
Keeping Fun Alive: an Experience Report on Running Online
Coding Camps

Ilenia Fronza
ilenia.fronza@unibz.it

Free University of Bozen/Bolzano
Bolzano, Italy

Luis Corral
lrcorralv@tec.mx

ITESM Campus Queretaro
Queretaro, Mexico

Xiaofeng Wang
xiaofeng.wang@unibz.it

Free University of Bozen/Bolzano
Bolzano, Italy

Claus Pahl
claus.pahl@unibz.it

Free University of Bozen/Bolzano
Bolzano, Italy

ABSTRACT
The outbreak of the COVID-19 pandemic prohibited radically the
collocation and face-to-face interactions of participants in coding
bootcamps and similar experiences, which are key characteristics
that help participants to advance technical work. Several specific
issues are faced and need to be solved when running online coding
camps, which can achieve the same level of positive outcomes for
participants. One of such issues is how to keep the same level of
fun that participants obtained through physical activities and in-
teractions in the face-to-face settings. In this paper, we report on
our experience and insights gained from designing and running
a fully remote coding camp that exposes high school students to
Agile-based Software Engineering practices to enhance their abil-
ity to develop high-quality software. To design the online coding
camp, we adapted the face-to-face version of the coding camp to
keep the same “level of fun”, i.e., adaptations aimed at increasing
communication, engaging participants, and introducing fun items
to reduce fatigue due to prolonged computer use, while preserving
the technical curriculum that enables students to attain the learn-
ing goals originally planned. The comparison with the results of
the face-to-face coding camp shows that we succeeded in keeping
the fun alive in the online edition, and the participants of online
camp were able to produce the results at the same level of quality
in terms of product and process as in the face-to-face edition. From
our experience, we synthesize lessons learned, and we sketch some
guidelines for educators.

CCS CONCEPTS
•Applied computing→Distance learning;Collaborative learn-
ing; • Software and its engineering→ Collaboration in software
development.

KEYWORDS
Online coding camps, Distance learning, COVID-19, High school,
Fun

1

1This is a postprint (accepted version) of: Fronza et al. (2022): Keeping Fun Alive: an
Experience Report on Running Online Coding Camps, ICSE-SEET ’22, May 21–29,
2022, Pittsburgh, PA, USA https://doi.org/10.1145/3510456.3514153

1 INTRODUCTION
Coding bootcamps, hackathons, and coding-intensive learning ex-
periences have been available for long, and they are continuously
leveraged by students and practitioners to start, consolidate or
deepen their knowledge on software development and enabling
technologies. These learning environments are commonly space-
bound, time-limited, and strongly collaborative, which makes them
socially strong. Vicinity of participants, face-to-face interactions,
and fun are key characteristics that help participants to advance
their technical work, share best practices, and grow individually
and collectively in expertise. Even though participants reported
bootcamps to be more open and inclusive [59], research in comput-
ing education found several barriers bootcamp participants might
face. For example, stereotypes of nerdiness and intelligence exist [59]
as in other computing education contexts [36]; moreover, consider-
able perseverance and confidence [59] are needed to face intensive
activities.

A forced transition to remote work due to the COVID-19 out-
break brought very important learning: working in a remote setting
implies not only the implementation of collaboration tools or a most
effective leverage of communication channels. It requires a com-
plete mindset of autonomy, teamwork, collaboration, technological
resources, and understanding of goals. Cultivating these traits in
early-career students equips them with qualifications that may en-
able them to mesh in a global community. Future global workers
will rely on an excellent command of these tools and an unprece-
dented development of these characteristics, so the earlier this effort
is done, the easier it will be for students to become sooner highly
effective global collaborators. Early exposure to a distributed work
environment will prove valuable as an effective training field to
embrace practices of online work, develop a good command of the
use of the enabling technology, and fine-tune the human aspects
that allow for remote collaboration, tremendously necessary in the
productive world of today and the future. In the process of learning
how to conduct and leverage online classes, virtual events, and
remote hackathons, several conditions that are unlike to appear in
face-to-face settings came up. Since this is a rather recent issue, the
existing literature is scarce in reporting and discussing the adjust-
ments or adaptations needed to effectively replicate the traditional
highly interactive, fun, face-to-face dynamics into virtual, remote,
or online coding camps.

ar
X

iv
:2

20
3.

00
50

1v
1 

 [
cs

.S
E

] 
 1

 M
ar

 2
02

2

https://doi.org/10.1145/3510456.3514153


Conference’17, July 2017, Washington, DC, USA Fronza et al.

In this paper, we report on our insights gained from designing
and applying a fully remote coding camp that exposes high school
students to agile-based Software Engineering practices to enhance
their ability to develop high-quality software. We use as a baseline
a Software Engineering-centric instructional strategy for intensive,
face-to-face, project-based events for high school students [15], in
which games and fun were found to be a cornerstone of a successful
outcome. Therefore, we aim at keeping the same “level of fun” in
the online coding camp. For this reason, adaptations for the transi-
tion to online aim at increasing communication [24] and a sense
of belonging [42], engaging participants [51], and reducing fatigue
due to prolonged computer use [68] by proposing unplugged activ-
ities that require participants to move around and release energy
before focusing again. To evaluate the success of our approach, we
extend the face-to-face assessment framework [15] to understand
if the online coding camp successfully emulates the development
process and achieves the same quality of the developed products
with respect to the face-to-face setting, while keeping fun alive.

Based on our experience, we synthesize guidelines for educators.
The paper is organized as follows: Section 2 provides background
and an overview of related work. Section 3 describes the online
coding camp design adapted from the face-to-face version; Section
4 compares the online coding camp with the face-to-face one. Sec-
tion 5 discusses the experience and synthesizes guidelines. Finally,
Section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK
The body of research in Software Engineering (SE) education fo-
cuses on developing (in software engineers, computer scientists,
and information technology experts) professional skills to abstract
real-world problems and deliver solutions in the form of software
products. Over the years, researchers proposed classroom experi-
ences in which software processes are mapped efficiently to course
sessions; moreover, they presented insightful discussions of prac-
tices, behaviors, and interactions among students [37]. In attempts
to broaden participation in computing and engage end-users, a wide
variety of outreach activities have been proposed [12], including
intensive project-based experiences (e.g., bootcamps, hackathons,
summer schools), which are increasingly popular [6, 11] and also
attract K-12 students to increase their awareness of computing. Rad-
ical collocation of participants and face-to-face interactions [48] are
key characteristics that help participants quickly advance technical
work in coding camps and similar experiences [61]. For this reason,
most of the research provided guidelines to organize face-to-face
events [15, 18, 22, 34, 45] and investigated their educational advan-
tages when teaching Software Engineering concepts [16, 18], also
exploring participants’ perspectives [59]. A recent study explored
how these events can be harnessed within Software Engineering
education to teach the necessary skills and competences for the
students [49].

The COVID-19 pandemic made clear that flexible and resilient
education systems are needed [1]. The emergency prompted the or-
ganizers of coding camps and similar experiences to think whether
they could be moved online, not only while waiting for a return

to “normal life”, but as a possible solution for sustainable develop-
ment [62]. Although studies found no difference in student perfor-
mance in conventional remote learning versus in-person learning
[30, 47, 57], the emergency remote teaching context goes in a differ-
ent direction, with students having a very low performance [3, 13].
Moreover, research in the fields of Global Software Engineering
[55] and computing education found several specific issues that
need to be solved when moving coding camps online, including
communication issues [24], lack of a sense of belonging [42], lack
of engagement [51], and fatigue due to prolonged computer use
[68]. In addition, facilitators need to be able to replicate the face-
to-face dynamics and the typical hands-on approach that dedicates
little time to explaining fundamental principles in favor of example-
centric and copy-paste programming [27, 50].

From a Software Engineering process perspective, online inten-
sive project-based experiences need to integrate different tools and
strategies (tailored to the specific audience) to support the entire
software development process with special attention to the phases
that require strong team collaboration, such as software design [28].
Real-time collaborative code editors and compilers exist for different
languages (such as CodeCollab2), but they are currently not avail-
able for block-based programming languages (BBPL) that proved to
be very popular, even among small businesses and entrepreneurs.
As a workaround for this problem, the BBPL App Inventor pro-
gramming may leverage AI2 Project Merger, in which potentially
two authors may produce two distinct functional areas of a project
and eventually merge them in a single project3. Additionally, even
though Agile methods accommodate the K-12 environment [17]
and are suitable for development projects facing high uncertainty
[8], they rely heavily on face-to-face communication [9]. When
coding camps go fully online, questions arise naturally regarding
whether agile methods could still offer the same level of accom-
modation and whether they could be implemented effectively to
support the development of projects and teamwork. Finally, ac-
cording to the recent learning theories, students prefer to have
an active role in their learning process [40], and learning depends
on reflection upon experiences [31]. In particular, games promote
learning by merging educational content and entertainment ac-
tivities that increase engagement, emotion, and motivation [56].
Research in SE education suggests as well to involve students in
active learning experiences that provide takeaway messages [15, 54]
by mimicking the "real-world" SE [32]. Although games are not
the silver bullet [2], researchers proposed games to teach several
SE topics, including programming [23], agile concepts [15], global
software engineering [53], requirements engineering [32], cross-
domain stakeholder-alignment [33], testing [38], and software qual-
ity assurance [43]. Moreover, games have been included also in
bootcamps [15, 39]. Nevertheless, most of the proposed games have
been conceived to be carried out in face-to-face settings because of
their key characteristic (i.e., use of tangible objects).

Despite all the related challenges, online intensive project-based
experiences have been recently proposed to target problems related
to COVID-19 [4, 19, 26, 63]. However, literature is lacking reports on
actions needed to take advantage of past face-to-face experiences to

2https://codecollab.io/#Welcome
3https://appinventor.mit.edu/explore/resources/ai2-project-merger

https://codecollab.io/#Welcome
https://appinventor.mit.edu/explore/resources/ai2-project-merger


Keeping Fun Alive Conference’17, July 2017, Washington, DC, USA

organize online intensive project-based events. In particular, there
are limited insights on how to keep the same level of fun to engage
participants and reduce their fatigue due to prolonged computer
use. This experience report intends to offer the lessons we have
learned through designing and running online coding camps.

3 ONLINE CODING CAMP DESIGN
We use as a baseline our Software Engineering-centric instruc-
tional strategy for intensive, face-to-face project-based events for
high school students [15], which has the same target audience (i.e.,
highschoolers with little or no previous knowledge of software
development) and goal (i.e., to expose participants to agile-based
software engineering practices through the development of mobile
apps). Games, activities, and team dynamics were the cornerstone
of a successful face-to-face coding camp; participants consistently
highlighted the importance of engaging games and activities, and
mentioned this aspect among one of the reasons why they would
suggest coding camp to friends [15]. Therefore, while transforming
to a fully remote format, we introduced adaptations to replicate
the face-to-face dynamics and the typical hands-on approach. In
particular, we aimed at “keeping fun alive”, i.e., the main goal of
the adaptations was to increase communication [24] and a sense of
belonging [42], engage participants [51], and reduce fatigue due to
prolonged computer use [68]. This section describes the changes
with respect to the face-to-face coding camp [15].

3.1 Instructional strategy
As in the face-to-face coding camp [15], the online version consists
of twenty hours of activity (one four-hour session for five days)
divided into five sessions as shown in Table 1.

Table 1: Timetable of the online coding camp.

Session Hours Activities
1 4 Foundations of logical thinking, structured

sequencing, and data abstraction
2-4 12 Iterative development of mobile apps
5 4 Completion and presentation

Table 2 summarizes the instructional strategy in the online set-
ting, which keeps one of the key characteristics of the face-to-face
instructional strategy (i.e., learning-by-playing): specific activities
let participants reason action courses when there is a need for
planning, managing, or empowering. As shown in Table 2, each
strategy fosters eXtreme Programming (XP) practices (which fit
K-12 education [17, 29, 41]) that participants heuristically mix dur-
ing their activity. While some strategies (marked with ∗ in Table 2)
required limited changes, new games (marked with ∗∗ in Table 2)
substituted the face-to-face ones. For each new game, Table 2 shows
the replaces of face-to-face games and provides a rationale for the
replacement. Online games required participants moving around
and releasing energy before focusing again. After each game, 15
minutes were reserved for reflections to share thoughts and collect
students’ opinions on the takeaway message of each game. Thus,
20-30 minutes of every session were dedicated to games.

The remaining part of this section focuses on the changes with
respect to the face-to-face coding camp (i.e., ∗ and ∗∗ in Table 2).

We are here to help (∗). During all the sessions, participants
can ask for the facilitator’s support by first showing the current
release of the app and describing the solutions that they already
tested.

Changes: Participants ask for support via the dedicated button in
Zoom. The use of breakout rooms places the challenge of obtaining
face time with facilitators. For this reason, we opt for a peer-led
event, i.e., advanced students serve as tutors [14, 35]. Each tutor is
assigned three teams and visits the corresponding breakout rooms
regularly: interactions regarding questions and answers are done
directly, unless the technical need of the question requires the
facilitator’s opinion.

Block-based programming (∗).We keep using a block-based
programming environment in sessions 2-5, as it allows problem-
driven learning [44] and fosters XP practices [17].

Changes: In an online setting, we can not provide the partici-
pants with mobile phones; thus, instead of App Inventor, we use
Thunkable (https://thunkable.com), which builds applications both
for iOS and Android, to make sure that most of the participants can
use their own devices. Otherwise, live testing is also possible using
the Thunkable emulator on PC.

Teamwork (∗). Facilitators form teams [46] of three students
attending three different school types; mixed teams include two
females to prevent them from being in a minority within the team
[20] and enhance collaboration [58]. Teams choose a logo/name,
define the goal of the app, and can collaborate on the same code (by
sharing the editor’s screen) or develop software parts individually.

Changes: To ease communication and improve the learning expe-
rience, we encourage camera usage and explain why we are doing
so in session 1 [5]. Participants are notified about this norm the
week before so that they can prepare to be comfortable in front
of the camera (e.g., room, clothes, etc.); moreover, show-and-tell
games (e.g., color wheel game) encourage and motivate camera
usage. When not in plenary, teams work autonomously in Zoom
breakout rooms.

Paper tower (∗∗). This activity substitutes the marshmallow
challenge [66] of the face-to-face coding camp [15]. Indeed, specific
material is needed for the marshmallow challenge and it would be
complicated to ensure that all participants (in different locations)
have the same type of material (e.g., marshmallows of the same
size). For this reason, teams compete (during session 2) in building
the tallest freestanding tower in 18 minutes using 20 A4 paper
sheets, which are easily available at each location. Being in an online
setting, one teammember builds the tower, while the others provide
suggestions. The takeaway messages of this activity are analogous
to the ones of the marshmallow challenge: prototyping and iterating
can help achieve success, the importance of collaborating very
quickly, and the value of cross-functional teams.

Color wheel (∗∗). This activity substitutes the tell me how you
make toast, which heavily relies on drawing manually on post-its
that are then grouped and analyzed by the team. During session
3, teams compete in creating a color wheel (Figure 1) using the
highest number of colors and objects (found in the surroundings) in
15 minutes. Being in an online setting, one team member builds the
wheel while the others provide suggestions. The takeaway message



Conference’17, July 2017, Washington, DC, USA Fronza et al.

Table 2: Elements of the online instructional strategy (adapted from [15]) and changes with respect to the face-to-face (F2F)
coding camp (∗ adapted; ∗∗ new).

Strategy Session(s) Length
(min.)

XP Practice Replaced F2F
strategy

Motivation for replacement

Manipulatable
examples

1-5 – User stories – –

Focus on
problem-
solving

1-5 – Small releases, testing –

Alert without
imposing

1-5 Refactoring, testing – –

∗ We are here to
help

1-5 – Small releases, teamwork, on-
site customer (i.e., one of the fa-
cilitators took the role of final
customers, provided feedback,
and refined requirements)

– –

∗ Block-Based
Programming

2-5 – Continuous integration, refac-
toring, testing

– –

∗ Teamwork 1-5 – Collective ownership, pair pro-
gramming, metaphor and cod-
ing standard

– –

∗∗ Game: Paper
tower

2 18 Prototyping and iterating, quick
collaboration, simple design,
teamwork

Marshmallow
challenge

1) The needed material (i.e., 20 A4 paper
sheets) is more easily available at each
participant location; 2) it introduces an
element of fun when towers fall down

∗∗ Game: Color
wheel

3 15 Simple design, teamwork, user
stories

Tell me how
you make toast

1) It does not rely on manually drawing
on post-its; 2) it reduces fatigue due to
prolonged computer use by requiring to
move around, activating physically and
releasing energy before focusing again;
3) it introduces an element of fun when
observing the type and amount of objects
placed in the wheels

∗∗ Game: Thirty
items

4 15 Prototyping and iterating, quick
collaboration, teamwork

Letters with our
bodies

1) It reduces fatigue due to prolonged
computer use by requiring to move
around and release energy before focus-
ing again; 2) it introduces an element of
fun when observing collected objects

∗∗ Game: Boost-
ing attention
games

3-4 10 Teamwork, simple design It increases engagement and fun, fosters
networking, releases energy before focus-
ing again

of this activity is about the importance of working together toward
a solution by identifying small steps.

Thirty items (∗∗). This activity substitutes the letters with our
bodies [15], which is clearly not feasible in an online setting. During
session 4, teams compete for 15 minutes in finding 30 items with
given characteristics (e.g., shining, useless, broken) at the locations
of all team members. The takeaway message of this activity is
about the importance of understanding ambiguous requirements
(e.g., is it possible to consider an object valid for more than one
category?), and team self-organization with little or no guidance
from facilitators.

Boosting attention games (∗∗). At the beginning of sessions 3
and 4, the first 10 minutes are dedicated to two games to start focus-
ing: 1) who likes what? (Session 3) consists of sharing a bingo-like
screen including a series of 9 boxes with items written within. These
items refer to hobbies, activities, sports, and entertainment items
to choose from. The facilitator reads them out loud (for instance,
“Who likes football?”) so that participants can add themselves a
mark on the box if they feel like they appreciate the mentioned
item. This activity has been introduced in the online setting, as it
is valuable for networking, for participants to connect with other
members with similar preferences. 2) Gimme five (Session 4). In
this activity, we mention the order in which students’ screens are



Keeping Fun Alive Conference’17, July 2017, Washington, DC, USA

Figure 1: Color wheel.

sorted in the facilitator screen. For example, “In the first row, we
have left to right, John, Maria, and Joe; in the second row we have
Bob, Stella, and Tanya”. After mentioning this arrangement, we
encourage students to “high-five” the persons right next to them
according to their screen arrangement. It is amusing and requires a
big deal of coordination to have all students high-five each other. In
the online setting, these games also aim at increasing engagement
and fostering teamwork.

3.2 Participants
Similar to the face-to-face version, the online coding camp targets
high school students (aged 15-19) attending different schools (from
non-vocational to computer science), i.e., having diversified disci-
plinary background. Moreover, the participants have little or no
previous software development knowledge.

3.3 Assessment framework
The goal of the assessment framework is understanding if the online
coding camp successfully emulates the development process and
achieves the same quality of the developed products with respect
to the face-to-face setting, while keeping fun alive. Therefore, we
extended the framework proposed in [15], which included prod-
uct and process assessment, by including fun assessment. Under
consideration of the underlying principles of Project-Based Learn-
ing [52], during our coding camps we limit the handing out of
test/questionnaires and we prefer critique and revision, supported
by observation and code inspections [15].

Fun assessment. Research has demonstrated that fun increases
engagement with learning activities [64] and has positive effects
on learning outcomes [7]. Despite this, the concept behind the term
is not always clearly defined; moreover, there is a lack of reliable
measurement tools, especially for adolescents [60]. To understand
better the reach and impact that fun activities (i.e., games) had on
the participants, the facilitators organized two types of reflection
sessions to collect information from participants about perceived
fun:

(1) upon completion of each game, there was always time ded-
icated to reflecting about what could be important lessons
that such activity can bring to the professional software
development process;

(2) at the end of the coding camp, focus group interviews [10] of
around 30 minutes, involving participants and student tutors
separately, served to elicit views and opinions to complement
the observations collected during the activities and reflection
moments.

After asking questions, the facilitators only took notes while
encouraging the students to express their opinions. Reflection ses-
sions served to explore how participants connected games to their
learning process and how they considered games helpful to re-
duce fatigue, increase engagement, and keep fun alive in the online
setting. Student tutors did participate in the previous year’s face-to-
face coding camp. Therefore, besides reporting how much fun they
perceived while observing the participants, they could compare the
two editions in terms of fun.

Thematic analysis [10] was conducted on the collected notes
based on the factors proposed by Tisza and Markopoulosto to mea-
sure adolescents’ fun [60], i.e., answers were coded as fun when
they mentioned specific concepts (such as, curiosity, flying time,
new friends, doing something new) and as not fun with opposite
concepts (such as, feeling bad, angry, sad, or forced to participate).

Product assessment. As we use Thunkable instead of App In-
ventor, we adapted the framework in [15] to extract five groups of
metrics to analyze Thunkable projects from a Software Engineering
perspective, namely: component metrics, computational concepts
blocks, code smells, complexity metrics, and size (Table 3).

Table 3: Metrics for product assessment (adapted from [15]).

Group Metric
Component
metrics

Number of components by functionality based
on the categories in the Thunkable palette: au-
thentication, data, image, layout, screens, sen-
sors, user interface
Total Number of Components (TNC): the sum
of all the components by functionality
Total Number Of Unique Blocks (NOUB)[67]:
length of the distinct list of blocks

Computational
concepts

Count of six types of blocks: conditional, func-
tion, list, logic, loop, and variable blocks

Complexity Cyclomatic Complexity (CC): number of deci-
sion points in the code plus one

Size Number of Logical Lines Of Code (LLOC)
Code smells Component names [65]; Superfluous stuff [65];

duplication [25, 65]; longmethod [25, 65]; Mean-
ingful variable names [21]

Process assessment. Our framework capitalizes on the one
proposed in [15], as it focuses on observations of process-relevant
traits focusing on XP practices. However, in the online setting, the
use of breakout rooms places the challenge for facilitators of directly
observing participants’ behavior. To overcome it, we developed a
protocol to collect observations (Table 4) so that we could train
student tutors and delegate them to observe the assigned teams (on
the second and last day of the event) by using the protocol (in a
Google Form).



Conference’17, July 2017, Washington, DC, USA Fronza et al.

Table 4: Process assessment protocol.

Observed behavior Corresponding XP
practice

1. The team uses paper/digital sketches to
drive the development of the app [never /
sometimes / often]

User stories and
metaphor

2. The team gets ready to present a proto-
type at the end of each iteration [never /
sometimes / often]

Small releases and
iterations

3. The team tests frequently [never / some-
times / often]

Refactoring/testing

4. The entire team knows and can modify
the code [never / sometimes / often]

Collective owner-
ship

5. Two/three teammembers work together
on same piece of code [never / sometimes
/ often]

Pair programming

6. The team takes advantage of meetings
with customers to get feedback [never /
sometimes / often]

On-site customer

Based on the questions in the observation protocol, the student
tutors observed the teams continuously and reported the results
of their observations to the facilitators. Using the collected data,
the facilitators could identify any critical issues and support the
student tutors to manage them. In doing so, we turned the challenge
into the opportunity that allowed us to understand better partici-
pants’ behavior through analyzing the information that could not
be gathered easily in the face-to-face version.

4 FACE-TO-FACE VS. ONLINE CODING CAMP
This section first assesses whether the online camp kept alive the
fun that participants typically obtained in the face-to-face edition,
then compares the achieved results in terms of quality of product
and process in the two editions. The comparison allows us to under-
stand if our effort of replicating fun and engagement in the online
version produced desired results, which are reflected in the quality
of product and process.

The coding camp hosted 80 participants (14 F, 66 M) from ten
different high school types (computer science, scientific, vocational,
and non-vocational), i.e., participants had diversified disciplinary
backgrounds. The participants were aged 15-19 and had little or no
previous software development knowledge. In total, 27 teams that
were tutored by a group of 15 second/third-year students (7 F, 8 M)
who attended the previous year’s face-to-face coding camp. Each
tutor was assigned one or two teams.

The activities started on Monday afternoon and concluded on
Friday afternoon, four hours per day. Two authors of this paper
facilitated all the sessions and also the face-to-face version described
in [15], which hosted 28 participants (6 F, 22M) having similar
characteristics and organized in 10 teams.

Fun assessment. During reflection sessions, the participants
never reported not-fun factors (e.g., boredom or sadness [60]). In-
stead, they frequently mentioned fun and explained how fun activi-
ties changed the context and dynamics of the course (“I wondered

how to survive four hours of sitting in front of the screen. Instead, time
passed more quickly than I thought” ; “Games helped us socialize with
people we did not know at first, which is definitely more difficult in an
online context” ), assuring moments of fun (“At the end of the thirty
items game, my jaws were aching from laughing” ) and relaxation
(“Thanks to these activities I had to run all over my apartment, which
helped stretching my legs and resting my eyes” ) . On top of that,
the students commented that even though fun activities can be
perceived upfront as unrelated eventually, they were able to find a
connection and eventual learning that does relate to the software
development process (“At first, I wondered why I had to do parkour to
find objects [...] Then, I realized that deciding who had to run around
to look for what was a great team game!”; “When we were developing
our app, we often thought about the paper tower metaphor” ).

According to the observations collected by the facilitators and
tutors, the participants’ engagement was a clear indicator of fun.
Indeed, they all did their best to achieve good results; to mention
one example, some participants went all the way to the kitchen
to find carrots to increase the number of orange objects in the
color wheel. Moreover, the camaraderie effect was pronounced and
led to the different teams playfully competing against each other.
The student tutors confirmed that they considered fun to be an
essential ingredient of the face-to-face coding camp; for this reason,
they were initially concerned that the online experience would
be very different for new participants. However, they confirmed
that they could observe fun during the coding camp and that the
games played a crucial role in maintaining the participants’ fun
and engagement.

Product assessment. Figure 2 compares size and complexity of
the projects developed at the online coding camp (27 projects in to-
tal, one per team) with those of the face-to-face edition (10 projects
[15]). The only noticeable difference is represented by project size
(LLOC) being slightly lower in the online edition, but still compa-
rable to the face-to-face edition. This leads to the consideration
that the capacity of the teams in terms of size and complexity of
the product does not decay because of the variation in the course
delivery channel.

Figure 3 shows the presence of components (based on the cate-
gories in the Thunkable palette) in the projects of the online coding
camp. User Interface (UI) components are the most present, while
other components (such locations/sensors and authentication) are
used less frequently. This result is similar to what happened in the
products developed face-to-face [15].

Figure 4 compares the number of components in the two edi-
tions of the coding camp (i.e., face-to-face and online). We do not
compare data, which is almost absent in both editions, and authenti-
cation, which was only present in the Thunkable palette). Moreover,
although image components are quite common in the online edi-
tion, their distribution is not compared to the face-to-face edition
because the image category was not present in App Inventor with
the same features as the category in Thunkable. Figure 4 shows
no major variations, which were indeed not expected as we did
not change the portfolio of topics offered during the online coding
camp with respect to the face-to-face syllabus.

Figure 5 shows that, in the online coding camp, loops and lists
are the least used computational concept blocks, while variables,
logic, and function blocks are frequently used.



Keeping Fun Alive Conference’17, July 2017, Washington, DC, USA

f2f online

50
10
0

15
0

LLOC

f2f online
2

4
6

8
10

14

CC

f2f online

5
10

15
20

25
30

NOUB

f2f online

50
10
0

15
0

TNC

Figure 2: Size and complexity: face-to-face vs. online coding
camp.

Authentication Data Image Location/Sensors Screens UI

0
20

40
60

80

co
un
t

Figure 3: Online coding camp: components per type.

f2f online

0
20

40
60

80
10
0

User Interface

f2f online

2
4

6
8

10
14

Screens

f2f online

0
1

2
3

4
5

6

Sensors

Figure 4: Components: face-to-face vs. online coding camp.

Conditional Function List Logic Loop Variable

0
10

20
30

40
50

60

co
un
t

Figure 5: Online coding camp: computational concept
blocks.

Also in this aspect, the trend offered by products developed
remotely is similar to the trend observed in the face-to-face delivery
method (Figure 6).

f2f online

0
2
4
6
8

12
Conditional

f2f online

0
10

20
30

40

Function

f2f online

0
1
2
3
4
5
6
7

List

f2f online

0
10

30
50

Logic

f2f online

0
1

2
3

4
Loop

f2f online

0
20

40
60

Variable

Figure 6: Computational concept blocks: face-to-face vs. on-
line coding camp.

The code inspection of the 27 projects developed during the
online coding camp shows that half of the projects (i.e., twice the
value of the face-to-face edition) suffer from the superfluous stuff
code smell code smell (Figure 7). Instead, duplication is a rather
limited problem, less present with respect to the face-to-face edition.
Compared to the face-to-face coding camp, an increased number
of pair programming sessions have been observed, which might
have contributed to reducing duplication (and to lowering project
size down). Superfluous stuff in the code (i.e., discarded blocks left
around) might be explained by how blocks are deleted in Thunkable:
instead of dragging blocks back into the palette as in other BBPLs
that participants might have already used (e.g., Scratch), it is, in
fact, necessary to drag blocks to the bin in the corner; otherwise,
blocks remain abandoned in the project.

Process assessment. Student tutors collected data on the sec-
ond and last day of the coding camp using the observation protocol



Conference’17, July 2017, Washington, DC, USA Fronza et al.

Superfluous stuff

Duplication

Long method

Variables do not have meaningful names

%
0 25 50 75 100

Online f2f

Figure 7: Code smells: face-to-face vs. online coding camp.

(Table 4), where each observation was an indicator of an XP prac-
tice. Figure 8 compares the usage of each XP practice at the two
observation days.

Figure 8: Process assessment (beginning (1) and end (2) of
the coding camp).

Most of the teams used user stories and metaphors (especially
during the second part of the coding camp), i.e., they frequently
used paper/digital sketches to drive app development. This could be
explained by geographic distance affecting distributed design ses-
sions [28]. Small releases and iteration and refactoring/testing were
widely used, while the possibility to get feedback from the on-site
customer was leveraged more towards the end of the coding camp.
Despite the distributed setting, the teams managed to maintain
collective ownership of the code and to work in pair programming
sessions.

Similar to the face-to-face delivery method (in which a similar
observation protocol was not used), agile practices are highly pro-
moted by facilitators during the coding camp, so observing their
implementation is not surprising. However, it is important to note
that students had to be more resourceful and creative in creating
a proper setting to carry out some agile practices remotely (for
example, pair programming sessions).

5 DISCUSSION
The results evidence that it is possible to emulate the development
process and achieve the same quality of the developed product
in both settings, while keeping fun alive in online coding camps,
when the instructional goal of the camp is accompanied by support
activities. Fun and relaxing items in the camp’s agenda ensure not
only the existence of mere “knowledge transfer” tasks, but also ele-
ments that activate participants promoting an overall engagement
towards the technical content of the camp. The results detailed

in Section 4 show that the effort adapting face-to-face activities
enabling them to be executed fully remote supported the attain-
ment of the desired technical results, which are observed through
the quality of products developed, and the stages of the process
executed, extensively discussed in Section 4 as well.

5.1 Lessons Learned on the Methodological
Approach

• One great opportunity enabled by the online coding camp,
which we were able to grasp and utilise, is that we provided
student tutors with an observation protocol so that they
could help us monitoring the teams’ activities in their Zoom
breakout rooms. It helped us understanding better partici-
pants’ behavior through analyzing the information which we
could not be gathered easily in the face-to-face version, but
now with online edition we could collect more easily.Before
starting the coding camp, it is important to unify among
student tutors the observation method and the expectations
as to what results such observations should convey.

• In the online version of the coding camp,we aimed at keeping
the same type of fun generated by the activities and games in
the face-to-face camp, therefore the adaptations of the games
emulated the face-to-face versions and intended to keep as
much as possible the physical nature of the replaced games.
We demonstrated this can be done and can help to achieve
the same intended results as in the face-to-face versions.
An opportunity is to explore more on what “fun” means in
online settings, and what are the online “fun factors”, and
blend online activities with physical activities to enhance the
fun that the participants could obtain, and in turn achieve
better learning outcomes. This blended approach could also
better attend the differences in the participants in terms of
personality, background and other personal traits. Different
participants can use the blended activities to achieve the
same level of fun.

• Due to the unexpected COVID situations, we had to manage
to run online coding camps as quickly as possible. Therefore,
it is a natural choice of adapting our existing face-to-face
version and making the minimal changes possible. A missed
opportunity here is to design online coding camps with a
clean slate, making the best use the full potential of online
tools and platforms, and design new instruction, interactivity
as well as time management strategies. This is a direction
worth exploring further, with fresh perspectives.

• In this experience report, we presented the assessment re-
sults of the online coding camp without considering the
participants characteristics (e.g., diversity of previous expe-
riences, previous courses taken, previous learn/work expe-
rience online, extroverts or introverts) which might have
influenced the results, since we only knew limited back-
ground information of the participants. This reminds us that
the need of finding a valid way of collecting the background
information of participants so that we could inspect if partic-
ipants encounter barriers [59] and if these barriers depend
on background characteristics.



Keeping Fun Alive Conference’17, July 2017, Washington, DC, USA

5.2 Lessons Learned on the Incorporation of
Games and Fun activities

Some of the insights from the introduction of fun and activating
activities in an online coding camp include:

• Games are essential as a strategic activity to reinforce learn-
ing: fun, engagement, move around, change context, and
release energy, especially in sessions of several hours.

• Games must be designed in such a way as to have a take-
away message that relates to the subject matter at hand (in
this case, to Software Engineering).

• To obtain such take-away, instructors should reserve a re-
flection moment to share thoughts and reflections after the
game. Otherwise, participants can be distracted about the
real point of playing that game, or may be disappointed
because they cannot show what they have done.

• Participating in the game and succeeding in its goal should
be enabled by simple material available wherever the par-
ticipant is, or found easily if notified with reasonable notice
(for example the day before).

• When conducted virtually, instructors and student tutors
should dedicate time to manage the games in breakout rooms
to allow for exposure and interaction. Even if there are few
rooms, participants are “alone” in the rooms with little or no
guidance, whilst in the face-to-face version, games are played
in a co-located classroom where facilitators and participants
work together. Moreover, a reserved staff resource (technical
facilitator) must also take care of the management of the
breakout rooms so instructors can focus on mentoring.

• Solution sharing and reflection after the games should be
run in the main Zoom room because they help keeping a
connection between the teams. During the experience pre-
sented in this paper, when they later worked in breakout
rooms, the teams occasionally visited other breakout rooms
to help solving issues or to cross-check apps and provide
comments, as what happened during the face-to-face coding
camp [15].

• As any context-changing activity, there is always a risk that
playing a game disrupts the didactic pace of a class. By com-
pleting a totally different activity, the group should be ready
to switch gears, resume the technical content and proceed.
This makes the take-away speeches and the reflection dis-
cussions mentioned above especially relevant.

5.3 Lessons Learned on Remote Teamwork and
Collaboration

With regard to teamwork, collaboration and communication activi-
ties, our major insights are:

• Based on the tutors’ observations, the facilitators may as
well intervene to encourage the group to attain a solution,
or to mentor the group to explore alternative ways to find a
solution.

• The teaching staff should give as much support and facilita-
tion as possible to enable collaboration even in the offline
aspects of the course (for example, if an exercise requires
the class to draft a user interface with pencil and paper).

Facilitators must inspire in this sense, using tools that the
participants can replicate (such as whiteboards or paper
sheets) instead of sketching or prototyping licensed tools
that others may not access.

• In a face-to-face setting, it is always easy to turn the head and
see what students in the next table are doing. In the online
edition, partial and final presentations acquire particular
relevance, because the teams may lose track as to what other
teams are doing, or what could be their final outcome.

5.4 Lessons Learned on Enabling Technology
The success of a technical camp relies much on the technology
available to carry out the activities required by the course. In this
regard, we observed the following learning:

• The enabling technology should be selected to be executed in
a common platform that can be easily supplied in any setting.
For instance, working with Thunkable permits to execute a
fully web-based development environment without the need
of installing any software. The developed software can be
tested via web, or if participants opt in, the two major mobile
operating systems (iOS, Android) are fully supported by the
tool. Still, minor problems commonly arise and the teach-
ing staff should be available to mitigate eventual technical
problems.

• A face-to-face course depends on the infrastructure provided
by the course manager. A distributed, remote participation
depends a lot on the technology, connectivity and infrastruc-
ture provided directly by participants. To this end, instruc-
tors should plan ahead what to do, how to deal with, and
advise others what to do if technology (internet connection,
software tools) were to fail, both on the instructor’s and the
student’s end. This plan is to be discussed by the beginning
of the course, to mitigate anxiety, promote resourcefulness,
and creating a technology-resilient environment for all par-
ticipants.

6 CONCLUSIONS
In this experience report, we described the implementation of a
fully-remote coding camp directed to high school students, and the
evaluation of the results of the experience from the point of view
of assessing the ability to develop high-quality software following
an agile-based Software Engineering process while keeping the fun
alive. This work yields relevant results to configure future strategies
that enable students to embrace a work environment to collaborate
remotely with peers elsewhere in the world, simulating and stim-
ulating a working environment that is common in a professional
setting. The results show that the participants were successful at-
taining the goals of the camp, by constructing a working software
product utilizing block-based programming tools, yet displaying
important deficiencies related to the good command of structured
programming. Informally, students reported overall satisfaction on
the implementation of Software Engineering practices.

A solid technical course should consider a number of didactic
goals that are accomplished via traditional knowledge transfer activ-
ities (expositions, supervised exercises, repetition, and independent



Conference’17, July 2017, Washington, DC, USA Fronza et al.

work). However, we believe that context-changing, gamified ac-
tivities deliver important value in the process of obtaining new
knowledge, as these activities fulfill a two-fold strategy: on the
one hand, they reinforce messages related to the technical track
of the course, and such messages are effectively discussed in the
take-away sessions. On the other hand, games allow for necessary
relief when spending long sessions online, and permit physical
activation that is necessary after long periods of sitting in front of
a screen.

Even though not targeted by this experience report, replicability
and reproducibility efforts are highly recommended to generalize
the conclusions yielded by this work. The observations discussed
in this work follow the technical and didactic strategy of a very
specific course, so it is recommended to extend the scope of this
strategy to other contexts. Moreover, we advise that instances of
the reproduction of this work occur in a non-distributed setting,
to determine quantitatively the impact that the co-location or the
remote setting can have on groups, with measurable accounts on
which specific points create a major difference.

7 ACKNOWLEDGMENTS
The MobileDev coding camp (https://mobiledev.inf.unibz.it), under-
lying piece of this work, was fully funded by the Free University
of Bozen/Bolzano, Italy. Also, authors acknowledge the support of
student tutors, whose effort was not only keystone for this work
but also true inspiration for camp participants.

REFERENCES
[1] Wahab Ali. 2020. Online and remote learning in higher education institutes: A

necessity in light of COVID-19 pandemic. Higher education studies 10, 3 (2020),
16–25. https://doi.org/10.5539/hes.v10n3p16

[2] Sarah Beecham, Tony Clear, Daniela Damian, John Barr, John Noll, and Walt
Scacchi. 2017. How best to teach global software engineering? Educators are
divided. IEEE Software 34, 01 (2017), 16–19. https://doi.org/10.1109/MS.2017.12

[3] Lee Millar Bidwell, Scott T Grether, and JoEllen Pederson. 2020. Disruption and
difficulty: Student and faculty perceptions of the transition to online instruction
in the COVID-19 pandemic. In COVID-19. Routledge, 31–46. https://doi.org/10.
4324/9781003142065

[4] William S Bolton, Shu Ng, Angela Lam, James Kinch, Victor Parchment,William P
Foster, Manuela R Zimmermann, Jye Quan Teh, Abigail Simpson, Karisma Sharma,
et al. 2021. Virtual hackathon to tackle COVID-19 unmet needs. BMJ Innovations
7, 2 (2021). https://doi.org/10.1136/bmjinnov-2020-000456

[5] Frank R. Castelli and Mark A. Sarvary. 2021. Why students do not turn on
their video cameras during online classes and an equitable and inclusive plan
to encourage them to do so. Ecology and Evolution 11, 8 (2021), 3565–3576.
https://doi.org/10.1002/ece3.7123

[6] Champagne, J. 2016. Are coding bootcamps worth it? . https://blog.capterra.com/
are-coding-bootcamps-worth-it/.

[7] Simon CH Chan, CL Johnny Wan, and Stephen Ko. 2019. Interactivity, active col-
laborative learning, and learning performance: The moderating role of perceived
fun by using personal response systems. The International Journal of Management
Education 17, 1 (2019), 94–102. https://doi.org/10.1016/j.ijme.2018.12.004

[8] Alistair Cockburn. 2002. Agile Software Development. Addison-Wesley Longman
Publishing Co., Inc., USA.

[9] A. Cockburn and J. Highsmith. 2001. Agile software development, the people
factor. Computer 34, 11 (2001), 131–133. https://doi.org/10.1109/2.963450

[10] John W Creswell and J David Creswell. 2017. Research design: Qualitative, quan-
titative, and mixed methods approaches. Sage publications.

[11] Adrienne Decker, Kurt Eiselt, and Kimberly Voll. 2015. Understanding and
improving the culture of hackathons: Think global hack local. In 2015 IEEE
Frontiers in Education Conference (FIE). IEEE, 1–8. https://doi.org/10.1109/FIE.
2015.7344211

[12] Anita DeWitt, Julia Fay, Madeleine Goldman, Eleanor Nicolson, Linda Oyolu,
Lukas Resch, Jovan Martinez Saldaña, Soulideth Sounalath, Tyler Williams,
Kathryn Yetter, et al. 2017. What we say vs. what they do: A comparison of
middle-school coding camps in the cs education literature and mainstream cod-
ing camps. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on

Computer Science Education. 707–707. https://doi.org/10.1145/3017680.3022434
[13] Per Engzell, Arun Frey, and Mark D Verhagen. 2021. Learning loss due to school

closures during the COVID-19 pandemic. Proceedings of the National Academy of
Sciences 118, 17 (2021). https://doi.org/10.1073/pnas.2022376118

[14] Ilenia Fronza, Luis Corral, Gennaro Iaccarino, and Claus Pahl. 2021. Enabling
Peer-Led Coding Camps by Creating a Seed Effect in Young Students. SIGITE 2021
- Proceedings of the 22nd Annual Conference on Information Technology Education,
117–122. https://doi.org/10.1145/3450329.3476860

[15] Ilenia Fronza, Luis Corral, and Claus Pahl. 2020. End-user software development:
Effectiveness of a software engineering-centric instructional strategy. Journal of
Information Technology Education: Research 19 (2020), 367–393. https://doi.org/
10.28945/4580

[16] Ilenia Fronza, Luis Corral, Claus Pahl, and Gennaro Iaccarino. 2020. Evaluating
the Effectiveness of a Coding Camp through the Analysis of a Follow-up Project.
In Proceedings of the 21st Annual Conference on Information Technology Education.
248–253. https://doi.org/10.1145/3368308.3415391

[17] Ilenia Fronza, Nabil El Ioini, Claus Pahl, and Luis Corral. 2019. Bringing the
benefits of Agile techniques inside the classroom: a practical guide. In Agile and
Lean Concepts for Teaching and Learning. Bringing Methodologies from Industry to
the Classroom. Springer, Singapore. https://doi.org/10.1007/978-981-13-2751-3_7

[18] Kiev Gama. 2019. Developing course projects in a hack day: an experience
report. In Proceedings of the 2019 ACM Conference on Innovation and Technology
in Computer Science Education. 388–394. https://doi.org/10.1145/3304221.3319777

[19] Kiev Gama, Carlos Zimmerle, and Pedro Rossi. 2021. Online Hackathons as
an Engaging Tool to Promote Group Work in Emergency Remote Learning. In
Proceedings of the 26th ACM Conference on Innovation and Technology in Computer
Science Education V. 1 (Virtual Event, Germany) (ITiCSE ’21). Association for
Computing Machinery, New York, NY, USA, 345–351. https://doi.org/10.1145/
3430665.3456312

[20] Elizabeth Gammie and Morag Matson. 2007. Group assessment at final degree
level: An evaluation. Accounting Education: an international journal 16, 2 (2007),
185–206. https://doi.org/10.1080/09639280701234609

[21] S Grover. 2017. Tackling novice learners’ naive conceptions in introductory
programming. Hello World 2 (2017).

[22] Ari Happonen, Daria Minashkina, Alexander Nolte, and Maria Angelica Medina
Angarita. 2020. Hackathons as a company–University collaboration tool to
boost circularity innovations and digitalization enhanced sustainability. In AIP
Conference Proceedings, Vol. 2233. AIP Publishing LLC, 050009. https://doi.org/
10.1063/5.0001883

[23] Robert Heininger, Loina Prifti, Victor Seifert, Matthias Utesch, and Helmut Kr-
cmar. 2017. Teaching how to program with a playful approach: A review of
success factors. In 2017 IEEE global engineering education conference (EDUCON).
IEEE, 189–198. https://doi.org/10.1109/EDUCON.2017.7942846

[24] James D Herbsleb and Deependra Moitra. 2001. Global software development.
IEEE software 18, 2 (2001), 16–20. https://doi.org/10.1109/52.914732

[25] Felienne Hermans and Efthimia Aivaloglou. 2016. Do code smells hamper novice
programming? A controlled experiment on Scratch programs. In 2016 IEEE 24th
International Conference on Program Comprehension (ICPC). IEEE, 1–10. https:
//doi.org/10.1109/ICPC.2016.7503706

[26] Faisal Hossain, Nicholas Elmer, Margaret Srinivasan, and Alice Andral. 2020.
Accelerating applications for planned NASA satellite missions: a new paradigm
of virtual hackathons during a pandemic and in the Post-Pandemic era. Bulletin
of the American Meteorological Society 101, 9 (2020), E1544–E1554. https://doi.
org/10.1175/BAMS-D-20-0167.1

[27] Daqing Hou, Patricia Jablonski, and Ferosh Jacob. 2009. CnP: Towards an envi-
ronment for the proactive management of copy-and-paste programming. In 2009
IEEE 17th International Conference on Program Comprehension. IEEE, 238–242.
https://doi.org/10.1109/ICPC.2009.5090049

[28] Rodi Jolak, Andreas Wortmann, Grischa Liebel, Eric Umuhoza, and Michel RV
Chaudron. 2020. The design thinking of co-located vs. distributed software devel-
opers: distance strikes again!. In Proceedings of the 15th International Conference on
Global Software Engineering. 106–116. https://doi.org/10.1145/3372787.3390438

[29] Petra Kastl, Ulrich Kiesmüller, and Ralf Romeike. 2016. Starting out with projects:
Experiences with agile software development in high schools. In Proceedings of
the 11th workshop in primary and secondary computing education. 60–65. https:
//doi.org/10.1145/2978249.2978257

[30] Nenagh Kemp and Rachel Grieve. 2014. Face-to-face or face-to-screen? Un-
dergraduates’ opinions and test performance in classroom vs. online learning.
Frontiers in psychology 5 (2014), 1278. https://doi.org/10.3389/fpsyg.2014.01278

[31] David A Kolb. 2014. Experiential learning: Experience as the source of learning and
development. FT press.

[32] Stan Kurkovsky, Stephanie Ludi, and Linda Clark. 2019. Active Learning with
LEGO for Software Requirements. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19).
Association for Computing Machinery, New York, NY, USA, 218–224. https:
//doi.org/10.1145/3287324.3287444

[33] Julia Köhlke, Sebastian Hanna, and Johann Schütz. 2021. Cross-Domain
Stakeholder-Alignment in Collaborative SoS – Lego©Serious Play©as a Boundary

https://mobiledev.inf.unibz.it
https://doi.org/10.5539/hes.v10n3p16
https://doi.org/10.1109/MS.2017.12
https://doi.org/10.4324/9781003142065
https://doi.org/10.4324/9781003142065
https://doi.org/10.1136/bmjinnov-2020-000456
https://doi.org/10.1002/ece3.7123
https://blog.capterra.com/are-coding-bootcamps-worth-it/
https://blog.capterra.com/are-coding-bootcamps-worth-it/
https://doi.org/10.1016/j.ijme.2018.12.004
https://doi.org/10.1109/2.963450
https://doi.org/10.1109/FIE.2015.7344211
https://doi.org/10.1109/FIE.2015.7344211
https://doi.org/10.1145/3017680.3022434
https://doi.org/10.1073/pnas.2022376118
https://doi.org/10.1145/3450329.3476860
https://doi.org/10.28945/4580
https://doi.org/10.28945/4580
https://doi.org/10.1145/3368308.3415391
https://doi.org/10.1007/978-981-13-2751-3_7
https://doi.org/10.1145/3304221.3319777
https://doi.org/10.1145/3430665.3456312
https://doi.org/10.1145/3430665.3456312
https://doi.org/10.1080/09639280701234609
https://doi.org/10.1063/5.0001883
https://doi.org/10.1063/5.0001883
https://doi.org/10.1109/EDUCON.2017.7942846
https://doi.org/10.1109/52.914732
https://doi.org/10.1109/ICPC.2016.7503706
https://doi.org/10.1109/ICPC.2016.7503706
https://doi.org/10.1175/BAMS-D-20-0167.1
https://doi.org/10.1175/BAMS-D-20-0167.1
https://doi.org/10.1109/ICPC.2009.5090049
https://doi.org/10.1145/3372787.3390438
https://doi.org/10.1145/2978249.2978257
https://doi.org/10.1145/2978249.2978257
https://doi.org/10.3389/fpsyg.2014.01278
https://doi.org/10.1145/3287324.3287444
https://doi.org/10.1145/3287324.3287444


Keeping Fun Alive Conference’17, July 2017, Washington, DC, USA

Object. In 2021 16th International Conference of System of Systems Engineering
(SoSE). 108–113. https://doi.org/10.1109/SOSE52739.2021.9497469

[34] Miguel Lara and Kate Lockwood. 2016. Hackathons as community-based learning:
a case study. TechTrends 60, 5 (2016), 486–495. https://doi.org/10.1007/s11528-
016-0101-0

[35] Miguel Lara, Kate Lockwood, and Eric Tao. 2015. Peer-led hackathon: An intense
learning experience. thannual (2015), 255.

[36] Colleen M Lewis, Ruth E Anderson, and Ken Yasuhara. 2016. "I Don’t Code All
Day" Fitting in Computer Science When the Stereotypes Don’t Fit. In Proceedings
of the 2016 ACM conference on international computing education research. 23–32.
https://doi.org/10.1145/2960310.2960332

[37] Janet Liebenberg, Magda Huisman, and Elsa Mentz. 2015. The relevance of
software development education for students. IEEE Transactions on Education 58,
4 (2015), 242–248. https://doi.org/10.1109/TE.2014.2381599

[38] Beáta Lőrincz, Bogdan Iudean, and Andreea Vescan. 2021. Experience report
on teaching testing through gamification. In Proceedings of the 3rd International
Workshop on Education through Advanced Software Engineering and Artificial
Intelligence. 15–22. https://doi.org/10.1145/3472673.3473960

[39] Thomas D Lynch, Michael Herold, Joe Bolinger, Shweta Deshpande, Thomas
Bihari, Jayashree Ramanathan, and Rajiv Ramnath. 2011. An agile boot camp:
Using a LEGO®-based active game to ground agile development principles. In
2011 Frontiers in Education Conference (FIE). IEEE, F1H–1. https://doi.org/10.
1109/FIE.2011.6142849

[40] Mosima Anna Masethe, Hlaudi Daniel Masethe, and Solomon Adeyemi Odunaike.
2017. Scoping Review of Learning Theories in the 21 st Century. In Proceedings
of the World Congress on Engineering and Computer Science, Vol. 1. 25–27.

[41] OrniMeerbaum-Salant and Orit Hazzan. 2010. An agile constructionist mentoring
methodology for software projects in the high school. ACM Transactions on
Computing Education (TOCE) 9, 4 (2010), 1–29. https://doi.org/10.1145/1656255.
1656259

[42] Catherine Mooney and Brett A Becker. 2021. Investigating the impact of the
COVID-19 pandemic on computing students’ sense of belonging. ACM Inroads
12, 2 (2021), 38–45. https://doi.org/10.1145/3408877.3432407

[43] Miguel Ehécatl Morales-Trujillo. 2021. Learning Software Quality Assurance with
Bricks. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). IEEE, 11–19. https:
//doi.org/10.1109/ICSE-SEET52601.2021.00010

[44] R. Morelli, T. De Lanerolle, P. Lake, N. Limardo, E. Tamotsu, and C. Uche. 2011.
Can android app inventor bring computational thinking to k-12. In Proc. 42nd
ACM technical symp. on Computer science education (SIGCSE’11). 1–6.

[45] Arnab Nandi and Meris Mandernach. 2016. Hackathons as an informal learning
platform. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education. 346–351. https://doi.org/10.1145/2839509.2844590

[46] Barbara Oakley, Richard M Felder, Rebecca Brent, and Imad Elhajj. 2004. Turning
student groups into effective teams. Journal of student centered learning 2, 1
(2004), 9–34.

[47] Jasmine Paul and Felicia Jefferson. 2019. A comparative analysis of student
performance in an online vs. face-to-face environmental science course from
2009 to 2016. Frontiers in Computer Science 1 (2019), 7. https://doi.org/10.3389/
fcomp.2019.00007

[48] Ei Pa Pa Pe-Than, Alexander Nolte, Anna Filippova, Christian Bird, Steve Scallen,
and James D Herbsleb. 2018. Designing corporate hackathons with a purpose:
the future of software development. IEEE Software 36, 1 (2018), 15–22. https:
//doi.org/10.1109/MS.2018.290110547

[49] Jari Porras, Jayden Khakurel, Jouni Ikonen, Ari Happonen, Antti Knutas, Antti
Herala, and Olaf Drögehorn. 2018. Hackathons in software engineering education:
lessons learned from a decade of events. In Proceedings of the 2nd International
Workshop on Software Engineering Education for Millennials. 40–47. https://doi.
org/10.1145/3194779.3194783

[50] Jari Porras, Antti Knutas, Jouni Ikonen, Ari Happonen, Jayden Khakurel, and
Antti Herala. 2019. Code camps and hackathons in education-literature review
and lessons learned. (2019). https://doi.org/10.24251/hicss.2019.933

[51] Jeaime Powell, Linda Bailey Hayden, Amy Cannon, Boyd Wilson, and Alexan-
der Nolte. 2021. Organizing online hackathons for newcomers to a scien-
tific community–Lessons learned from two events. In Sixth Annual Interna-
tional Conference on Game Jams, Hackathons, and Game Creation Events. 78–82.
https://doi.org/10.1145/3472688.3472700

[52] Ralf Romeike and Timo Göttel. 2012. Agile projects in high school computing
education: emphasizing a learners’ perspective. In Proceedings of the 7thWorkshop
in Primary and Secondary Computing Education. 48–57. https://doi.org/10.1145/
2481449.2481461

[53] Aivars Šāblis, Javier Gonzalez-Huerta, Ehsan Zabardast, and Darja Šmite. 2019.
Building LEGO towers: an exercise for teaching the challenges of global work.
ACM Transactions on Computing Education (TOCE) 19, 2 (2019), 1–32. https:
//doi.org/10.1145/3218249

[54] Bruce A. Scharlau. 2013. Games for Teaching Software Development. In Proceed-
ings of the 18th ACM Conference on Innovation and Technology in Computer Science

Education (Canterbury, England, UK) (ITiCSE ’13). Association for Computing Ma-
chinery, New York, NY, USA, 303–308. https://doi.org/10.1145/2462476.2462494

[55] Darja Šmite, Claes Wohlin, Tony Gorschek, and Robert Feldt. 2010. Empirical
evidence in global software engineering: a systematic review. Empirical software
engineering 15, 1 (2010), 91–118. https://doi.org/10.1007/s10664-009-9123-y

[56] Keyur Sorathia and Rocco Servidio. 2012. Learning and experience: teaching
tangible interaction & edutainment. Procedia-Social and Behavioral Sciences 64
(2012), 265–274. https://doi.org/10.1016/j.sbspro.2012.11.031

[57] Steven Stack. 2015. Learning Outcomes in an online vs traditional course. In-
ternational Journal for the Scholarship of Teaching and Learning 9, 1 (2015), n1.
https://doi.org/10.20429/ijsotl.2015.090105

[58] Sachiko Takeda and Fabian Homberg. 2014. The effects of gender on group work
process and achievement: an analysis through self-and peer-assessment. British
Educational Research Journal 40, 2 (2014), 373–396. https://doi.org/10.1002/berj.
3088

[59] Kyle Thayer and Andrew J Ko. 2017. Barriers faced by coding bootcamp students.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research. 245–253. https://doi.org/10.1145/3105726.3106176

[60] Gabriella Tisza and Panos Markopoulos. 2021. FunQ: Measuring the fun expe-
rience of a learning activity with adolescents. Current Psychology (2021), 1–21.
https://doi.org/10.1007/s12144-021-01484-2

[61] Erik H Trainer, Arun Kalyanasundaram, Chalalai Chaihirunkarn, and James D
Herbsleb. 2016. How to hackathon: Socio-technical tradeoffs in brief, intensive
collocation. In proceedings of the 19th ACM conference on computer-supported
cooperative work & social computing. 1118–1130. https://doi.org/10.1145/2818048.
2819946

[62] Peace UNESCO. Division for Inclusion and Education Sector Sustainable Devel-
opment. 2017. Education for sustainable development goals. (2017).

[63] Silvia Vermicelli, Livio Cricelli, and Michele Grimaldi. 2021. How can crowd-
sourcing help tackle the COVID-19 pandemic? An explorative overview of
innovative collaborative practices. R&D Management 51, 2 (2021), 183–194.
https://doi.org/10.1111/radm.12443

[64] Luiz Carlos Vieira and Flávio Soares Corrêa da Silva. 2017. Assessment of fun
in interactive systems: A survey. Cognitive Systems Research 41 (2017), 130–143.
https://doi.org/10.1016/j.cogsys.2016.09.007

[65] J Waite. 2017. Smelly code. Do we pass on best practice when we teach block-
based programming to primary school pupils. Hello World 3 (2017).

[66] Wujec, T. 2010. Build a tower, build a team [Video]. TED Conferences. https:
//www.ted.com/talks/tom_wu-jec_build_a_tower_build_a_team/.

[67] Benjamin Xie, Isra Shabir, and Hal Abelson. 2015. Measuring the usability
and capability of app inventor to create mobile applications. In Proceedings
of the 3rd International Workshop on Programming for Mobile and Touch. 1–8.
https://doi.org/10.1145/2824823.2824824

[68] Shimaa Mohammad Yousof, Rasha Eid Alsawat, Jumana Ali Almajed, Ameera Ab-
dulaziz Alkhamesi, Renad Mane Alsuhaimi, Shrooq Abdulrhman Alssed, and
Iman Mohmad Wahby Salem. 2021. The possible negative effects of prolonged
technology-based online learning during the COVID-19 pandemic on body func-
tions and wellbeing: a review article. Journal of Medical Science 90, 3 (2021),
e522–e522. https://doi.org/10.20883/medical.e522

https://doi.org/10.1109/SOSE52739.2021.9497469
https://doi.org/10.1007/s11528-016-0101-0
https://doi.org/10.1007/s11528-016-0101-0
https://doi.org/10.1145/2960310.2960332
https://doi.org/10.1109/TE.2014.2381599
https://doi.org/10.1145/3472673.3473960
https://doi.org/10.1109/FIE.2011.6142849
https://doi.org/10.1109/FIE.2011.6142849
https://doi.org/10.1145/1656255.1656259
https://doi.org/10.1145/1656255.1656259
https://doi.org/10.1145/3408877.3432407
https://doi.org/10.1109/ICSE-SEET52601.2021.00010
https://doi.org/10.1109/ICSE-SEET52601.2021.00010
https://doi.org/10.1145/2839509.2844590
https://doi.org/10.3389/fcomp.2019.00007
https://doi.org/10.3389/fcomp.2019.00007
https://doi.org/10.1109/MS.2018.290110547
https://doi.org/10.1109/MS.2018.290110547
https://doi.org/10.1145/3194779.3194783
https://doi.org/10.1145/3194779.3194783
https://doi.org/10.24251/hicss.2019.933
https://doi.org/10.1145/3472688.3472700
https://doi.org/10.1145/2481449.2481461
https://doi.org/10.1145/2481449.2481461
https://doi.org/10.1145/3218249
https://doi.org/10.1145/3218249
https://doi.org/10.1145/2462476.2462494
https://doi.org/10.1007/s10664-009-9123-y
https://doi.org/10.1016/j.sbspro.2012.11.031
https://doi.org/10.20429/ijsotl.2015.090105
https://doi.org/10.1002/berj.3088
https://doi.org/10.1002/berj.3088
https://doi.org/10.1145/3105726.3106176
https://doi.org/10.1007/s12144-021-01484-2
https://doi.org/10.1145/2818048.2819946
https://doi.org/10.1145/2818048.2819946
https://doi.org/10.1111/radm.12443
https://doi.org/10.1016/j.cogsys.2016.09.007
https://www.ted.com/talks/tom_wu- jec_build_a_tower_build_a_team/
https://www.ted.com/talks/tom_wu- jec_build_a_tower_build_a_team/
https://doi.org/10.1145/2824823.2824824
https://doi.org/10.20883/medical.e522

	Abstract
	1 Introduction
	2 Background and related work
	3 Online Coding camp design
	3.1 Instructional strategy
	3.2 Participants
	3.3 Assessment framework

	4 Face-to-face vs. online coding camp
	5 Discussion
	5.1 Lessons Learned on the Methodological Approach
	5.2 Lessons Learned on the Incorporation of Games and Fun activities
	5.3 Lessons Learned on Remote Teamwork and Collaboration
	5.4 Lessons Learned on Enabling Technology

	6 Conclusions
	7 Acknowledgments
	References

