/10.1145/365024.365111
https://doi.org/10.1109/AFRCON.2007.4401593
https://doi.org/10.1109/AFRCON.2007.4401593
https://doi.org/10.1007/s40593-014-0017-9

Pattern Matching and String Completion for Teaching Programming

[14

[15

[16]
[17]

(18

[19]
[20]

[21]

[22]

[23]

[24]

Exam Performance. In Proceedings of the ACM Conference on Global Computing Ed-
ucation (Chengdu,Sichuan, China) (CompEd ’19). Association for Computing Ma-
chinery, New York, NY, USA, 113-119. https://doi.org/10.1145/3300115.3309525
Anthony Estey and Yvonne Coady. 2017. Study Habits, Exam Performance, and
Confidence: How Do Workflow Practices and Self-Efficacy Ratings Align?. In
Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer
Science Education (Bologna, Italy) (ITiCSE ’17). Association for Computing Ma-
chinery, New York, NY, USA, 158-163. https://doi.org/10.1145/3059009.3059056
Nickolas Falkner, Rebecca Vivian, David Piper, and Katrina Falkner. 2014. In-
creasing the Effectiveness of Automated Assessment by Increasing Marking
Granularity and Feedback Units. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education (Atlanta, Georgia, USA) (SIGCSE
’14). Association for Computing Machinery, New York, NY, USA, 9-14. https:
//doi.org/10.1145/2538862.2538896

Jeffrey E. F. Friedl. 2006. Mastering Regular Expressions (3 ed.). O’Reilly, Beijing.
Alex Gerdes, Johan Jeuring, and Bastiaan Heeren. 2012. An Interactive Func-
tional Programming Tutor. In Annual Conference on Innovation and Technology
in Computer Science Education, ITiCSE. Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/2325296.2325356

Graham Gibbs and Claire Simpson. 2005. Conditions under which assessment
supports students’ learning. Learning and teaching in higher education 1 (2005),
3-31. http://eprints.glos.ac.uk/3609/

Jan Goyvaerts and Steven Levithan. 2012. Regular expressions cookbook. O'’reilly,
USA, Sebastopol.

John Hattie and Helen Timperley. 2007. The Power of Feedback. Review of Edu-
cational Research 77 (03 2007), 81-112. https://doi.org/10.3102/003465430298487
Colin A. Higgins, Geoffrey Gray, Pavlos Symeonidis, and Athanasios Tsintsifas.
2005. Automated Assessment and Experiences of Teaching Programming. 7. Educ.
Resour. Comput. 5, 3 (Sept. 2005), 5-es. https://doi.org/10.1145/1163405.1163410
Sally Jordan and Tom Mitchell. 2009. e-Assessment for learning? The potential
of short-answer free-text questions with tailored feedback. British Journal of
Educational Technology 40, 2 (2009), 371-385. https://doi.org/10.1111/j.1467-
8535.2008.00928.x

Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2016. Towards a Systematic
Review of Automated Feedback Generation for Programming Exercises. Association
for Computing Machinery, New York, NY, USA, 41-46. https://doi.org/10.1145/
2899415.2899422

Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A Systematic Literature
Review of Automated Feedback Generation for Programming Exercises. ACM
Trans. Comput. Educ. 19, 1, Article 3 (Sept. 2018), 43 pages. https://doi.org/10.

[25

[26

[27

[28

[29

[30

[32

[33

[34

]

]

]

ICSE-SEET °22, May 21-29, 2022, Pittsburgh, PA, USA

1145/3231711

H. Lane and Kurt Vanlehn. 2005. Teaching the tacit knowledge of programming
to noviceswith natural language tutoring. Computer Science Education 15 (09
2005), 183-201. https://doi.org/10.1080/08993400500224286

Nguyen-Thinh Le and Wolfgang Menzel. 2006. Problem Solving Process Oriented
Diagnosis in Logic Programming. In Proceedings of the 2006 Conference on Learning
by Effective Utilization of Technologies: Facilitating Intercultural Understanding.
I0S Press, NLD, 63-70. https://doi.org/10.5555/1565941.1565955

Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gi-
annakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott,
Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic
Literature Review. In Proceedings Companion of the 23rd Annual ACM Conference
on Innovation and Technology in Computer Science Education (Larnaca, Cyprus)
(ITiCSE 2018 Companion). Association for Computing Machinery, New York, NY,
USA, 55—-106. https://doi.org/10.1145/3293881.3295779

Cara Macnish. 2010. Java Facilities for Automating Analysis, Feedback and
Assessment of Laboratory Work. Computer Science Education August 2000 (08
2010), 147-163. https://doi.org/10.1076/0899-3408(200008)10:2;1-C;FT147
Victor J. Marin, Maheen Riaz Contractor, and Carlos R. Rivero. 2021. Flexible
Program Alignment to Deliver Data-Driven Feedback to Novice Programmers.
In Intelligent Tutoring Systems, Alexandra I. Cristea and Christos Troussas (Eds.).
Springer International Publishing, Cham, 247-258. https://doi.org/10.1007/978-
3-030-80421-3_27

Claudia Ott, Anthony Robins, and Kerry Shephard. 2016. Translating Principles
of Effective Feedback for Students into the CS1 Context. ACM Trans. Comput.
Educ. 16, 1, Article 1 (Jan. 2016), 27 pages. https://doi.org/10.1145/2737596
Sanguthevar Rajasekaran and Marius Nicolae. 2014. An error correcting parser
for context free grammars that takes less than cubic time. arXiv:1406.3405 [cs.DS]
R. Siddigi and C. Harrison. 2008. A systematic approach to the automated marking
of short-answer questions. In 2008 IEEE International Multitopic Conference. IEEE,
Karachi, 329-332. https://doi.org/10.1109/INMIC.2008.4777758

Jaime Spacco, Paul Denny, Brad Richards, David Babcock, David Hovemeyer,
James Moscola, and Robert Duvall. 2015. Analyzing Student Work Patterns
Using Programming Exercise Data. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education (Kansas City, Missouri, USA) (SIGCSE
’15). Association for Computing Machinery, New York, NY, USA, 18-23. https:

//doi.org/10.1145/2676723.2677297
Oleg Sychev, Anton Anikin, and Artem Prokudin. 2020. Automatic grading and

hinting in open-ended text questions. Cognitive Systems Research 59 (2020), 264 —
272. https://doi.org/10.1016/j.cogsys.2019.09.025

https://doi.org/10.1145/3300115.3309525
https://doi.org/10.1145/3059009.3059056
https://doi.org/10.1145/2538862.2538896
https://doi.org/10.1145/2538862.2538896
https://doi.org/10.1145/2325296.2325356
http://eprints.glos.ac.uk/3609/
https://doi.org/10.3102/003465430298487
https://doi.org/10.1145/1163405.1163410
https://doi.org/10.1111/j.1467-8535.2008.00928.x
https://doi.org/10.1111/j.1467-8535.2008.00928.x
https://doi.org/10.1145/2899415.2899422
https://doi.org/10.1145/2899415.2899422
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711
https://doi.org/10.1080/08993400500224286
https://doi.org/10.5555/1565941.1565955
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1076/0899-3408(200008)10:2;1-C;FT147
https://doi.org/10.1007/978-3-030-80421-3_27
https://doi.org/10.1007/978-3-030-80421-3_27
https://doi.org/10.1145/2737596
https://arxiv.org/abs/1406.3405
https://doi.org/10.1109/INMIC.2008.4777758
https://doi.org/10.1145/2676723.2677297
https://doi.org/10.1145/2676723.2677297
https://doi.org/10.1016/j.cogsys.2019.09.025

	Abstract
	1 Introduction
	2 Related Work
	2.1 Template-based short-answer assessment
	2.2 String-completion hints

	3 Background
	4 Preg Question's Features and Their Uses in Introductory Programming Courses
	4.1 Regular Expressions as Templates for Program Strings
	4.2 String Completion Hints

	5 Case Study
	5.1 Course Quiz Setup
	5.2 Answer templates
	5.3 Formative Quizzes and Hints

	6 Discussion
	7 Limitations and Conclusion
	Acknowledgments
	References

