
One Block on Top of the Other: Using Minetest to Teach Scrum

Jan-Philipp Steghöfer
jan-philipp.steghofer@gu.se

Chalmers University of Technology

University of Gothenburg

Gothenburg, Sweden

Håkan Burden
burden@chalmers.se

Chalmers University of Technology

University of Gothenburg

Gothenburg, Sweden

ABSTRACT

Teaching Scrum using Lego has been an established teaching tech-

nique for years. However, the COVID-19 pandemic forced teachers

all over the globe to rethink this valuable teaching tool. In this ex-

perience report, we show how we transferred our version of a Lego

Scrumworkshop into the world of Minetest, an open-source variant

of Minecraft. We detail our reasoning, the concrete technical and

pedagogical challenges, as well as experiences and reflections from

the students, us as teachers, our peers, and theoretical frameworks.

Finally, we share our materials to enable other teachers to use this

new tool.

CCS CONCEPTS

• Software and its engineering→Agile software development;

• Social and professional topics→ Adult education.

KEYWORDS

Scrum, Software Engineering Education, Online Education, Serious
Games

ACM Reference Format:

Jan-Philipp Steghöfer and Håkan Burden. 2022. One Block on Top of the 
Other: Using Minetest to Teach Scrum. In 44nd International Conference on 
Software Engineering: Software Engineering Education and Training (ICSE-
SEET ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 
11 pages. https://doi.org/10.1145/3510456.3514157

1 INTRODUCTION

Teaching agile methodologies such as Scrum [25] using serious 
games has been a popular pedagogical approach ever since the
original Lego Scrum exercise was published by Alexander Krivitsky
in 2009 [12] and Lynch et al. picked it up for use in university
courses [18]. A number of educators have adapted the approach
to teach Scrum in different ways in university [23, 26] and high
school settings [21]. Lego has since then shown its potential to also
teach other software engineering activities (see, e.g., [14, 16]).

However, the COVID-19 pandemic required educators to revise
their approaches in the light of restrictions to in-person teaching
and a move to online learning. A workshop with many dozen par-
ticipants in a closed space and in close proximity, as required by
the Lego Scrum workshops, was simply no longer possible. Instead,

This work is licensed under a Creative Commons Attribution International 4.0 
License.
ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9225-9/22/05.
https://doi.org/10.1145/3510456.3514157

educators moved their teaching to online formats (see, e.g., [22])

that replicate or approximate in-person workshops.

In this experience report, we describe our efforts to replace Lego

Scrum workshops with a similar format in which students use

Minetest1, an open source variant of Minecraft to learn the prin-

ciples of Scrum. The new workshop format follows similar ideas –

students use Scrum to build a cityscape or a comparable product

with the support of product owners and pre-defined user stories –

but relies completely on online interactions between participants.

Our experiences from four workshops in three course iterations

show that it is indeed possible to achieve learning outcomes that are

very similar to those of Lego Scrum workshops. However, commu-

nication and technical hurdles proved to be additional difficulties

that are not present in the original.

With this report, we hope to provide a foundation for any edu-

cator who wants to teach Scrum using a serious game online. We

share our pedagogical concepts, but also many technical details in

the hope that others can benefit from them. In addition, we make

all used material, including the Minetest worlds, configuration files,

and templates for the backlog available to the community2.

In the following, we first give an overview of how educators are

using serious games to teach Scrum in Section 2.We then discuss the

educational context of the courses on which we base our experience

in Section 3.We describe the pedagogical and technical details of the

Minetest Scrumworkshops in Section 4 and discuss our experiences

and reflections in Section 5 from the teacher, the student, the peer,

and the theoretical perspectives. Finally, we provide guidelines and

lessons learned in Section 6.

2 TEACHING SCRUMWITH SERIOUS GAMES

There are countless examples of serious games used in software

engineering education (see, e.g., [1, 7–10, 19, 20, 24, 29]). At least

some of these approaches are used to teach software development

processes (e.g., [1, 6, 10]) or, more specifically, Scrum (e.g., [8, 9, 26,

28]). All of these approaches have in common that they attempt to

teach a subject that is mostly defined through practical skills and

abilities in a setting where students can try out, hone, and apply

these abilities directly.

In terms of serious games introducing large-scale agile method-

ologies, a foundational contribution was set out by Krivitsky [12]

who defines a workshop where teams together build a city using

LEGO. In the exercise, one team will be responsible for the house

with a front garden; another team will build the SUV while a third

will deliver the car port. As development proceeds the teams will

recognise that the Product Owner wants the house and the car port

in the same colour and that the car port has to be big enough to

1https://minetest.net/
2https://github.com/steghoja/minetest-scrum

176

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-
SEET)

http://creativecommons.org/licenses/by/4.0/


ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Steghöfer and Burden

fit the SUV. Kropp et al. [13] adapted the workshop, using office

materials instead of LEGO, to the decrease the cost of the workshop

and introduce shorter build times during sprints. Another take on

the exercise is given by Steghöfer et al. [26]. They conclude that the

students do manage inter-team collaboration to organise their work

but often neglect essential Scrum practices such as estimation and

break-down of user stories. Due to time restrictions and students’

cognitive load they opted to not address these shortcomings during

the LEGO exercise but in a follow-up exercise.

Using LEGO requires physical co-location, something that is

not always possible. O’Farrell et al. [22] have a virtual game that

reenacts parts of the Scaled Agile Framework (SAFe, [15]). The

findings illustrate that digital games can be effectively used to

compliment traditional lecture-based approaches to teach large-

scale agile development, even if their exercise does not introduce

dependencies between teams.

Whether or not innovative learning technologies such as serious

games are accepted by students depends on a number of factors [17].

While social influence plays a minor role, positive emotions is more

important. The decisive factor is, however, how useful the students

perceive a learning activity to be. It is therefore important to align

the game to fit the intended learning outcomes. A game by itself

will not teach students agile processes and practices; it is how the

experiences from playing are tied to the intended learning outcomes

that enables that kind of learning.

3 EDUCATIONAL CONTEXT

The Minetest exercise has been used a total of five times in three

different course instances, twice in a course on software develop-

ment methodologies (in Winter 2020, W20) and three times in a

course on agile project management (in W20, and Spring 2021, S21).

Both courses represent 7.5 ECTS, i.e., five weeks of full-time studies.

They are given over ten weeks so that each student is expected to

work 20 hours a week, including lectures and reading literature.

Both courses previously used Lego Scrum exercises.

3.1 Software Development Methodologies
Course

The course is taught to second year bachelor students in a program

on Software Engineering and Management. While they have been

exposed to agile software development process in previous project

courses, they lack the theoretical background to understand and

apply Scrum and other approaches correctly. The course addresses

these with a number of lectures and exercises and also introduces

concepts of software process improvement. In this course, the exer-

cise is used twice: once to allow students to experience Scrum in a

controlled manner, and once to allow them to apply an improved

version of Scrum that they have created using well-known soft-

ware process improvement techniques [27]. Both instances of the

workshop were attended by around 65 students.

3.2 Agile Project Management Course

The course is taught to different audiences, all on the bachelor

level. This includes computer science, software engineering, and

industrial economy students in their second and third years of study.

The course’s focus is on practical application of knowledge and

skills. Students are introduced to agile project management with a

mixture of lessons and exercises before tackling their project.

The project scope is defined so that the students have to plan, im-

plement and evaluate a project where they do not own the definition

of value [4]. The ambition is thus that the students will understand

the basic concepts of software engineering and be able to reflect on

the relationship between stakeholders, processes and products [5].

The Minetest Scrum exercise is given in the first week of the course

to give the students a first experience of Scrum that later can be

expanded by lectures introducing the theoretical background for

the practices and artefacts.

In the first course instance, we split the 150 participants into two

workshops, so that each workshop had 70 students in 15 teams. In

the second instance 75 students in 13 teams participated. We aim to

have teams of five to seven members, since this is a reasonable size

for a Scrum team and results in a total number of teams manageable

during supervision and grading.

4 TEACHING SCRUM IN MINETEST

The Scrum workshop as we use it in our teaching is a short and

focused activity of no more than four hours in which students go

through several Scrum sprints. During this time, students need to

work with user stories, discuss and negotiate them with stakehold-

ers, estimate them, plan them, review them with the stakeholders,

run retrospectives and make changes and adjustments identified in

the retrospectives. That means that students experience all aspects

of a Scrum process in a very compressed format.

The Scrum workshop allows students to experience Scrum in

a setting that is free from code and allows them to focus on pro-

cess aspects instead of having to deal with complications arising

from setting up complicated toolchains and resolving dependencies.

While we acknowledge that using a set of technologies as described

below re-introduces some of these complications, the barrier of

entry is still significantly lower. The only new piece of technol-

ogy students need to contend with is Minetest. All other tools are

already used in our teaching and students are familiar with them.

Students are asked to create either a city or a castle out of the

materials available in the game world. They are provided with

a product backlog on Trello. Teaching assistants act as product

owners, and teachers act as Scrum coaches and observers.

In terms of intended learning outcomes, the workshop addresses

the following aspects, inspired by [26]:

• Introduce Scrum in away that focuses on the process, rather

than on the product.

• Inspire students to take initiative, create and follow plans,

and take responsibility for their work.

• Expose students to the need to understand resource limita-

tions and plan accordingly.

• Sensitivise students for the need of iterative retrospectives

and improvements.

• Allow students to interact with a stakeholder whose ideas

and wishes might not be congruent with their own.

In the following, we go through the different aspects of the

workshop and how we set them up. We will start by giving a high-

level overview of the workshop in Section 4.1. Then, we will briefly

discuss Minetest itself (Section 4.2). Following that, we will consider

177



One Block on Top of the Other: Using Minetest to Teach Scrum ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

the selection of the world in which the workshop takes place in

Section 4.3 and communication channels in Section 4.4.

4.1 Overview of the Workshop

The Scrum workshop is scheduled for approximately 3 12 hours. A

rough breakdown is shown in Table 1. The workshop is facilitated

by two teachers who act as observers, Scrum coaches, and referees.

Three or four teaching assistants take on the roles of the product

owners. These TAs have prepared for the workshop by sorting

the pre-defined user stories in the product backlog by priority and

assigning epics and stories to themselves. This means that each

story has a clearly denoted, responsible product owner.

Students get a priori information about the technology used in

the workshop and are asked to install and familiarise themselves

with Minetest at least a week before the workshop takes place. On

the day of the workshop, the teacher opens the server and sends

out the URL and password to all students. At this stage, all students

can enter the game, but they do not have the ability to interact with

the environment. This means that the world remains pristine until

the building phase starts. All students join a Zoom meeting with

pre-defined breakout rooms for each group and for each PO. When

the workshop starts, student groups have already been formed.

Introduction to the Workshop. The workshop begins with an in-

troduction by the teachers. This includes a “product vision” (a

screenshot of an actual cityscape of castle in Minecraft). The teach-

ers also go through the basic structure and ceremonies of Scrum,

discuss the roles of Scrum Master and Product Owner, and mention

the importance of the Definition of Done. In our courses, these

elements have been introduced before, so a brief repetition and

a chance to ask questions is all that is needed. The students then

move into the breakout rooms for their groups. They are asked to:

• decide who will act as Scrum Master;

• come up with an initial Definition of Done (which should

be applicable to all teams); and

• perform an initial effort estimation of the user stories they

would like to take.

The students do not have a lot of time to perform those tasks –

in fact, we do not expect them to estimate the effort of more than

one or two user stories. Students usually fail to realise that the

Definition of Done (DoD) should not be team-specific; as a matter

of fact, it is not rare that a part of the students still assumes that

each group will build their own cityscape or castle.

Once the time is up, we call students back into the main Zoom

meeting. We hold a very brief discussion focused on the DoD and

the need to revise and reflect on estimations. Students also get the

chance to ask final questions, but experience shows that at this

stage, students are usually eager to start.

The First Sprint. When the first sprint begins, students leave for

their breakout rooms again and the teacher activates the “interact”

privilege on the Minetest server which means that all students are

now able to manipulate their environment.

Students often skip the sprint planning. In most cases, students

have not thought about how to “claim” a user story for their team

or how to negotiate with other teams who takes which story. In

many cases, this leads to some buildings being built multiple times.

Table 1: Rough breakdown of the Minetest Scrum workshop

– in an actual workshop, concrete timing varies depending

on factors such as observed issues and perceived fatigue.

T - 7 days Send information about Minetest to students

T - 1 day TAs sort product backlog by priority and assign

user stories

Set up Minetest server and test it

T - 3 hours Send URL and password of Minetest server to

students

T - 0 Introduce the workshop and the students’ tasks

in joint Zoom meeting

T + 20 minutes Students join breakout rooms with tasks: select

Scrum master, discuss backlog items, estimate a

few user stories, discuss DoD

T + 45 minutes Brief discussion of the DoD and the estimations

T + 50 minutes First sprint starts

T + 65 minutes First sprint review

T + 75 minutes Joint sprint retrospectives with observations

from the teachers

T + 80 minutes Team sprint retrospective

T + 85 minutes Second sprint starts

Go through three or four sprints; breaks in be-

tween are highly recommended.

T + 180 minutes Final sprint retrospectives start

T + 190 minutes Workshop conclusion: brief summary by teach-

ers, establish lessons learned and give students

chance to observe their creations in “fly” mode

T + 205 minutes End the workshop

Students also realise how few resources are available – depending

on the world, either how little wood or how little space. Experience

shows that their initial estimations usually do not account for the

resource collection. Teams also realise that it is inefficient for the

entire team to gather resources or build. Engagement with the

product owners is low; instead, students interpret the (incomplete)

user stories any way they see fit. These initial difficulties are very

similar to what has been observed in Lego workshops [26].

The first sprint thus usually does not result in many complete

buildings. The tight schedule, the issues with resource gathering

and the chaos in the teams mean that most stories are far from com-

pleted. We revoke the “interact” privilege for all students and call

all teams to a joint review in the Zoom meeting and ask the product

owner of each team to present the accomplished work. One of the

teachers with “fly” privileges shares the screen during that time

so that all students have the same view. Issues such as duplicate

buildings or incorrect assumptions are usually determined at that

stage. We then provide some feedback on the way of working in a

joint retrospective. In particular, we point out the fallacy of assum-

ing too much about resources and requirements, urge students to

understand the exercise as an effort of the entire class to produce

one cityscape or castle, and emphasise that coordination within the

teams, between teams, and with the product owners is necessary.

The teams are then sent back to the breakout rooms to do a team

sprint retrospective with a strict time limit. It is usually during that

time that teams start coordinating their efforts in Slack. At times,

178



ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Steghöfer and Burden

Scrum Masters meet in the joint Zoom meeting or request that we

create a specific breakout room for a Scrum of Scrums.

Subsequent Sprints. With the main hurdles out of the way, stu-

dents tend to become more productive in later sprints. They start

engaging each other in coordinating who takes which user story.

They request a way to make the assignments visible in the Product

Backlog (cf. Section 6). They also become more adept at collecting

resources and splitting up the team into gatherers and builders.

A common issue, however, remains communication with the

Product Owners. Students have a hard time identifying what they

do not know about a user story and asking Product Owners the

right questions. We encourage PO to react with absurd requests

to open questions, e.g., to respond to “What material do you want

the house to be?” with “Gold”. This way, we try to teach students

to treat the discussion about user stories as negotiations in which

they need to convey what is feasible to the POs.

To save time, we keep the main part of the sprint reviews private.

The teams are encouraged to join the breakout rooms of the POs

during review time and show the increment to the POs there. We

as the teachers participate in selected reviews only as observers

and use the joint retrospective which is part of every sprint to

bring up issues that we see. Of course, each team continues to

conduct their individual retrospectives after the joint ones. Students

also sometimes elect to hold an additional program retrospective

attended by the Scrum Masters.

We repeat the sprints three or four times, depending on schedul-

ing and how much time is used up by the joint retrospective and

discussions. We also try to gauge the mood of the students and

their motivation, a difficult task in a purely online setting. It is also

important to plan for breaks in between sprints – we often break

after the first sprint and after the third.

Sign-off and Follow-up. We dedicate the final 15 minutes of the

workshop to a summary. We describe to the students what they

have experienced once more and relate their challenges to what

developers experience when working on software in the industry.

It is important at this point to tell students that their experiences

were not unique but that the time pressure, the poor user stories,

and the overall sense of being ill prepared for the task at hand

all were intentional to drive the point home that working in an

agile manner does not mean working in a chaotic manner. We also

reassure students that the shared experience they have just had

will be useful in the rest of the course.

During subsequent lectures, labs, and other interactions with the

students, we then bring up this shared experience repeatedly. We

remind students about the effects of assumptions, missed communi-

cation, and how they continuously improved their way of working

based on their reflections in the sprint retrospectives.

4.2 Minetest

Minetest is an open source version of Minecraft that is available

for many operating systems and system architectures3. It is also

available via the package managers of popular Linux distributions,

albeit not always in the current version. Its availability and the rel-

atively easy installation lowers the barrier of entry for the students.

3https://www.minetest.net/downloads/

Minetest has modest system requirements and even machines that

are several years old are able to run it at acceptable speeds.

The basic principle of the game is the same as Minecraft: the

player is represented by an avatar in a game world that consists of

blocks of different materials. It is possible to mine these blocks, i.e.,

pick them up, store them in an inventory, and place them elsewhere.

Depending on the material of the blocks, tools are necessary to

mine them. These tools can be created by crafting where different

blocks are combined into a block of a new material or to a piece of

equipment. With crafting, the player cannot only create tools, but

also other implements such as windows, doors, or torches. More

complicated implements such as windows require specific materials

as well as specialised tools such as a forge. Therefore, multiple steps

need to be completed to arrive at the final product.

The game world is limited in size. Depending on the world in

which the player finds themselves, different materials are readily

available or need to be painstakingly found. Especially ores are

often hidden in mines that are accessible from the surface. Players

need to make sure that they do not get stuck in these mines.

Minetest can be started as a dedicated server to which players

connect. The server administrator has the ability to configure the

server in detail and provide rules and constraints for the players.

Performance Considerations. To use Minetest as an environment

for the ScrumWorkshop, we ran it as a standalone server on a 2019

Macbook Air (1,6 GHz Dual-Core Intel Core i5, 16 GB RAM). It was

connected to the internet via a 100 MBit/s fiber connection at one

of the teacher’s homes. The server was accessible from the internet

via Dynamic DNS. Both the hardware and the network connection

proved to be sufficient to run the game world for about 100 students.

The main limiting factor was the CPU power: the server used less

than 1 GB of RAM and the internet connection was used to about

60%. However, students sometimes experienced lag, especially when

logging into the game. Both CPU cores were fully used at all times.

Some experiments with the server settings for drawing distance

and maximum number of packets sent per player per time step did

not yield any significant performance improvements.

Security. Since the server is only online for a limited period of

time, security is not a major concern. However, some precautions

should be taken, as always when exposing a computer to the inter-

net and running any publicly accessible service on it.

In terms of the network setup, it is important to ensure that only

the port the Minetest server runs on is exposed to the internet,

especially when running the server on a home machine exposed

via Dynamic DNS. A firewall on the router should protect the home

network against prying eyes and all other services that might pose

security threats should be disabled during the workshop.

Minetest itself allows to password protect the server, a feature

that should certainly be used. Avoid passwords with special char-

acters at this increases the chance that students mistype them. An

important thing to note is that the password is identical for all

users. That means that, in theory, anyone can login with the cre-

dentials of the teachers. To avoid this, we recommend to set the

server password to one value, ask all teachers and TAs to log in

using this password, and then set the server password to the value

for the students. Teachers and TAs can then log in with the original

passwords and students cannot take over those accounts. This is

179



One Block on Top of the Other: Using Minetest to Teach Scrum ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

especially important since Minetest uses the username to assign

privileges (see below).

The whitelist mod (see below) allows accepting only prede-

fined users.While this is a way to alleviate the risk of having players

other than students on the server, this was not an issue for us and

we did not want to take on the additional administrative overhead.

Finally, it is advisable to disable that the server is advertised

in the global server list. This can be easily achieved by setting

server_announce = false in minetest.conf.

Configuring Mods and Permissions for the Scrum Workshop. Mods

are plugins that extend the functionality of the Minetest game

engine. We are using a number of mods in the workshop, mostly to

improve control over the privileges of the students and to allow us

to teleport them around, e.g., when they have gotten stuck in mines

underground or cannot find their way to their starting pyramid.

The mods we are using are listed in Table 2.

Most importantly, the edutest mod offers two important pieces

of functionality: it allows to change the interact privileges for all

students and it allows to teleport students to the current location

of the teacher’s avatar. The first functionality is useful to ensure

that students only manipulate the game world during the sprints.

Experience shows that students do not focus on the reviews and

retrospectives when they still have the ability to collect and build.

This also ensures that the breaks are observed. The latter function-

ality is helpful if students get stuck and cannot free themselves any

longer. As a side effect, edutest also allows to grant fly privileges
to all students which is a nice touch at the end of the workshop to

let everyone admire the final product.

In order for edutest to work as expected, it is important that

the teachers have the teacher privilege (automatically giving them

access to the UI and the chat commands) and students have the

student privilege. The latter is easily accomplished using the entry

default_privs = shout,student,fast in mintest.conf.
We recommend granting teacher or any other privileges such as

fly to during the initial login to establish the special password for

teachers and TAs as described above. During that time, the server

host can grant privileges to individual users. These privileges are

persisted and survive a server restart.

4.3 Finding a World for the ScrumWorkshop

Finding a fitting world for the Scrum workshops was a surprisingly

difficult task. While there are ways to manually create worlds for

Minetest4, this possibility was dismissed since this task is too time

consuming. Instead, we relied on the randomized generation of

worlds that Minetest offers. Even though this process was still la-

bor intensive, it is possible to evaluate generated worlds relatively

quickly. Overall, we went through about 120 worlds before set-

tling on two worlds with different properties that we used in the

workshops. An early decision was to limit the map size to 240 tiles

square. This was to restrict the participants of the workshop to an

area that provides enough space, but is small enough to traverse

within less than a minute.

After reviewing a couple of worlds, we settled on a number of

criteria:

4Via the WorldEdit mod: https://github.com/Uberi/Minetest-WorldEdit

• There needs to be exposed land (i.e., the land should not be

fully submerged).

• There should be sufficient flat land to serve as a building

surface.

• Sufficient building material that can be mined without tools

(e.g., wood, dirt, sand) should be exposed.

• There should be some diversity in the landscape, e.g., there

should be mountains or lakes.

The two worlds we settled on (cf. Fig. 1) adhere to these char-

acteristics but are very different. While our standard world offers

a relatively flat central valley with steep mountains around it and

almost no vegetation, our alternative world is almost fully covered

with trees and lakes, but is still relatively flat and offers sufficient

ground to build on once trees are cleared away.

These two worlds pose very different challenges: while the stan-

dard world offers plenty of space but very scarce wood resources

(which are needed to craft tools such as pick axes which in turn

are required to harvest stone and other materials), the alternative

world has plenty of wood but very little space without clearing a

significant proportion of the forest. Both cases allow for a teachable

moment: if students are not aware of these constraints, how can

they make accurate estimations of their user stories? If students as-

sume that wood will be available or that space will be available, they

will underestimate the effort required to acquire these resources. As

a secondary effect, this also allows us to point out to the students

that they make assumptions (in that case about which resources

are available) that are not always tenable. This effect is especially

pronounced if two workshops take place after each other as in the

Software Development Methodologies course. The students just

assume that they will get the same world with the same issues –

and are then very surprised to find quite different challenges.

Spawning and Navigation. When students enter the game, they

spawn in the world at random points. However, since Scrum is a

team-based effort, they need to find each other. For this purpose,

we have placed pyramids throughout the world and distribute a

map to the students before the workshop that shows where each

team should meet (cf. Fig. 2). The map was created with the open

source tool Minetest Mapper5. While some students still struggle to

find their bearings, especially with limited sight distances, locating

the right pyramid is usually not an issue that takes up more than a

couple of minutes at the beginning of the workshop. Still, students

should have the time to find their starting point. Interestingly, once

the starting pyramid is located, students tend to also build right

beside it. It is rare that they dismantle it for building material.

4.4 Communication Channels

One of the major challenges of moving the Scrum workshop online

is communication. While the Lego Scrum workshops we used to

conduct had all students and POs within earshot, we now need

to rely on technology. The broadcast of a message has become

significantly more difficult as getting a feeling for whether such

a broadcast was actually received. In the online Scrum workshop,

there is no equivalent of standing on a chair and shouting.

5https://github.com/minetest/minetestmapper/; command line tool with Windows
binaries, can be compiled on Linux and macOS. GUI with binaries for Windows and
Linux available at https://github.com/adrido/MinetestMapperGUI-Bundle

180



ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Steghöfer and Burden

Table 2: Mods used to facilitate the Minetest Scrum workshop

Mod Description

edutest1 Provides a UI for teachers to limit student privileges en masse and some useful tools such as teleporting

students to the teacher’s avatar’s current location.

edutest_chatcommands2 Provides chat commands to access functionality of edutest. (Optional)
unified_inventory3 Gives all players easy access to crafting recipes and other helpful functionality. For teachers, it also provides

access to the UI of the edutest mod.

whitelist4 Allows to only accept players with specific user names. Can be used as a means to address security concerns.

(Optional)

worldedit5 Allows editing the game world. Used primarily to position the starting pyramids in the world.

1 https://github.com/zeuner/edutest 2 https://github.com/zeuner/edutest-chatcommands
3 https://github.com/minetest-mods/unified_inventory 4 https://content.minetest.net/packages/Zughy/whitelist/
5 https://github.com/Uberi/Minetest-WorldEdit

(a) The standard world we used for some of the workshops. Stu-

dents were asked to build a cityscape.

(b) The alternative world we used for one workshop. Students

were asked to build a castle.

Figure 1: Two different worlds used in the Scrum workshops.

Instead, we use Slack and Zoom to facilitate communication.

Slack is helpful for anything that can be consumed asynchronously:

reminders, additional information, and messages to individual stu-

dents. Zoom is the broadcast format for when we need everyone’s

attention: general announcement, the teachers’ reflections, and part

of the sprint reviews take place here. In addition, we use Trello for

backlog management. A tool that we do not use is the Minetest

chat: while Minetest has a built in chat function, messages appear

and disappear quickly and are very easy to miss.

Slack and Zoom. To facilitate the workshop, we use Zoom, the

video conferencing tool provided by our university for use in teach-

ing. We gather all students in Zoom at the beginning of the work-

shop where we introduce the setting and the tasks. Each team has a

pre-assigned breakout room which makes it easy to split the teams

up and have them work on a specific assignment and then call them

back for discussions and further announcements. The students are

used to working this way and the technical infrastructure is stable

and reliable. One disadvantage is that messages delivered via the

“Broadcast” function are often overlooked since they only appear

on the screen briefly.

Instead, we use Slack. The students usually create a Slack work-

space (or, equivalently, a Discord) which we use to make public

service announcement and to get in touch with individual groups.

We do also use Zoom’s ability to jump into the breakout rooms, but

if we want to inform students about something without disturbing

their flow, Slack is a better option. It also allows us to communi-

cate directly with individual students, if the need arises, and gives

students a way to contact us without leaving their breakout rooms.

Slack is also very useful for inter-team communication, both in the

stage where the students need to come up with a joint Definition

of Done, but also to coordinate dependencies between user stories.

In order to facilitate communication with the Product Owners,

we also have individual breakout rooms for them. This way, students

have easy access to them and can easily find them to ask questions.

In our initial workshop, we encouraged the POs to wander from

team to team, but this caused frustration with the students since

they had a hard time locating the POs or needed to hop into another

teams breakout rooms to ask their questions.

181



One Block on Top of the Other: Using Minetest to Teach Scrum ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 2: Amap of the standardworldwith the teams’ starting

points denoted as pyramids.

Backlog Management in Trello. The product backlog is stored as

a Trello board. As mentioned above, by default, only teachers and

TAs can make changes to the board while students can only view

it. This is a precaution to prevent vandalism and to ensure that

students cannot interfere unintentionally with each other on the

board. At the same time, this is also a disadvantage: students do not

feel like they are in control of the board and can use it actively to

structure their work. Since they need to go to a PO for any change

they want to make, delay is built in. Once students realise how

important the backlog is for coordinating with other teams (usually

after the first sprint), they tend to accept this limitation, however,

and work with it. Alternatively, we also consider giving the Scrum

Masters write access to the board (cf. Section 6).

The backlog serves as a semaphore in the sense that teams mark

which stories they have taken, thus communicating to other teams

that a story is no longer available and to the PO which team is

working on it. They very rarely request changes to the user stories,

though, be it in terms of how they are formulated or to add new

acceptance criteria. However, this might be an effect of the lack of

direct access. We certainly perceive more engagement when teams

work with physical backlogs in the Lego version of the workshop.

In any case, POs move stories between the columns of the backlog

when requested and refer to the backlog during the reviews.

We also ask the teams to record the Definition of Done they

agreed on in the backlog. Unfortuanately, the DoD is not an artefact

that students actively work with during the workshop. With every-

thing else that is going on during the workshop, there is little time

to update the usually very lackluster DoD that has been created as

part of the initial preparations. Having said that, we do encourage

POs to ask about DoD during reviews and for students to reconsider

the initial version in our joint retrospectives. This is rarely done

in a concerted effort with the involvement of all teams and rather

often performed by a single team that thus imposes an updated

DoD on all without prior consultation.

5 EXPERIENCES AND REFLECTIONS

This section details prominent experiences in relation to the work-

shop, both from a student and a teacher perspective. By relating

these to prior research and educational frameworks the outcome

is in line with Brookfield’s four lenses where an educational inter-

vention is assessed from the students’, the teachers’ and the peers’

point of view as well as the theoretical perspective [2]. By reflecting

on these experiences and perspectives we have come up with a list

of guidelines for what we think are important aspects to consider

when conducting a Minetest or similar exercise. The guidelines

are not bound to a single perspective or lens, rather derived from

combinations of experiences and aspects, so we have chosen to

present them in the following section.

5.1 Student Perspective

We are using two datasources to reflect on the exercise from a

student perspective. In doing so, we acknowledge that these data-

sources have not been intended to be used to evaluate the efficacy

of the workshop. However, they are both reflections by the stu-

dents about how the workshop impacted their learning. In the case

of the course evaluation reports, they explicitly contain feedback

students provided on the workshop or the course as a whole. The

datasources we use are:

• Course evaluation reports from the Agile Project Manage-

ment course inW20 and S21 and the Software Development

Methodologies course in W20. These evaluation reports are

created by the university based on a standard set of ques-

tions administered as an online questionnaire. Participation

in the questionnaire is not mandatory and the response

rates are correspondingly low. However, experience shows

that in particular students that are unhappy with the course

do respond. There were no specific questions about the

Minetest workshops, but many students mentioned it in

the freetext answers.

• Reflection reports from the Software Development Method-

ologies Course taught in W20. Students were asked to de-

scribe their experiences in both workshops and how they

applied Scrum in it. These reports acted as the examination

in the course and did not focus on Minetest, but rather the

application of the process.

Feedback from Course Evaluations. The course evaluations show

that students generally appreciate the Minetest workshops. One of

the freetext questions in the questionnaire is “Which aspect of the

course should be kept for next year?”. Six out of eleven students

that answered the questionnaire for Agile Project Management S21

mentioned the workshops here. Likewise, eight out of 20 students

that answered the question for Software Development Methodolo-

gies W20 mentioned keeping the workshop. Only four students

provided more detailed responses which we discuss in the follow-

ing. Interestingly, the Minetest workshops were not mentioned at

all in the course evaluation of Agile Project Management W20.

182



ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Steghöfer and Burden

A positive feedback that shows that the workshop goals are

achieved was provided by one student:

“The Minetest exercise was great. It was fun, it taught

us about using Scrum and dividing up into sprints and was

also a great team-building exercise.”

(Agile Project Management S21)

However, of the few students that provided longer responses,

three also mentioned issues with the workshop, in particular the

relative lack of instructions provided:

“Difficult to apply what we learned during the lectures

in the workshops since the workshops were very stressful.

Students should be given more instructions to understand

the purpose of the workshop better”

(Software Development Methodologies W20)

“The Minecraft scrum intro had a bit vague instructions.

Out group didn’t really understand that resources was lim-

ited until after the first sprint for example”

(Agile Project Management S21)

In addition, the difficulty to access the teaching assistants who

were the designated product owners were also mentioned explicitly:

“The minetest-thing was very fun and greatly appreci-

ated by our group. Two things about it: We were confused

on what we were doing in the beginning, maybe be more

precise in the information. Also, there were long waits for

talking to the TA’s, so long that we did not get the time to

do so in the designated time space.”

(Agile Project Management S21)

Overall, this feedback from the reflection reports tells us that we

are on the right path. When it comes to the criticism that limited

information is available, we fully acknowledge that we provide

minimal instructions to students. However, this is done on purpose:

first of all, this allows us to demonstrate which impact implicit as-

sumptions have on the way of working; second of all, the workshop

is complex enough as it is, and providing additional instructions

would increase the cognitive load. Since students run through sev-

eral iterations, they also have the opportunity to reflect on what

happens and make changes in subsequent iterations, therefore be-

ing able to adapt to their environment. This is also an important

aspect of the workshop (cf. Section 4).

Learning from Reflection Reports. When it comes to the concrete

learnings students take away from the workshops, the reflection

reports from the Software Development Methodologies W20 course

show that the intented learning outcomes are largely achieved.

In terms of creating and following a plan, it is clear that most

students underestimate the need for such a plan. Students go into

the workshop without a concrete idea of their tasks, how to dis-

tribute their work, or how to achieve the desired outcome. Even

though creating a plan for the workshop was a specific task in

the course, these plans are not concrete enough and do not take

the environment in which the workshop takes place into account.

Students assume that a basic Scrum approach with incremental

delivery will be enough to be successful.

A major issue arises due to the rather vague user stories. The

pedagogical reason behind this vagueness is to get students to

discuss requirements with the Product Owners to refine them and

make sure that the stakeholder wishes are clarified. However, this

often does not happen and students instead make up requirements

themselves:

“Concern about the available information in user stories

was risen in the group as a lot of the process revolved

around expectations of their content . With large tasks and

few specified requirements, assumptions had to made on

the fly. Leaving room for interpretation proved to have a

negative impact on delivery speed.”

(Software Development Methodologies W20)

However, students learn from this confusion during the workshop

and become better once the POs reject their increments in the

first sprint review. In the final sprint, students are usually very

good at eliciting requirements from the POs, making proposals and

asking questions helpijg them narrow the scope (instead of open

questions as “how many windows do you want?” which often lead

to considerable feature creep).

Indeed, the workshop is one of the few experiences in the stu-

dent’s curriculum where they are asked to coordinate across teams.

This takes many students by surprise:

“[M]y team had not given much consideration to the

program-level planning, assuming that we would have no

control over it and so we had not tried to co-ordinate with

the other teams before the workshop, which may have been

both possible and also extremely beneficial”

(Software Development Methodolodogies W20)

In order to achieve such coordination, communication is essen-

tial. However, students found the sheer number of communication

channels confusing, as also mentioned in Section 4.4:

“During the Scrum workshop it was not clear which

communication channel should be used to contact stake-

holders and other teams. Which communication channel

to use was never explicitly defined in the process used.”

(Software Development Methodolodogies W20)

Apart from these challenges, which are similar to the ones re-

ported for Lego Scrum exercises [26], therewere also someMinetest-

specific challenges to note. One in particular was that students were

unfamiliar with some of the finer points of the game such as crafting

and sometimes had trouble navigating the game’s environment:

“In some situations, we were not able to find the re-

quired materials and forge tools like pickaxe to mine some

resources, which wastes time during the shortened sprints.

[...] [T]here was wrong information on how to make glass

and team members were not aware of some functionality

such as the “/killme” function to utilize when trapped into

the deep underground.”

(Software Development Methodolodogies W20)

This issue is somewhat surprising as students had been made aware

well in advance what to expect. A lack of preparation on the part of

the students can never be fully avoided, though. As one student put

it: “other members taught me how to perform the basic functions

on Minetest” which shows that it is possible to use a limited amount

of time to transfer the crucial skills.

8

183



One Block on Top of the Other: Using Minetest to Teach Scrum ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

5.2 Teacher Perspective

Our teacher perspective is derived from the notes we took during

and after the workshops. Being intimately familiar with Lego Scrum

workshops of whichwe conducted several dozens over the years, we

focused our observations mainly on differences and if the Minetest

workshops replicate the learning and teaching experience of the

Lego versions.

The high-level observation is that, yes, the Minetest Scrum work-

shops are a good stand-in for the Lego Scrum workshops. The five

times we have executed them, they fulfilled the exact same function

as the Lego versions. In particular, comparing the reflection reports

from Software Development Methodolodogies in Winter 2019 to

those in Winter 2020, students struggled with the same issues (pre-

paredness, requirements, communication, etc.) as described above.

Qualitatively, we thus replicate the experience of the in-person

Lego Scrum workshops.

When it comes to the issues of using Minetest specifically, we

believe that the platform provides a relatively low hurdle. Installa-

tion, gameplay, and connecting to the gameserver are very simple.

The system is stable enough for the purposes of the workshop and

can be run on commodity hardware with a common home inter-

net connection. Even though crafting and other advanced topics

in Minetest are not familiar to all students, they are significantly

easier to pick up then programming concepts and not essential to

participate in the workshop successfully. Therefore, the format we

use is still significantly more accessible than a similar format in

which code would be produced.

One drawback of Minetest compared to LEGO is that the world,

and therefore the integration area, is much bigger. It takes time to

navigate between increments and not all students are prepared to

follow someone around. That makes the review more cumbersome

and less instructional compared to the reviews conducted with

LEGO. In the latter case the integration area consists of two or

three tables and all students can gather around, the review takes

place in one place and all are present. We have tried to mitigate the

drawback with Minetest by not focusing on all increments together,

but parallelise the reviews so that each PO conducts there own

review. This can cause teams to move between reviews if they work

towards several POs during the same sprint. Another option is to

let it take time and prepare accordingly in terms of breaks.

5.3 The Peer Perspective

When it comes to the differences between running an in-class exer-

cise versus a virtual one, O’Farrell et al. have only positive expe-

riences [22]. Their digital game can be used both as a stand-alone

learning environment or as a complement to the in-class material.

They found that it was easier to schedule a virtual game in relation

to the restrictions of the participants, that the virtual game bene-

fited from having less theoretical material and that the virtual game

gave more opportunities for hands-on experiences. During the re-

strictions on physical meetings due to the COVID-19 pandemic, the

game fostered a sense of presence among the participants that was

seen as engaging and a good way to get to learn new colleagues.

O’Farrell et al. also point to the practical nature of their exer-

cise and how it supplements the more traditional and theoretical

approaches to introducing large-scale agile in an educational con-

text [22]. They suggest to include dependencies between teams to

better prepare them for what large-scale agile offers in terms of

complexity. This claim is made more explicit by Kropp et al. who

conclude that their game for learning large-scale agile facilitates

learning through personal experience, social learning and construc-

tion of values and value identity [13]. By personal experience they

mean that the students can use the exercise for “appropriation of

experiential knowledge accomplished by working in a social or

production environment”. This is done through a process where the

participants learn by relating themselves and their own effort to

the work done across roles and teams, including conflict resolution

and community approval. Finally, value identity is accomplished as

the students actively participate in discussions about what is value

for whom and why a specific increment is valuable. We find that

the Minetest workshop likewise creates ample opportunities for

practical experiences that allow for social learning and discussions

on value creation.

The shared experiences are something that both students and

teachers can relate back to. This is helpful during the lectures when

the more theoretical points are discussed as they can be related to

actual situations or artefacts from the exercise. The shared experi-

ence can also be useful later on during supervision as it is sometimes

easier to understand what the students have gone through if there

was a similar experience during the exercise. This resonates with

findings reported by Steghöfer et al. [5, 26] who used LEGO instead

of a digital game for achieving the same outcome.

5.4 Theoretical Frameworks

We have chosen the concept of cognitive apprenticeship [3] to the-

orise on the experiences of the exercise. The idea is that we can

reason around learning cognitive skills in the same way as man-

ual skills were taught in traditional apprenticeships. This is done

through the interaction between the ones who know, the masters,

and the ones who want to know, the apprentices. The transfer of

knowledge is enabled by six different methods – modeling, coach-

ing, scaffolding, articulation, reflection and exploration.

In terms of modeling there are ample opportunities for the mas-

ters to reason around how they came up with an initial scrum board

or why the resources are limited and in this way show their own

way of learning and thinking about Scrum concepts and practices.

Coaching happens when the masters give advice and feedback on

how the teams have performed their sprints or used the available

artefacts supporting the development, such as how they have (not)

updated the scrum board. Scaffolding is when the masters set up

an environment that is safe for the apprentices to try out their new

competences and the whole exercise can be seen as a scaffolded en-

vironment. Articulation can occur during the retrospectives when

the apprentices describe their own reasoning and how it came that

they chose to split responsibilities in a certain way or skip estima-

tion because it seemed difficult. Reflection is what happens when

they then describe what the outcome of their actions were and what

they would like to change for the next sprint or their following

coding project. The coding project is also an opportunity to further

explore the new competences and how they can be used.

184



ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Steghöfer and Burden

The sprint breakdown into planning, doing and reflectingmirrors

Kolb’s phases in the learning cycle – plan, experience, reflect and

conceptualise [11]. Keeping this in mind helps us tailor what we

want the students to experience during the exercise to create a

shared basis for future discussions on agile concepts and practices.

6 GUIDELINES AND LESSONS LEARNED

By reflecting on the experiences presented in the previous sections

we compiled a number of guidelines and lessons learned to help

educators create a rewarding and educational virtual exercise.

Joint Sprint Reviews. Getting all students together for a joint

sprint review is very difficult. First of all, reviews are time consum-

ing. Going through all user stories tackled by all teams takes a lot of

time and is not very interesting for most of the participants. Second

of all, students do not have the same view of the game world and it

is hard for them to see where a certain building is located.

We have addressed this by having short joint sprint reviews of

no more than five minutes where we only look at one or two user

stories. During this time, students are not able to interact with the

game world. We have called them back from the breakout rooms in

Zoom into the common meeting. One of the teachers shares their

screen and a randomly selected group presents their work and the

PO gives feedback. We couple this with a joint sprint retrospective

where we provide some general feedback, e.g., on quality aspects

and on the way the team worked.

After the short joint reviews, teams join the breakout room of

the PO responsible for their user stories. This at least parallelises

reviews into a number of tracks defined by the number of POs. We

found that four POs for about 80 students is a reasonable number.

POs are told to give short, directed feedback and move to the next

group as quickly as possible. Once a team is finished with their

reviews, they join their own breakout room for their retrospective.

Parallel communication channels. Many different communication

channels with overlapping functionality make it difficult to ensure

that everyone is up to speed. There are at least three different chats

at the students disposal: Minetest, Zoom, and Slack. This in turn

creates a cognitive load for some students which is worth keeping

an eye on. On the one hand, it is important to have a concrete

discussion about the impact of handling multiple new concepts and

activities in an agile project; on the other hand, it is also important

that the students have the opportunity to create a manageable

working space and keep a sustainable pace throughout the exercise

and the course.

Handling stress. Keeping this sustainable pace also requires the

students’ stress level. Gauging this is difficult in an online setting.

During a Lego workshop, it is easy to sense the energy in the

room and how stressed the students are just from the way they act

and talk to each other. With opportunities for observation limited,

teachers need to make up for this in an online workshop. We tend

to join different breakout rooms to get a feeling for the mood in

the teams. We also regularly ask the teaching assistants acting as

Product Owners about their impression.

To mitigate stress, we introduce breaks at appropriate times, but

also bring up the factors that cause the stress. All of the issues men-

tioned above (communication, resource management, planning)

contribute to stress. By pointing out the causes and making them

visible in the joint sprint retrospectives, we give students a chance

to reflect on their stressor and address them. In general, we observe

that stress levels go down significantly in the later sprints.

Backlog management. An important aspect of Scrum is that the

team takes charge of the sprint backlog. Since we suggest to host

the product backlog in Trello and share it between groups, this is

not easy to accomplish. In particular, we do not want to give all

students permission to manipulate the board since this could wreak

havoc simply by a lack of coordination. However, students should

have access to backlog to indicate that they selected user stories or

move them through the columns on the sprint backlog.

We have tried to accomplish this by asking students to go through

the POs and ask them to make the updates. This turned out to be

too cumbersome and incurred too much of a delay, causing students

to abandon the practice and, essentially, the backlog as a whole. An

option that worked better was to give the Scrum Masters access to

the backlog. This worked much better, but requires some additional

administration. This can be set up before the workshop, however,

at least when the Scrum Masters are known in advance.

Students are not well-prepared. When the exercise starts, we see a

lot of issues that stem from a lack of preparedness. Students do not

have the game installed, have not tested it, or are not familiar with

controls. Some students have prior experience of specific settings

for platforms similar to Minetest and expect the same features to

be available for them during the exercise.

It is worthwhile to have a dedicated TA for tech support in

the beginning. A practical tip is to be aware of expectations, both

among teaching staff and students, and have a plan for handling

them. It can, e.g., be reasonable to let students understand the hard

way that there are limited resources and no ability to fly if that

creates a learning opportunity for discussing resource management

and competences. If it only creates frustration it might be worth

clarifying this at the outset. Again, the game is an opportunity for

learning experiences and as a teacher you should tune the exercise

to fit your learning objectives.

Accessibility. It is a clear disadvantage of the Minetest workshop

that it is unsuitable for students with certain impediments such

as blindness. While it is possible to include blind students in the

Lego exercise as they interact with physical artifacts, Minetest is

not accessible in the same way. We do not have a good solution for

this issue, but would like to make sure that teachers are aware that

they might not be able to include everyone in the class.

7 CONCLUSION

In this experience report, we describe howMinetest, an open-source

alternative to Minecraft can be used as an effective tool to teach the

use of Scrum. Based on our experience with Lego Scrumworkshops,

we propose a structure for the workshop and provide technical and

pedagogical guidance for the successful execution of the workshop.

We strongly believe that this teaching tool is valuable indepen-

dent of the COVID-19 pandemic. In many situations, online teach-

ing is applied on a regular basis. Being able to hold workshops in

online settings to teach software development processes is therefore

a valuable ability even when we are not hiding in our bedrooms.

185



One Block on Top of the Other: Using Minetest to Teach Scrum ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Ufuk Aydan, Murat Yilmaz, Paul M Clarke, and Rory V O’Connor. 2017. Teaching

ISO/IEC 12207 software lifecycle processes: A serious game approach. Computer
Standards & Interfaces 54 (2017), 129–138.

[2] Stephen Brookfield. 1998. Critically reflective practice. Journal of Continuing
Education in the Health Professions 18, 4 (1998), 197–205.

[3] J. S. Brown, A. Collins, and P. Duguid. 1989. Situated cognition and the culture
of learning. Educational Researcher 18 (1989), 32–42.

[4] Håkan Burden, Jan-Philipp Steghöfer, and Oskar Hagvall Svensson. 2019. Fa-
cilitating entrepreneurial experiences through a software engineering project
course. In 2019 IEEE/ACM 41st International Conference on Software Engineer-
ing: Software Engineering Education and Training (ICSE-SEET). IEEE, Montreal,
Canada, 28–37.

[5] Håkan Burden and Jan-Philipp Steghöfer. 2019. Teaching and Fostering Reflection
in Software Engineering Project Courses. Springer, Singapore, 231–262.

[6] Alejandro Calderón, Manuel Trinidad, Mercedes Ruiz, and Rory V O’Connor.
2019. An Experience of Use a Serious Game for Teaching Software Process
Improvement. In European Conference on Software Process Improvement. Springer,
249–259.

[7] Rafael Oliveira Chaves, Christiane Gresse von Wangenheim, Julio Cezar Costa
Furtado, Sandro Ronaldo Bezerra Oliveira, Alex Santos, and Eloi Luiz Favero.
2015. Experimental evaluation of a serious game for teaching software process
modeling. ieee Transactions on Education 58, 4 (2015), 289–296.

[8] Adler Diniz De Souza, Rodrigo Duarte Seabra, JulianoMarinho Ribeiro, and Lucas
E da S Rodrigues. 2017. SCRUMI: a board serious virtual game for teaching the
SCRUM framework. In 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C). IEEE, 319–321.

[9] João M Fernandes and Sónia M Sousa. 2010. Playscrum-a card game to learn
the scrum agile method. In 2010 Second International Conference on Games and
Virtual Worlds for Serious Applications. IEEE, 52–59.

[10] Ivan Garcia, Carla Pacheco, Andres Leon, and Jose A Calvo-Manzano. 2020. A
serious game for teaching the fundamentals of ISO/IEC/IEEE 29148 systems
and software engineering–Lifecycle processes–Requirements engineering at
undergraduate level. Computer Standards & Interfaces 67 (2020), 103377.

[11] D. A. Kolb. 2014. Experiential learning: Experience as the source of learning and
development (2nd ed ed.). FT Press.

[12] Alexey Krivitsky. 2011. Scrum Simulation with Lego Bricks. https://www.
hacerlobien.net/lego/Otr-005-Scrum-Simulation.pdf

[13] Martin Kropp, Andreas Meier, Magdalena Mateescu, and Carmen Zahn. 2014.
Teaching and learning agile collaboration. In 2014 IEEE 27th conference on software
engineering education and training (CSEE&T). IEEE, 139–148.

[14] Stan Kurkovsky and Stephanie Ludi. 2018. LEGO-based Active Learning Exercises
for Teaching Software Development. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education. ACM, 1052–1052.

[15] Dean Leffingwell. 2018. SAFe 4.5 reference guide: scaled agile framework for lean
enterprises. Addison-Wesley Professional.

[16] M.W. Lew, T.B. Horton, and M.S. Sherriff. 2010. Using LEGO MINDSTORMS
NXT and LEJOS in an Advanced Software Engineering Course. In IEEE 23rd
Conference on Software Engineering Education and Training (CSEE&T). 121–128.
https://doi.org/10.1109/CSEET.2010.31

[17] Fernando Rodríguez López, Mario Arias-Oliva, Jorge Pelegrín-Borondo, and
Luz María Marín-Vinuesa. 2021. Serious games in management education: An
acceptance analysis. The International Journal of Management Education 19, 3
(2021), 100517.

[18] Thomas D Lynch, Michael Herold, Joe Bolinger, Shweta Deshpande, Thomas
Bihari, Jayashree Ramanathan, and Rajiv Ramnath. 2011. An agile boot camp:

Using a LEGO®-based active game to ground agile development principles. In
Frontiers in Education. IEEE, F1H–1.

[19] Beatriz Marín, Matías Vera, and Giovanni Giachetti. 2019. An Adventure Serious
Game for Teaching Effort Estimation in Software Engineering.. In International
Workshop on Software Measurement and International Conference on Software
Process and Product Measurement (IWSM-Mensura). CEURWorkshop Proceedings,
71–86.

[20] Michael A Miljanovic and Jeremy S Bradbury. 2016. Robot on! A serious game for
improving programming comprehension. In Proceedings of the 5th International
Workshop on Games and Software Engineering. ACM, New York, NY, USA, 33–36.

[21] Marcello Missiroli, Daniel Russo, and Paolo Ciancarini. 2016. Learning agile
software development in high school: an investigation. In Proceedings of the 38th
International Conference on Software Engineering Companion. IEEE, 293–302.

[22] Emer O’Farrell, Murat Yilmaz, Ulas Gulec, and Paul Clarke. 2021. PlaySAFe:
Results from a Virtual Reality Study Using Digital Game-Based Learning for
SAFe Agile Software Development. In Systems, Software and Services Process
Improvement, Murat Yilmaz, Paul Clarke, Richard Messnarz, and Michael Reiner
(Eds.). Springer International Publishing, Cham, 695–707.

[23] Maria Paasivaara, Ville Heikkilä, Casper Lassenius, and Towo Toivola. 2014.
Teaching Students Scrum Using LEGO Blocks. In Companion Proceedings of the
36th International Conference on Software Engineering (Hyderabad, India) (ICSE
Companion 2014). ACM, New York, NY, USA, 382–391. https://doi.org/10.1145/
2591062.2591169

[24] Selene Ramírez-Rosales, Sodel Vázquez-Reyes, Juan Luis Villa-Cisneros, and
María De León-Sigg. 2016. A serious game to promote object oriented program-
ming and software engineering basic concepts learning. In 2016 4th International
Conference in Software Engineering Research and Innovation (CONISOFT). IEEE,
Puebla, Mexico, 97–103.

[25] Ken Schwaber. 1997. Scrum development process. In Business Object Design and
Implementation. Springer, 117–134.

[26] Jan-Philipp Steghöfer, Håkan Burden, Hiva Alahyari, and Dominik Haneberg.
2017. No silver brick: Opportunities and limitations of teaching Scrum with Lego
workshops. J. Syst. Softw. 131 (2017), 230–247. https://doi.org/10.1016/j.jss.2017.
06.019

[27] Jan-Philipp Steghöfer. 2018. Providing a baseline in software process improve-
ment education with lego scrum simulations. In 2018 IEEE/ACM 40th International
Conference on Software Engineering: Software Engineering Education and Training
(ICSE-SEET). IEEE, 126–135.

[28] Christiane Gresse von Wangenheim, Rafael Savi, and Adriano Ferreti Borgatto.
2013. SCRUMIA—An educational game for teaching Scrum in computing courses.
Journal of Systems and Software 86, 10 (2013), 2675 – 2687. https://doi.org/10.
1016/j.jss.2013.05.030

[29] Michalis Xenos and Vasiliki Velli. 2018. A serious game for introducing soft-
ware engineering ethics to university students. In International Conference on
Interactive Collaborative Learning. Springer, Cham, 579–588.

186


