
1

Scaling Agile Development in Mechatronic
Organizations – A Comparative Case Study

Ulrik Eklund Department of Computer Science and Media Technology
Malmö University
Malmö, Sweden

Email: ulrik.eklund@mah.se
Christian Berger Department of Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden

Email: christian.berger@gu.se

Abstract—Agile software development principles enable compa-
nies to successfully and quickly deliver software by meeting their
customers’ expectations while focusing on high quality. Many
companies working with pure software systems have adopted
these principles, but implementing them in companies dealing
with non-pure software products is challenging.

We identified a set of goals and practices to support large-scale
agile development in companies that develop software-intense
mechatronic systems.

We used an inductive approach based on empirical data
collected during a longitudinal study with six companies in the
Nordic region. The data collection took place over two years
through focus group workshops, individual on-site interviews,
and complementary surveys.

The primary benefit of large-scale agile development is im-
proved quality, enabled by practices that support regular or con-
tinuous integration between teams delivering software, hardware,
and mechanics. In this regard, the most beneficial integration
cycle for deliveries is every four weeks; while continuous integra-
tion on a daily basis would favor software teams, other disciplines
does not seem to benefit from faster integration cycles.

We identified 108 goals and development practices supporting
agile principles among the companies, most of them concerned
with integration; therefrom, 26 agile practices are unique to
the mechatronics domain to support adopting agile beyond pure
software development teams. 16 of these practices are considered
as key enablers, confirmed by our control cases.

Keywords-software engineering, agile software development,
mechatronics, embedded software, system integration, testing

I. INTRODUCTION

Agile software development aims at developing products that
better match a customer’s expectations compared to waterfall or
stage-gate methods. Typical characteristics of agile methods are
short and fixed periods consisting of development, integration,
and testing, conducted in small teams that communicate actively,
both within the software team and with the customer. This
flexibility allows a team to continuously reprioritize a product’s
features based on stakeholder feedback.

Pure software-driven companies are the typical habitat
for adopting agile with prominent examples being Google,
Amazon, or Spotify. The mechatronics domain, though, where
cars are a prime example, are more challenging as the final
product combines software, hardware, and mechanics, with the

involved artifacts being of different natures and contributed
from different disciplines.

We can see two opposing trends affecting R&D in the
mechatronics domain: Manufacturing and hardware develop-
ment have long lead-times compared to pure software products,
ranging typically 1-4 years. During the product development
process, focus is given to predictability, i.e. meeting the start-
of-production (SOP) with the required mechanical quality,
which in practice is achieved by waterfall/stage-gate processes
dictating delivery and integration cycles. In contrast, software
development is characterized by increasing speed and being
more nimble while keeping quality. This typically enables
lead-times of weeks or months, and many agile methods are a
response to this. However, there are no established solutions to
easily overcome the intersection between the aforementioned
trends, but the necessity to resolve them in the mechatronics
domain motivates in-depth studies to better serve the changing
market’s needs and to support industrial decision makers.

In this study, we compared experiences and practices from
six internationally leading companies developing and manu-
facturing mechatronic systems. The software teams in these
companies are already following a number of common agile
practices, such as small team sizes, regular stand-up meetings,
cross-functional teams, reprioritization, shared backlog, and
sprint lengths of up to four weeks. All involved companies are
at the threshold to scale agile principles beyond their individual
software teams to reach out to hardware and mechanics.

A. Problem Statement

The two trends above typically result in a situation where
individual teams are be able to reprioritise and implement
software features in a 2-4 weeks cycle, i.e. are agile, while the
overall R&D process is typically still governed by an overarch-
ing stage-gate or V-model [1]. Thus, software deliveries were
typically planned in time towards pre-scheduled integration
points that are determined by mechanics and manufacturing
development. As a result the benefits typically associated with
agile development like short lead-times in launching new or
updated products were not perceived by developers.

ar
X

iv
:1

70
3.

00
20

6v
2 

 [
cs

.S
E

] 
 2

 M
ar

 2
01

7



2

B. Research Objectives

The aim of the study is to unveil a list of agile practices
that are enablers to scale agile beyond software development
teams in mechatronic organizations. These practices scaling
agile principles to also include hardware and mechanics,
neighboring groups, and R&D departments. Practitioners from
mechatronics organizations who are transforming and adjusting
their internal development processes to accommodate the trends
in Section I-A by following large-scale agile frameworks such
as LESS and SAFe [2], [3], [4], [5] benefit from this list to
identify practices supporting a large-scale agile transformation.

C. Context and Limitations

This study compared organizations with the following
characteristics:

• Large mechatronics organizations,
• Dealing with a large and diverse product portfolio with

regular product upgrades, and
• Where timely manufacturing plays a large role, while
• There are strong demands on high quality and safety.

D. Contributions

During our study, we could confirm already known facts
about scaled agile development, such as the challenge of coordi-
nating multiple teams, difficulties with managing requirements,
and hanging on to internal silos [6]. However, we also identified
a number of additional challenges and benefits that are new
and unique for software-intense mechatronic systems. The final
result of the study is a set of 26 practices for agile development,
which are particular to the mechatronics domain, from which 16
are considered as enablers in addition to well-known practices
for large-scale software development to intensify the adoption
of agile beyond pure software development teams.

E. Structure of the Article

The rest of the article is structured as follows: Section II
describes the overall design of our comparative case study and
the embodied methods followed by a presentation of the results
in Section III. We discuss our findings with respect to related
work in Section IV before we conclude in Section V.

II. COMPARATIVE CASE STUDY DESIGN

Following is the description of the design of our comparative
case study, conducted over two years. Our research project
was conducted as part of Software Center1, an interdisciplinary
industrial/academic collaboration environment opened in 2012
with five Swedish universities (Chalmers Institute of Technol-
ogy, University of Gothenburg, Malmö University, University
of Linköping, and Mälardalen University), and ten companies
(Ericsson AB, Saab AB, Volvo Group, Volvo Cars, Axis
Communication AB, Tetra Pak, Grundfos, Jeppesen, VeriSure,
and Siemens). Software Center’s mission is to improve the
way software-intense companies develop, deploy, and maintain
strongly software-driven products.

1http://www.software-center.se

A. Research Questions
A growing number of companies dealing with software-

intense products apply agile principles to track a project’s
progress and the artifacts’ quality while reacting agilely
on changing customer’s needs. However, companies dealing
with mechatronic products where software is driving the
innovation for hardware, face challenges when implementing
agile principles especially beyond the software development
teams as different disciplines with dedicated and lengthily
nurtured engineering principles meet. In our comparative case
study, we aim to systematically investigate the following
questions:

RQ-1: What are expected benefits and challenges when
scaling agile principles beyond software development
teams?

RQ-2: What key enabling practices are considered to scale
agile in mechatronics companies outreaching pure
software teams?

B. Case and Subjects Selection
We collaborated with six companies that develop software-

driven mechatronic products during our study. The companies
employ between 2,100 and 93,000 employees with between 100
and 1,000 software developers, and up to 3,000 developers from
all disciplines. All companies serve their customers globally
with software-intense mechatronic products in yearly volumes
between 0.4 to over 16 million units that many of us may even
find in our households.

The project was defined according to the collaboration model
of Software Center2, with the two researchers defining the initial
project with input from four companies, labeled A-D, sharing
a mutual interest in the research topic. Two companies, E and
F, joined the project half-way and acted as control cases, as
shown in Fig. 1.

C. Data Collection Procedure
We planned the data collection in a multi-stage process as

shown in Fig. 1 (a) to get data from individuals involved in
R&[]D and affected by the software/hardware interplay, (b) to
unlock unthought reflections from both, on-site workshops at
the involved companies and joint meetings among the involved
project partners, and (c) to complement our data set using
surveys with data from further relevant employees.

1) Individual On-site Workshops: In the project’s initial
phase, we visited four partners individually and organized 3-
hours workshops to unveil, collect, and discuss (a) expected
benefits and (b) foreseeable challenges when scaling agile
beyond software development teams. The number of attendees
varied between 5 and 15 people and covered profiles from
hardware development, software development, and testing.
The participants contributed to the two topics with individual
reflections written on sticky notes. All notes were collected,
presented, and jointly discussed with the audience to identify
clusters. During the workshops, one researcher acted as
moderator while the other researcher took notes and transcribed
the sticky notes for further data processing.

2http://www.software-center.se/about-software-center

http://www.software-center.se
http://www.software-center.se/about-software-center


3

Company A 

Company B 

Company C 

Company D 

Company E 

Company F 

On-site 
Workshop 

On-site 
Workshop 

On-site 
Workshop 

On-site 
Workshop 

Survey 

Survey 

Survey 

Survey 

Joint 
Workshop 

Individual 
Interview 
Individual 
Interview 
Individual 
Interview 

Individual 
Interview 
Individual 
Interview 
Individual 
Interview 

Individual 
Interview 
Individual 
Interview 
Individual 
Interview 

Individual 
Interview 
Individual 
Interview 
Individual 
Interview 

Individual 
Interview 
Individual 
Interview 
Individual 
Interview 

Individual 
Interview 
Individual 
Interview 
Individual 
Interview 

Challenges 

Benefits 

Practices 

Co
nt

ro
l C

as
es

 
Sa

m
pl

e 
Ca

se
s 

Fig. 1. Overview of the data collection and analysis procedure: Out of the six participating companies during the project, we selected four companies
to extract expected benefits and foreseeable challenges based on on-site workshops, separate surveys per company, and joint workshops involving all four
companies. From the identified challenges, we designed a questionnaire that we used to conduct individual interviews with three senior engineers respectively,
who specialized in software, hardware, and mechanics per company. We used two companies to confirm findings for agile practices particular to mechatronics.

2) Complementary Online Surveys per Company: After the
individual on-site workshops, the identified clusters were used
to derive and design a questionnaire. The questionnaire was
divided into the following major sections: Capturing the current
situation on adopting agile principles at the company, the
way these practices are perceived at the respective companies,
expected benefits, and expected challenges when scaling agile3.
The goals for the questionnaire were to complement the
captured input during the on-site workshops and to extend the
topics that we already identified. We evaluated the design of the
questionnaire with our respective company points-of-contact
before we created separate online surveys for the participating
companies. The online surveys were sent via the respective
company point-of-contacts to further employees.

3) Joint Workshop with All Companies: After conducting
the online surveys, we extracted and summarized the feedback
and prepared a joint workshop for all participating companies.
We invited an external expert on agile for acting as moderator
during these joint workshops. The external expert’s role was
defined to stimulate discussions around topics that we might
have missed from the individual on-site interviews or in our
online surveys. Our role as researchers was to present the
results from the individual workshops and the on-line surveys
as well as to take notes during the discussions.

4) Three Individual Interviews with Software, Hardware,
and Mechanics Senior Engineers: The last step in our data
collection procedure consisted of individual one-hour interviews
per company with one senior engineer each from software,
hardware, and mechanics department respectively, who are
concerned with integration and testing. The goals for these
interviews were (a) to identify practices that were perceived
supportive for the integration and testing of the respective
three development artifacts, and (b) to unveil aspects that are

3The questionnaire is available here: https://goo.gl/A58qDf

perceived to slow down the integration and testing. We used
the following questions for our interviews:

Descriptive Information:
1) What is your role?
2) How long have you been working in this role?
“Let’s assume that you have successfully integrated every-

thing yesterday (software, hardware, and mechanics),. . . ”
1) How long did that take?
2) How does the integration contribute to your team today?
3) What worked well that you would like to preserve for

the next time?
“Let’s assume that we could integrate again (a) tomorrow,

(b) next week, (c) next month, (d) in three months, or (e) in
half a year,. . . ”

1) What would be the value for you and your team?
2) What amount of useful feedback would you be able to

get?
3) What would be the cost of doing it again (a) tomorrow

. . . (e) in half a year?
4) What resources would be needed to do it again (a)

tomorrow . . . (e) in half a year?
5) What would you need to change in order for this to

happen?
6) Which other stakeholders at your company could help

to achieve a faster integration?
7) Is it preferable for your company to gradually reduce

the time between integrations or would you rather make
more radical changes?

We concluded the interviews with the following question:
What would you like to be different compared to the situation
of today?

D. Analysis Procedure
The data collected from the four different activities covered

in total more than 100 pages. The data from the notes was

https://goo.gl/A58qDf


4

broken down into individual sentences that were transferred
to a spreadsheet tool to allow for sorting the individual
statements by data collection phase or company for example,
and to cluster the data into topics. We mapped the individual
statements through a pre-set coding scheme to two main
areas “process” and “product” and allocated the following
development phases to the individual statements: “requirements
engineering”, “implementation”, “integration”, “testing”, and
“deployment”.

We sorted the data by the topics mentioned most often and
extracted best or desired practices to better facilitate large-scale
agile development As this list contained both practices that
are important for an agile development process in general,
and practices that are only relevant for the mechatronics
domain , we annotated those that are specific for the software-
intense mechatronics development. Furthermore, we indicated
per practice what statement from the individual company
interviewees support the extracted statements; the control cases
(cf. Fig. 1) were used to confirm those considered as key-
enablers when present in both groups. Finally, we mapped
these identified topics to Stojanov et al.’s agile maturity model
[7] to allocate the unveiled topics to agile collaboration phases
reflecting an organization’s agile maturity level.

E. Validity Procedure
We carefully designed the study to reduce bias in data

collection and data analysis (cf. our discussion about Threats to
Validity in Sec. IV-B) by using method and data triangulation.

1) Method Triangulation: The selection of data collection
instruments was part of the validity strategy to minimize bias,
and as a result we used different methods as part of our
collection procedure: (a) on-site workshops, (b) questionnaires,
(c) individual interviews, (d) joint cross-company feedback
and discussion meetings, and (e) joint feedback meetings with
the points-of-contact from the respective companies. During
the on-site workshops, we used sticky notes to let participants
write their reflections and comments so that we could use their
original statements. To validate the logical structure, design, and
understandability of the questionnaire, we involved all points-
of-contact from the participating companies to get feedback.
As described before, we invited an external expert on agile with
more than ten years of experience on transforming large-scale
organizations to adopt agile principles to act as moderator for
the joint workshops with the companies where the researchers
acted as observers only. After every step, our summaries and
intermediate findings have been presented and discussed with
all points-of-contact.

2) Data Triangulation: Another validity procedure was data
triangulation; we included different data sources during our data
collection process to complement the gathered samples and
to increase the chance of getting a more complete picture
of the situation at the various companies. This identified
prevailing practices common to mechatronics organizations
when scaling agile principles. First, we collaborated with
six different mechatronics companies from various product
domains having experience with agile software development,
but all at the threshold for scaling agile beyond software
development teams.

TABLE I
DISTRIBUTION OF STATEMENTS REGARDING EXPECTED BENEFITS AND

FORESEEABLE CHALLENGES WHEN SCALING AGILE PRINCIPLES BEYOND
THE SOFTWARE DEVELOPMENT RELATED TO DIFFERENT DEVELOPMENT

PHASES: MOST CHALLENGES ARE EXPECTED DURING THE INTEGRATION
AND TESTING PHASE.

Development Phase Expect. Benefits Fores. Challenges
All Phases 38 88
Requirements Engineering 20 9
Implementation 11 6
Integration 27 33
Testing 17 12
Deployment 16 2
Sum 129 150

Second, to extend and complement the data points from
our individual on-site workshops, we reached out to further
employees at the respective companies using separate online
surveys. Third, we conducted separate one hour individual
interviews with senior engineers from software, hardware,
and mechanics to unveil further data especially focusing on
coordination and integration between the different disciplines.
Finally, we used two of the six companies as control cases as
they were not involved in the initial joint workshops.

III. RESULTS

From our data collection procedure, we extracted in total
409 individual statements from the first three activities and
108 practices from the final individual interviews with the
senior engineers. From the 409 statements, we could see 216
that were related to expected benefits and 193, which were
related to foreseeable challenges; further processing these items
resulted in 35 statements that were clearly product-related
and 279 were process-related. The rest of the statements were
personal reflections by the participants on e.g., their background,
previous experiences, and the workshop format.

While the participants mentioned nearly three times as many
benefits as challenges when scaling agile for their products (26
vs. 9 statements), the results for the organizations’ processes
are more balanced (129 statements regarding benefits vs. 150
statements regarding challenges). Further investigating the
statements regarding the development phases, we extracted
the distribution as depicted in Tab. I

From Tab. I, no clearly dominating benefit for the product
could be seen in our data. However, it is apparent that most
issues are expected from scaling agile in the integration and
testing phases, when deliverables from the different disciplines
will be combined for the first time.

A. RQ-1: Benefits and Challenges when Scaling agile

The first part of the study investigated the expected benefits
and foreseeable challenges when scaling agile beyond individ-
ual teams. As this is primarily a qualitative self-assessment
from the view of the participants, we chose an ordered response
scale for collecting and presenting the data. Figures 2 and 3
summarize the main findings therefrom; a detailed analysis
and discussion of the findings were reported in [8]. While
the primary benefit of successful scaling of agile is expected
higher quality, the main challenge was lack of flexibility in



5

0%
2%
2%

4%
4%

7%
7%
7%
7%

9%
9%

13%
13%
13%

20%
22%

100%
98%
98%

96%
96%

93%
93%
93%
93%

91%
91%

87%
87%
87%

80%
78%

Minimize risk to develop wrong things

Easier to target market windows

Easier to change product content

Easy change of requirement

Shortening lead−times
Faster time−to−market

Easier adapt to customer reqs

Faster validation & verification

Faster validation with external customers

More frequent SW releases to production
More frequent SW releases in products

Minimize resources for development

Maximize output from existing dev. resources

Better predictability

Higher quality

Happier engineers

100 50 0 50 100
Percentage

Not relevant Unimportant Of little importance

Moderately important Important Very important

Expected Benefits from Scaling Agile

Fig. 2. Expected benefits when scaling agile beyond software development teams; participants expressed their feedback using an ordered response scale.

testing facilities. This is in line with the detailed analysis of
the individual statements as shown in Tab. I.

Examining further our qualitative data, we identified a
clear pattern that these expectations were mentioned because
agile practices should enable quicker and better feedback to
developers compared to previous practices. From our data, we
could identify three feedback loops that run in parallel in these
types of organizations. The inner loop is similar to the single
team sprint sprint in Scrum. The middle loop differs from
single team agile methods since it is not planned releases, as
in e.g. XP, but aims to coordinate the work of multiple teams.

1) The local loop, which is performed within a single team,
typically consisting of module or component development
and testing every sprint.

2) The integration loop of software integrated with hard-
ware and mechanics and the associated verification &
validation.

3) The customer feedback loop.
These three loops have different time scales as shown in

Fig. 4. Just optimizing these feedback loops would contribute
to a number of other agile benefits. Typical key performance
indicators (KPI) would be how many cycles of every loop is
possible to fit within a project; for the studied companies, five
times would be a typical number for the middle loop in their
present projects.

B. RQ-2: Key Practices and Goals in Mechatronic Organiza-
tions

The first phase of the study unveiled that efficient integration
is the key enabler in the context of scaling agile, and since
this must be solved, the study focused on identifying goals and
enabling agile practices that support accelerated integration.
As a result we identified 108 goals and practices in the second
phase of the study. While the majority of them overlap with
well-known best practices already established in agile and

lean software development, there are, however, 26 goals and
practices, as seen in Tab. II, that we identified as being unique
to the mechatronics domain.

We organized the practices in Tab. II according to the
maturity matrix from Stojanov et al. [7] with five maturity levels
of agile collaboration ranging from low to high: Collaborative,
Evolutionary, Effective, Adaptive, and Encompassing. The
levels serve as an evolutionary path through the defined
stages supporting an organization attempting to scale agile
development. Collaboration is considered an essential agile
value and is therefore the 1st level. The 2nd level is to develop
software through an evolutionary approach. The 3rd level is to
effectivley and efficiently develop high quality software. The
next level is using multiple levels of feedback to respond to
change. The final 5th level is to achieve an all-encompassing
environment to sustained agility. The matrix also sorts practices
according to agile principle, as derived from Beck et al. [9].
The items in the lower part of this matrix can be considered
as topics that need to be addressed at a company towards
unlocking the potential for continuous delivery/continuous
deployment/continuous experimentation [10].

Finally, we indicate per statement how many companies gave
input to our individual interviews that support it (column “A”)
and how many companies from the control set (column “B”)
mentioned topics supportive to it; we sorted the statements
based on their respective level of support from the participating
companies in a descending level.

15 of the practices in Tab. II are related to technical
excellence, which is not surprising since the selection was
on practices where the mechatronics domain differs from pure
software in terms of complexity and constraints, i.e. technical
differences.

The level of support indicated in columns “A” and “B” shows
that 16 statements are supported at least by one company from
the cases set and one from the control set. Furthermore, 13
of these statements (i.e., more than 80%) are supported by a



6

4%
4%

7%
7%

9%

9%
9%
9%

11%
11%

11%
11%
11%

17%
17%
17%

20%
20%

22%
24%
24%

96%
96%

93%
93%

91%

91%
91%
91%

89%
89%

89%
89%
89%

83%
83%
83%

80%
80%

78%
76%
76%

Overcoming established ways of working

Product−specific functionality
Coordinate between different teams

Efficiently structure the organization

Plan large−scale projects

Understanding large−scale architecture

Specific product−requirements

Long feedback loops

Poor predictability in SW development

Missing specific expertise

Mindset in the company
Inflexible development process

Sell more with agile capabilities

Adaptation to frequent releases

Production setup for volume

Manual testing

Difficulty to avoid big−bang testing
Focus on testing at the end

Frequent releases requires good planning

Flexibility in testing facilities

Understanding agile along the value chain

100 50 0 50 100
Percentage

Not relevant Unimportant Of little importance

Moderately Important Important Very Important

Expected Challenges from Scaling Agile

Fig. 3. Foreseeable challenges when scaling agile beyond software development teams; participants expressed their feedback using an ordered response scale.

Team 

Subsystem 

System- 
integration 

Customer 

2-4 weeks 

3-6 months 

Once per project 

Delivery Feedback 

Fig. 4. Large-scale agile development has three feedback loops with different
contexts and results, each having a different cycle time.

majority of the case companies indicating a strong support for
these agile principles particular to the mechatronics domain.

Below we will elaborate on the 16 practices confirmed by
our control group.

1) Collaborative maturity level: A set of technical interfaces
is usually defined by the system architecture, and these can only
be changed through a process with all concerned stakeholders.
This process must be as agile as the individual teams in order
to achieve agility at scale. Truly agile teams should consist of
people from multiple different disciplines; software, hardware,
and mechanical engineering, and not only be cross-functional
in the sense they can handle different tasks such as coding,
testing etc. It is crucial to have quick and dirty hardware
available to test software functionality as soon as the software
is available. Similarly there must be relevant software available
when testing hardware.

2) Evolutionary maturity level: Outsourcing parts of the
system to suppliers is quite common, typical through traditional

contractual negotiation, which may be counterproductive to
being agile. If outsourcing is done it should be combined
with actively working on minimizing suppliers lead-times.
A risk with self-governed teams is that developers can be
isolated, especially if they are specialists or domain experts.
Provide organizational structures that do not isolate developers.
Deployment of software to the cluster of prototype products
can be time consuming and care should be taken to have speedy
deployment of test software to the prototypes.

3) Effective maturity level: To speed up the integration in
prototype products it is critical to facilitate it by e.g. automa-
tion of software deployment at scale instead of relying on
complicated manual procedures.

The simplest practice to understand, but maybe one of
the most complex in practice, is to achieve full integration
of software, hardware, and mechanics at least every four
weeks. While more frequent integrations would favor software
development, it seems to have only marginal benefit for the
other disciplines. Achieving this pace of integration will drive
many other changes towards agile practices. We suggest a KPI
on the transformation towards large-scale agile development
based on the number of such integrations being done in a project
of a certain length, for example going from six integrations in
a 3-year project (i.e., two times per year) to 36 integrations in
the same period (i.e. once per month).

Software development has shorter lead-times than hardware
and mechanical development, therefore move complexity from
hardware to software if possible by careful system design.
Using common platforms to develop multiple products in a
product family speed up the development and facilitates adding
and modifying features.



7

TABLE II
26 GOALS AND PRACTICES PARTICULAR TO MECHATRONICS DEVELOPMENT FOR SCALING AGILE. THE ITEMS ARE MAPPED TO THE AGILE MATURITY

LEVEL AS SUGGESTED BY STOJANOV ET AL.; COLUMN “A” INDICATES HOW MANY DIFFERENT COMPANIES STATED THIS IN THE INDIVIDUAL INTERVIEWS
(RANGE: 0%, 25%, 50%, 75%, AND 100%) AND COLUMN “B” INDICATES DURING HOW MANY INTERVIEWS WITH INTERVIEWEES FROM THE CONTROL SET
WE FOUND STATEMENTS OF THE PARTICULAR CATEGORY (RANGE: 0%, 50%, AND 100%). STATEMENTS THAT COULD NOT BE CONFIRMED FROM BOTH

GROUPS WERE SEPARATED PER MATURITY LEVEL.

Description Agile maturity
level

Agile principle A B

Allow for SW deployment after production 5 Encompassing Customer Collaboration

Minimize the number of point of contacts between SW, HW and mechanics 4 Adaptive Technical Excellence
Reduce variant complexity (component level) 4 Adaptive Technical Excellence
Allow for integrations of not the full product (e.g. Simulations) 4 Adaptive Technical Excellence
Not using the same planning/project gates for HW and SW 4 Adaptive Plan and Deliver Software Frequently
Reduce variant complexity (product level) 4 Adaptive Plan and Deliver Software Frequently
Reduce variant complexity (product families level) 4 Adaptive Embrace Change to Deliver Customer Value
Front-loading of the development process to stream-line industrialization is
avoided

4 Adaptive Plan and Deliver Software Frequently

Do not isolate disciplines 3 Effective Human Centricity
Do not depend on manual deployment 3 Effective Technical Excellence
Integration is a continuous activity (every 4 weeks) 3 Effective Technical Excellence
Move towards platforms 3 Effective Technical Excellence
Move complexity from mechanics to software / moves lead-time 3 Effective Technical Excellence
SW development is allowed to deliver a new release to the production every
sprint

3 Effective Technical Excellence

Avoid the need to involve suppliers 3 Effective Human Centricity
Target SW is put as last on the HW in production 3 Effective Technical Excellence

Minimize supplier lead-times 2 Evolutionary Human Centricity
Speedy deployment of test software to the (prototype) product 2 Evolutionary Technical Excellence
Do not modify off-the-shelf products 2 Evolutionary Plan and Deliver Software Frequently
Identify the Minimum Viable Product to do SW integration 2 Evolutionary Technical Excellence

Quick and dirty HW available to test SW functionality 1 Collaborative Technical Excellence
SW available to use in tests of HW development 1 Collaborative Technical Excellence
Multidisciplinary teams 1 Collaborative Human Centricity
Having an agile process to adjust technical interfaces 1 Collaborative Human Centricity
Simplify technical interfaces 1 Collaborative Technical Excellence
Have cross-disciplinary and joint documentation 1 Collaborative Technical Excellence

4) Adaptive maturity level: Reduce variant complexity
as a practice was seen in three different contexts. First, a
large number of variation points tends to introduce technical
complexity that in itself makes changes to both the code-base
as well as the physical product anything but agile. Second,
in the context of planning we found examples when a new
feature variant is planned to be introduced in a product project
subsequent projects tend to take for granted that the particular
variant is freely available without any significant development
effort, thus constraining the possibility to reprioritize or remove
it from the first project. In practice the plan of introducing
product variants in a product project that is planned to be
“carried over” to other projects tend to reduce the flexibility in
re-prioritization. Third, deriving variants of existing products
is a quick way to offer new products by embracing change.
However, if this is not coupled with a strategy to reduce the
number of variants to be maintained by R&[]D compared to
reducing variants that is offered to customers, the amount of
work quickly grows.

The practice of using the same planning/project gates for
hardware and software should be avoided due to the different
nature of hardware and software development, the typical
situation is to slow down software development to fit with
the pace of hardware and mechanics.

Planning integrations based on the scope of the full product
and the assumption that all teams can deliver against that
scope limits agility. The setup must allow for integrations
of an incomplete product, e.g. by replacing some software or
hardware parts with simulations. The system architecture should
strive to minimize number of point of contacts between software,
hardware and mechanics to simplify project coordination.

5) Encompassing maturity level: At this level we could
only identify a precursor for continuous deployment: The
unconfirmed practice of establishing an infrastructure that allow
for software deployment also after the product has left the
manufacturing plant.

IV. DISCUSSION AND RELATED WORK

In this section, we are discussing our findings in the context
of related work and the validity or our results.

A. Relation to Existing Evidence

1) Discussion about Benefits and Challenges: Tab. III
lists the most important challenges found in our study. The
immediate conclusion is that only the first challenge is specific
to the mechatronic domain. A direct comparison with 35
challenges for large-scale agile transformations based on a
systematic literature review (SLR) by Dikert et al. [6] shows



8

TABLE III
COMPARISON OF CHALLENGES FOR LARGE-SCALE AGILE IN

MECHATRONICS DOMAIN AND PURE SOFTWARE.

Mechatronics challenges Dikert et al. [6]
Flexibility in testing facilities No equivalent
Efficiently structure the organization Internal silos kept
Understanding agile along the value
chain

Misunderstanding agile concepts

Frequent releases requires good plan-
ning

Challenges in adjusting to incre-
mental delivery pace

Adaptation to frequent releases Challenges in adjusting to incre-
mental delivery pace

Inflexible development process Using old and new approaches
side by side

Mindset in the company General resistance to change
Plan large-scale projects Challenges in adjusting product

launch activities
Poor predictability in SW develop-
ment

No equivalent

Overcoming established ways of
working

Skepticism towards the new way
of working

Missing specific expertise Internal silos kept
Long feedback loops Challenges in adjusting to incre-

mental delivery pace
Understanding large-scale architec-
ture

Achieving technical consistency

that challenges in agile transformations in different domains
have more in common than what is different. The keywords
used in their SLR explicitly focus on software by excluding
papers containing manufacturing in title or abstract.

It is interesting to note that the primary challenge identified
in our study, Fexibility in testing facilities, was not commonly
seen in comparable recent papers. The only found example is
Eliasson et al. [11] describing Virtual test environments used
in two cases at one of the companies presented in this study.

Scaling agile requires an efficient structure of the organiza-
tion, this is confirmed by e.g. Dikert et al. [6] who mention the
challenge of when “internal silos are kept” keeping specialized
knowledge inside internal boundaries. Könnölä et al. [12]
mention the overall challenge of “the specialization of the team
members in the hardware or software tasks”, which confirms our
identified practices concerning the importance of coordinated
multidisciplinary work in agile development.

Understanding agile concepts along the value chain is
difficult in the mechatronics domain, where the value for the
customer traditionally appears in the transaction of delivering
the product. Wallin et al. [13] discuss the mapping between
software development life-cycle models, such as stage-gate or
agile, and business decision models, and gives an example from
a mechatronic company showing that this is not a new problem.
However it does not seem to be solved since unfamiliarity with
agile concepts in organization is still seen, as evident in the
misunderstanding of agile mentioned by Dikert et al. [6].

Another major challenge is the adjustment to frequent
releases, both from a planning perspective, but also from a deliv-
ery perspective. The first main challenge in using agile methods
in embedded system development mentioned by Könnölä et
al. [12] is the “the slow nature of the hardware development”.
This confirms several of our results displaying the different
paces of software and hardware development and the need
to address this when doing large-scale agile development in
the mechatronics domain. Examples of challenges mentioned

by Könnölä et al. are inflexible development process, long
feedback loops, understanding large-scale architecture, and
product-specific functionality. Dikert et al. [6] also mention
the challenges to adjust to an incremental delivery pace. The
challenge of adjusting the delivery pace is not unique to
mechatronic systems, but may be even more accentuated
in this domain. However, there are examples of how future
engineers already at university can learn to use agile concepts
in development of mechatronic systems [14], with the support
of agile meetings, artifacts, roles, and visualization methods.

It is interesting to see that most common challenge in SLR
of Dikert et al. [6], “agile difficult to implement”, was not
commonly mentioned in our study, in spite of the mechatronics
domain being potentially more challenging compared to pure
software systems. We cannot discern from our data if this is
because of an optimistic view of the agile transformation within
the organizations, or if there is a general hope that things will
be smoother with more frequent feedback.

The similarity between challenges found in this study and
those found in literature confirms our results, suggesting that
the challenges are applicable also to other companies. A smaller
part of the identified challenges are unique to the embedded
or mechatronics domain, but the challenges of scaling agile
are mostly common to those of pure software systems.

2) Discussion about key enabling Practices: Our confirmed
practices at the Collaborative level, Having an agile process
to adjust technical interfaces, Quick and dirty HW available
to test SW functionality, and SW available to use in tests
of HW development, are correspond to the more general
practice “Create team-driven agile practices inside the iterations”
prescribed by Könnölä et al. [12]. They recommend that
“Organize work planning according to disciplines, but make sure
that the work of different disciplines is aligned and understood.”
which contrasts to our practice of Multidisciplinary teams at
this level. However they agree with our practice of Do not
isolate disciplines on the Effective level.

Our study identified two practices mitigating problems
when outsourcing/subcontracting work with the first, minimize
supplier lead-times, at the Evolutionary level. This is inline
with the recommendations by Turk et al. [15] stating that agile
contracts for outsourcing needs to be flexible with respect to
“the requirements and deliverables that can vary within the
boundaries defined” explicating the need to tailor outsourcing
in agile projects. The other practice at the Evolutionary level,
Speedy deployment of test software to the (prototype) product,
is also within the recommendation of “Create team-driven agile
practices inside the iterations” by Könnölä et al. [12].

We identified four confirmed practices regarding Technical
Excellence at the Effective level: Do not depend on manual
deployment is a common practice in all agile development
regardless of domain, as is Integration is a continuous activity
(cf. e.g. [7], [16]). Move towards platforms is mentioned
as an advanced agile technique by Könnölä et al. [12] for
organizations to select where appropriate. Moving complexity
from hardware to software seems to be a new practice identified
in this study.

At the Adaptive level there are four practices that partly
relate to the design and implementation of the architecture,



9

which is not a well-researched area according to Yang et
al. [17], even less so for mechatronic systems. The discrepancy
in development pace between software and hardware is already
mentioned by [12] as “consensus between the quickly changing
software and slower hardware development”. However we
identified the importance of not solving this by the simple
approach to slow down software to the pace of hardware.

Many agile practices seem to be applicable across domains,
even if we identified a number of practices that are unique to
the mechatronics domain. However the selection of large-scale
agile practices to be used in a certain organization still has to be
tailored to the context. This only confirms the need identified by
Dikert et al. to study large-scale agile frameworks in general [6]
and especially their applicability to the mechatronics domain.

B. Threats to Validity

Here, we are discussing potential threats to the validity to our
study according to Runeson and Höst (cf. [18]). We described
in Sec. II-E our procedure to aim for validity during data
collection and processing.

1) Construct Validity: The main threat to construct validity
is if our selection of case companies are not representative
of the meachatronics domain, and if their attempts of scaling
agile development is not relevant to the research questions
in Section II-A. All six participating companies have a
long development history of more than 30 years developing,
manufacturing and selling mechatronic systems, many are
also market leaders in their respective product domain. The
companies participating in the Software Center all have the
desire to become more agile to better meet their respective
market’s needs, and those participating in our study share the
need of transforming their organization to become more agile
to remain competitive. Thus, the case selection is both relevant
and is able to answer the research questions.

A second threat to construct validity is if the respondents
to the survey perceive the difference between the negative
categories of the ordered response scale to be smaller than the
difference between the positive categories. However, the survey
result is mainly used to rank the benefits and challenges and
not making any qualitative statements.

2) Internal Validity: Our data collection procedure face the
risk of reflecting opinions from participants about aspects of
internal processes that do not work today in general without
being necessarily linked with transforming towards agile
principles. Therefore, for both, the on-site workshops and the
surveys started with a brief overview of the principles stated in
the Agile Manifesto to establish a common understanding. Here,
we see a potential risk as the participants from non-software
department had a chance for clarification during the workshops
while we had not control if participants in the online survey
had a similar understanding of agile principles. The respective
companies’ points-of-contact also played an important role
to compose participants for the on-site workshops where
we had only limited influence to state what expected role
would contribute best. We aimed for mitigating this risk by
explicitly letting survey participants forward the link to more
colleagues who they feel could also contribute, i.e. snow-balling.

Furthermore, we tried to reduce this risk by involving several
companies that face similar challenges in their organizational
transformation to consolidate our data set.

3) External Validity/Generalizability: The potential threat to
validity in our study concerning generalizability originates from
the number of participating companies. While we collaborated
with six partners, we tried to reduce this potential risk by
using two of them as controls to confirm our findings. We
also deliberately included companies from different domains
to avoid reporting practices that might be only linked to a
particular business domain. Furthermore, found related work
suggest our findings are similar to existing evidence while we
also complement the body-of-knowledge with results particular
to the mechatronics domain.

4) Reliability: Our overall study design aimed for reliability
in the data collection and analysis steps, as described in
Section II. To avoid bias from an individual researchers both re-
searchers have been involved in all data collection and analysis
steps. Furthermore, we also involved the respective companies’
points-of-contacts to allow them for giving feedback for our
preliminary findings and to reduce the risk of being dependent
on only the authors conducting this study.

V. CONCLUSIONS AND FUTURE WORK

108 goals and practices related to large-scale agile devel-
opment were identified in the study, of these only a quarter
were unique to the mechatronics domain. This leads to the
conclusion that much of the research about in scaling agile can
be considered valid regardless of the application domain. The
large set of identified practices shows that there is still no silver
bullet in accomplishing this, it is rather the tuning of a large
number of interacting practices that determines the success
of scaling agile in companies with already established ways-
of-workings. However, we identified 16 key practices special
to mechatronics development considered key-enablers when
scaling agile development beyond single software teams. Most
of these are concerned with continuous or regular integration,
and associated verification and validation between software,
hardware and mechanics.

A. Impact/Implications

Improved quality was the number one perceived benefit of
successfully scaling agile in a mechatronics company, and to
achieve this it is necessary to streamline the integration between
software, hardware, and mechanics. We can summarize how to
achieve this as two main objectives for industrial practitioners:

1) Transform your organization so the cycle time for full
integrations between software, hardware, and mechanics
is no longer than four weeks. A shorter cycle time
(i.e. continuous integration on a product level) benefits
software development, but not necessarily other disci-
plines. A suggested KPI for improvement would be: How
many full integrations are completed in a project of a
certain length?

2) Ensure that the right feedback based on this is received
promptly by the concerned stakeholders. A suggested
KPI for improvement would be: How long (in days) does



10

it take between “a team made a delivery” until “the team
receives the integration test results involving their part”?

Most of the practices identified are enablers to these two
objectives and their achievement will drive implementation of
many other practices, accelerating the transformation towards
scaled agile in the mechatronics domain.

B. Limitations

This study on companies that have an established way
of conducting R&D and a long history for manufacturing
mechatronic products that become more and more software-
intense. We studied companies that are at the edge of rolling
out agile principles from their software teams to the non-
software neighbors to unveil key enabling practices to facilitate
an adoption of agile. As the different companies have different
transformation paces, we do not have further data at this point
in time about their individual success journeys. Furthermore,
we did not study young companies that might have a different
culture in their current way of approaching engineering
challenges (i.e. companies being agile “from day one”).

C. Future Work

In future studies, some of the companies might be revisited
again to continue monitoring their transformation process.
Thereby, one might unveil further parameters that we did
not see clearly at this point in time; furthermore, one might
observe parameters that accelerate adopting agile in non-
software environments while others might be perceived as
concurrent in their nature.

ACKNOWLEDGMENT

We are grateful to the companies who significantly supported
this study in the context of Software Center.

REFERENCES

[1] U. Eklund and J. Bosch, “Applying Agile Development in Mass-Produced
Embedded Systems,” in Agile Processes in Software Engineering and
Extreme Programming, ser. Lecture Notes in Business Information
Processing, vol. 111. Malmö, Sweden: Springer, 2012, pp. 31–46.

[2] C. Larman and B. Vodde, Large-Scale Scrum: More with LeSS, 1st ed.
Boston, MA: Addison-Wesley Professional, Aug. 2016.

[3] ——, “Large-Scale Scrum (LeSS),” 2014. [Online]. Available:
http://less.works/

[4] D. Leffingwell, “Scaled Agile Framework.” [Online]. Available:
http://scaledagileframework.com/

[5] R. Brenner and S. Wunder, “Scaled Agile Framework: Presentation and
real world example,” in 2015 IEEE Eighth International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), Apr.
2015, pp. 1–2.

[6] K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and success
factors for large-scale agile transformations: A systematic literature
review,” Journal of Systems and Software, vol. 119, pp. 87–108, Sep.
2016.

[7] I. Stojanov, O. Turetken, and J. J. M. Trienekens, “A Maturity Model
for Scaling Agile Development,” in Euromicro Conference on Software
Engineering and Advanced Applications, Aug. 2015, pp. 446–453.

[8] C. Berger and U. Eklund, “Expectations and Challenges from Scaling
Agile in Mechatronics-Driven Companies - A Comparative Case Study,”
in Agile Processes in Software Engineering and Extreme Programming,
ser. Lecture Notes in Business Information Processing, vol. 212. Helsinki,
Finland: Springer, 2015, pp. 15–26.

[9] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas, “Manifesto for Agile Software Development,” 2001.
[Online]. Available: http://agilemanifesto.org/

[10] H. Holmström Olsson, H. Alahyari, and J. Bosch, “Climbing the
”Stairway to Heaven” - A Mulitiple-Case Study Exploring Barriers in
the Transition from Agile Development towards Continuous Deployment
of Software,” in Proceeding of the Euromicro Conference on Software
Engineering and Advanced Applications, Cesme, Izmir, Turkey, 2012,
pp. 392 – 399.

[11] U. Eliasson, R. Heldal, J. Lantz, and C. Berger, “Agile Model-Driven
Engineering in Mechatronic Systems - An Industrial Case Study,” in
Model-Driven Engineering Languages and Systems, ser. Lecture Notes in
Computer Science. Valencia, Spain: Springer, Sep. 2014, pp. 433–449,
dOI: 10.1007/978-3-319-11653-2 27.

[12] K. Könnölä, S. Suomi, T. Mäkilä, T. Jokela, V. Rantala, and T. Lehtonen,
“Agile methods in embedded system development: Multiple-case study
of three industrial cases,” Journal of Systems and Software, vol. 118, pp.
134–150, 2016.

[13] C. Wallin, F. Ekdahl, and S. Larsson, “Integrating business and software
development models,” IEEE Software, vol. 19, no. 6, pp. 28–33, 2002.

[14] T. P. Klein, B. Drescher, and G. Reinhart, “Agile engineering in
mechatronic education: Interdisciplinary development of a mechatronic
system using Scrum,” in Europe-Asia Congress on Mechatronics (MECA-
TRONICS) / International Conference on Research and Education in
Mechatronics (REM), 2016, pp. 020–025.

[15] D. Turk, R. France, and B. Rumpe, “Limitations of Agile Software
Processes,” in International Conference on Extreme Programming and
Flexible Processes in Software Engineering (XP), Alghero, Italy, 2002,
pp. 43–46.

[16] D. Ståhl and J. Bosch, “Modeling continuous integration practice
differences in industry software development,” Journal of Systems and
Software, vol. 87, pp. 48–59, 2014.

[17] C. Yang, P. Liang, and P. Avgeriou, “A systematic mapping study on the
combination of software architecture and agile development,” Journal of
Systems and Software, vol. 111, pp. 157–184, 2016.

[18] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineering,
vol. 14, no. 2, pp. 131–164, 2009.

http://less.works/
http://scaledagileframework.com/
http://agilemanifesto.org/

	I Introduction
	I-A Problem Statement
	I-B Research Objectives
	I-C Context and Limitations
	I-D Contributions
	I-E Structure of the Article

	II Comparative Case Study Design
	II-A Research Questions
	II-B Case and Subjects Selection
	II-C Data Collection Procedure
	II-C1 Individual On-site Workshops
	II-C2 Complementary Online Surveys per Company
	II-C3 Joint Workshop with All Companies
	II-C4 Three Individual Interviews with Software, Hardware, and Mechanics Senior Engineers

	II-D Analysis Procedure
	II-E Validity Procedure
	II-E1 Method Triangulation
	II-E2 Data Triangulation


	III Results
	III-A RQ-1: Benefits and Challenges when Scaling agile
	III-B RQ-2: Key Practices and Goals in Mechatronic Organizations
	III-B1 Collaborative maturity level
	III-B2 Evolutionary maturity level
	III-B3 Effective maturity level
	III-B4 Adaptive maturity level
	III-B5 Encompassing maturity level


	IV Discussion and Related Work
	IV-A Relation to Existing Evidence
	IV-A1 Discussion about Benefits and Challenges
	IV-A2 Discussion about key enabling Practices

	IV-B Threats to Validity
	IV-B1 Construct Validity
	IV-B2 Internal Validity
	IV-B3 External Validity/Generalizability
	IV-B4 Reliability


	V Conclusions and Future Work
	V-A Impact/Implications
	V-B Limitations
	V-C Future Work

	References

