

Delft University of Technology

Automatically Identifying Parameter Constraints in Complex Web APIs
A Case Study at Adyen
Grent, Henk; Akimov, Aleksei; Aniche, Maurício

DOI
10.1109/ICSE-SEIP52600.2021.00016
Publication date
2021
Document Version
Accepted author manuscript
Published in
2021 IEEE/ACM 43rd International Conference on Software Engineering

Citation (APA)
Grent, H., Akimov, A., & Aniche, M. (2021). Automatically Identifying Parameter Constraints in Complex
Web APIs: A Case Study at Adyen. In L. O'Conner (Ed.), 2021 IEEE/ACM 43rd International Conference on
Software Engineering: SEIP - Software Engineering in Practice (pp. 71-80). Article 9402045 IEEE.
https://doi.org/10.1109/ICSE-SEIP52600.2021.00016
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSE-SEIP52600.2021.00016
https://doi.org/10.1109/ICSE-SEIP52600.2021.00016

Automatically Identifying Parameter Constraints in
Complex Web APIs: A Case Study at Adyen

Henk Grent, Aleksei Akimov
Adyen N.V.

Amsterdam, the Netherlands
{Henk.Grent,Aleksei.Akimov}@adyen.com

Maurício Aniche
Delft University of Technology

Delft, the Netherlands
M.F.Aniche@tudelft.nl

Abstract—Web APIs may have constraints on parameters, such
that not all parameters are either always required or always
optional. Moreover, the presence or value of one parameter
could cause another parameter to be required, or parameters
could have restrictions on what kinds of values are valid. Having
a clear overview of the constraints helps API consumers to
integrate without the need for additional support and with fewer
integration faults.

We made use of existing documentation and code analysis
approaches for identifying parameter constraints in complex web
APIs. In this paper, we report our case study of several APIs at
Adyen, a large-scale payment company that offers complex Web
APIs to its customers. Our results show that the documentation-
and code-based approach can identify 23% and 53% of the
constraints respectively and, when combined, 68% of them. We
also reflect on the current challenges that these approaches face.
In particular, the absence of information that explicitly describes
the constraints in the documentation (in the documentation
analysis), and the engineering of a sound static code analyser that
is sensitive to data-flow, maintains longer parameter references
throughout the API’s code, and that is able to symbolically
execute the several libraries and frameworks used by the API
(in the static analysis).

Index Terms—software engineering, web APIs, parameter
constraints inference.

I. INTRODUCTION

Web Application Programming Interfaces (Web APIs) allow
applications to access the functionality or data of a service
through HTTP requests. Web APIs commonly provide an API
reference [1], which describes what operations are available
through which endpoint and which parameters are required
or optional for requests to these endpoints. However, these
parameters are not always just required or optional: whether
they are required can depend on the presence or value of
another parameter [2, 3].

Within Adyen, as a payment platform, we observe a large
number of such inter-parameter constraints. Take constraints
that apply on different payment methods as an example;
if one of our API consumers want to make a payment
with iDEAL, then the previously non-required issuer and
returnURL parameter are now required. For other payment
methods, different parameters become required. As another
example, when authorising a payment, the API expects a bank
account or a card as payment details. Without either the request
will fail.

Having a clear overview of the constraints in a Web API
is highly important in practice, as it helps API consumers to
integrate with our API without the need for company support.
Incomplete or incorrect documentation on these constraints
can waste a lot of time, and cause costly integration faults, as
we have observed before [4]. Currently, these constraints are
documented and maintained manually by the API developers,
which can be a laborious and difficult task. This difficulty
comes from the size and complexity of the code base of the
web service, and documentation being provided by different
people than those who write the code. Therefore, tools that
help API developers identify and maintain the constraints in
their APIs are needed.

In this paper, we report our case study on applying ex-
isting approaches in the literature to automatically identify
constraints in our large-scale complex Web APIs. For the main
APIs under study, the Adyen APIs, complexity largely results
from making a large number of payment-related operations
available through a single interface. Adyen’s API contains
several endpoints, with a varying number of parameters1. For
example, version 52 of the “/payments” endpoint features 55
top-level parameters and 371 parameters in total.

The approach we implemented makes use of two different
sources: the online service documentation we provide to
our customers, and the source code of our API. We draw
inspiration from Wu et al. [5] who set out to identify inter-
parameter constraints from the online API reference and
available software development kits (SDKs).

When compared to related work, we anticipate two chal-
lenges. First, the complexity of our API. As mentioned before,
our APIs have a significantly higher number of parameters and
inter-dependencies. It is not clear whether existing approaches
scale to this size. Second, the complexity of our codebase. Our
code base makes use of different frameworks and abstractions,
and the business rules executed by a single API call may be
spread across several classes. Therefore, it is not clear whether
the proposed program analysis techniques will effectively be
able to extract the required information out of the source code.

Our results show that the documentation and code-based
approaches can identify 23% and 53% percent of the inter-
parameter constraints, respectively. When the constraints iden-

1See https://docs.adyen.com for a complete picture of the APIs we provide.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works

tified by both approaches are combined, a total of 68% of
the inter-parameter constraints can be identified. Moreover, the
code analysis is able to identify 78% of the single-parameter
constraints.

We observe that the two approaches face largely separate
challenges. The documentation based approach suffers from
a lack of available explicit information describing the con-
straints. The static code analysis tends to be able to extract
constraints from the source code by maintaining a basic
variable stack, evaluating method calls, and analysing con-
ditions in for-loops, switch and if-else statements. However,
it faces challenges related to the engineering of a sound
static code analyser that is sensitive to data-flow, maintains
longer parameter references throughout the API’s code, and
that is able to symbolically execute the several libraries and
frameworks used by the API.

The main contributions of this paper are:
• An empirical study demonstrating the effectiveness

of code-based and documentation-based inter-parameter
constraints identification approaches in a large-scale com-
plex Web API.

• A set of challenges that existing code-based and
documentation-based approaches face when analysing
large-scale complex Web APIs.

II. RELATED WORK

A. API Usability and Constraints in Practice

The literature on API usability has been increasingly grow-
ing, as shown in Rauf et al. [6]’s literature review. Usability,
as an aspect of software quality, frequently takes focus in API
design literature as, ultimately, APIs are consumed by people
to create specific functionality for their own use case.

The lack of documentation is a key obstacle for API
learnability [7, 8]. Robillard and Deline [7] identify five
documentation factors impacting the developers learning ex-
perience: documentation of intent, code examples, mapping
usage scenarios, penetrability, and format and presentation.
For developers, API usability is key in the adoption/integration
process. Learning obstacles may result in opting for a different
service [9, 7] or increased integration efforts in supporting
API consumers. Research suggests that a significant portion of
faults in API integration can be attributed to invalid or missing
user input [4]. These integration faults relate to parameter
constraints, such as the absence of (conditionally) required
parameters or invalid values for provided parameters.

Oostvogels [2] describes three categories of constraints in
APIs: (i) exactly one of a set of parameters must be present,
(ii) the presence or value of one parameter depends on the
presence or value of another parameter, (iii) a group of
parameters should either all be present or not present. These
three categories are types of inter-parameter constraints, as
they describe a requirement on the presence or value of a
parameter based on the presence or value of another parameter
(e.g., if “country” is NL, then “payment method” should be
“iDeal”). In addition, in this paper we also study single-
parameter constraints, which describe the requirement on the

presence or value of a single parameter (e.g., country should
be either “NL” or “BE”).

The work by Martin-Lopez et al. [3] gives an overview
of the frequency of inter-parameter constraints for different
industries, considering REST APIs. According to their work,
85% of the REST APIs have inter-parameter constraints and on
average 9.8% of the operations contain constraints. Moreover,
most of the constraints in the wild are not complex, and
only 4% of the dependencies in REST APIs are classified as
complex [3]. In less expansive studies, Oostvogels [2] and Wu
et al. [5] report comparable numbers.

B. Automatic Inference of Parameter Contraints

A handful of papers exist outlining approaches for automati-
cally identifying single and inter-parameter constraints. These
approaches rely on documentation, API responses, or code
analysis to infer such constraints for simple APIs.

Gao et al. [10] uses a decision tree based approach to infer
inter-parameter constraints. The information for populating the
decision tree is inferred from observing API responses for a
given candidate constraint. These candidates are chosen using
a set of heuristics and by observing the API’s feedback. The
latter includes parsing error messages provided as feedback
by the API. While the approach was able to infer 145 out
of 154 manually identified constraints, just a few APIs were
evaluated. The APIs under study did contain at around five
parameters per endpoint on average.

Pandita et al. [11] utilize a number of sources of documenta-
tion, including in-code comments, to infer constraints using a
NLP based pipeline. These constraints are both inter-parameter
constraints as well as single parameter constraints. A large
part of the pipeline is responsible for transforming natural
text to formal contracts. The constraints are not automatically
validated for correctness. This approach yields an average of
92% precision and 93% recall on a number of Facebook Web
APIs and .NET libraries.

The work by Atlidakis et al. [12] use a fuzzing type ap-
proach to find dependencies between parameters for different
endpoints. That is, it aims at identifying dependencies between
a parameter in endpoint A and another endpoint B. To steer
the fuzzing process, OpenAPI specifications and the feedback
from API responses are used. The fuzzing approach fires a
larger number of API requests, at around 5000.

These approaches are designed to infer constraints from
documentation, but do not consider code as input. Wu et
al. [5] set out to automatically identify inter-parameter con-
straints by inferring constraint candidates from the online API
reference and available software development kits (SDKs).
These candidates are then verified by calling the public web
service with request bodies which would satisfy or violate
the candidate constraints. Their approach uses a combination
of NLP and data flow analysis, for documentation and SDK
analysis respectively. The approach achieves a precision and
recall of around 95% on four (less complex) APIs. Although
the approach relies on both code and documentation by design,
the results indicate that by far most of the inter-parameter

constraints are inferred from the documentation. The docu-
mentation provided a total of 351 candidates and the code a
total of 36 candidates. The documentation based candidates
did have a lower precision than the SDK based candidates,
at 20.8% and 100.0% respectively, but opposite being true for
recall at 82.9% and 40.9% respectively. We use Wu et al.’s [5]
approach as inspiration for our approach.

III. APPROACH

We show a high-level overview of our approach, inspired
by Wu et al. [5], in Figure 1. We shortly describe the
general process, and later describe the documentation and code
analysis in more detail.

In the first step, we collect information about the param-
eters for the endpoints of a Web API from the OpenAPI
Specification (OAS)2. More specifically, we extract the data
type of each parameter, whether the parameter is required,
any enum values, their description, and parent- and sub-
parameters. This information aids us with several tasks, such
as default value generation for making requests to an API
and detecting parameter references. We use this information
in both approaches.

For the documentation based approach, we analyze the
textual documentation to infer constraints. This process has
two steps. First, we extract sets of candidate parameters from
the OAS descriptions. We explain how we obtain these can-
didates in Section III-A. Secondly, we validate the candidates
that were collected in the previous step. We rely on sending
requests to the API to infer the constraint. Whether a request
fails or succeeds tells us whether it satisfied the requirements
of an API or not.

For the code analysis approach, we look at the control struc-
ture of methods within the source code to extract constraints.
We aim to infer the usage of parameters within this control
structure and the preconditions that apply to their use. For
example, if(X ! = null){Y } would allow us to infer that
Y is needed with the precondition that X is provided in the
request.

A. Documentation Analysis

With documentation analysis, we aim to infer if there
are constraints between parameters by analyzing the textual
documentation of the Web API. Documentation analysis has
two distinct steps: finding sets of parameters which might have
constraints between them (candidates) and then determining
the exact inter-parameter constraints by means of sending API
requests to the subject API (validation).

1) Candidate Inference: We use the OAS’ parameter de-
scriptions to find candidates. Adyen’s API Explorer3 visual-
izes these parameters, along with their descriptions, for all
public endpoints. The intuition is that the description of one
parameter can refer to another parameter, which hints at a

2The OAS is an API description standard which provides service informa-
tion in a structured way, typically using the JSON format.

3https://docs.adyen.com/api-explorer/#/PaymentSetupAndVerificationServi
ce/v52/post/payments

Fig. 1. Overview of the process, showing the initial service information
collection step and then the documentation- and code analysis approach.

possible constraint between the two parameters, e.g., given
the parameter bankAccount with the description “The details
of the bank account. Either bankAccount or card is required.”,
we assume the two can have a constraint between them.

To extract candidates, we use a co-occurrence matrix [13].
This co-occurrence matrix contains a row and column for
every parameter in a given endpoint. To populate this co-
occurrence matrix, we automatically analyze the description
of every parameter; if the description of a parameter contains
the name of another parameter, then their corresponding entry
in the matrix is updated, e.g., for the earlier example the cell
corresponding with bankAccount and card will be updated by
one.

Whether a parameter is required may depend on the value of
another parameter, e.g., paymentMethod = ”iDEAL” →
returnUrl. Such value-dependent constraints require addi-
tional information to be inferred in the validation step. More
specifically, we need to know which values are relevant for
what parameters. We do this by checking if the descriptions
mention any of the enum values the OAS provides. When an
enum value of a parameter is mentioned in a description, then
this value is marked and used in the subsequent validation
step.

Certain parameters may occur extraordinarily often in de-
scriptions. This is often because of parameter names being
common as a word in natural text. Words such as ’reference’
and ’value’ tend to be used without it being a reference to a
parameter. This would yield us a lot of irrelevant candidates.
Consequently, we ignore parameters that co-occur with too
many other parameters.4

2) Validating Candidates: From the documentation analy-
sis, we get sets of parameters which might have constraints
between them (candidates), and for each parameter which
values were found in the documentation. The aim is to figure
out the exact inter-parameter constraint that applies to these
parameters, if any. We do this by generating requests and
observing the API response for failure. If a request fails, this
tells us that some constraint was not satisfied.

4We experimented with different values to determine what “too many”
would mean. At the end, we decided to ignore parameters that co-occurred
more than twice the average.

We generate a table for each candidate. In this table, each
row indicates the present, or absent parameters and whether the
corresponding request’s result was successful. We represent all
the possible combinations of parameters in such a table. For
each row in this table, a base request is generated with the
parameters indicated as present included and the parameters
indicated as not present removed. This request is then sent to
the API, and the response is checked for failure. If the request
fails, then the Result column is updated accordingly.

Building valid requests is a major part of validating the
previously generated candidates. To that aim, we build re-
quest bodies by modifying the base request according to
the modifications imposed by the table. Following such a
table, the parameters indicated as present are included and the
parameters indicated as not present removed from the base
request.

The base request is a default request specified for each
endpoint, which should always succeed. These default requests
can either be specified manually, or they can be generated from
the OAS. Including all parameters specified as required by the
OAS typically results in a valid base request. When this was
not the case, we manually added the missing parameters to
the base request.

The parameters provided in a request need to have valid
values. What qualifies as valid depends on what values are
meaningful for the given parameter. For example, if a param-
eter represents a date providing any value which is not a date
makes little sense. We use either a manually defined value or
default value. The default value depends on the type of the
parameter.

The type of the parameter can be inferred from the
OAS, which are currently defined as string, number, integer,
boolean, array and object5. For each of these types a standard
value can be configured. A string may by default return ’str’
and an integer may return ’0’. For some parameters, such a
default value may not be sufficient, i.e., the request always
fails with the default value. In such cases, one has to manually
define a standard value. This often applied to parameters such
as card numbers and account names.

Whether a request was successful or not is determined
primarily by the HTTP status code returned as a response to
a request. Generally, a 2xx is considered as a success, and a
4xx or a 5xx as a failure.

B. Code Analysis
With code analysis, we aim to extract constraints from the

control structure of the source code. For this, we analyze
methods relevant to handling the HTTP requests made to the
API. A method called the ’controller method’ is typically
responsible for handling requests made to one endpoint of an
API. Starting from the controller method, we detect the access
of parameters and analyze any control structures and method
calls parameters are used in. Within our case study, the Web
APIs primarily use Java. As such, the control structures mostly
include if-else statements, switch-statements, and for-loops.

5https://swagger.io/docs/specification/data-models/data-types/

void handle(Request req){
if(req.getCard() != null) {

method = req.getCard()
validateCard(method)

} else {
method = req.getBankAccount()

}
if(req.getOffset() > 80) {

throw Exception()
}
...
method.preprocess()

}

Fig. 2. An example method handling an API request.

Following the code snippet in Figure 2, we can see how
we could infer the dependency of the card on bankAccount
and the constraint on the value of offset. That is, if the card
is not provided for payment details, then we would need the
bankAccount from the request. For the offset, we know that it
should be smaller or equal to 80. In practice, there is a large
number of challenges involved in inferring such dependencies,
this example establishes a basic intuition.

1) Control Flow Graph: To represent the control structure
of a method, we use a control-flow graph (CFG). We generate
such CFGs for every method we analyze. The CFG shows
what branches can be taken, and as such it can be used to
know what parameters are used within those branches and
which preconditions apply for those branches. Since the CFG
tells us what branches lead to invalid states, such as throwing
exceptions, we can infer what preconditions would cause the
request to be invalid. We collect constraints by iterating over
the statements of the CFG. In this process, we collect a tree of
preconditions and consequences to represent the constraints,
e.g., if(req.getOffset() > 80) {throwException()} gets
parsed to offset > 80 → Invalid State.

Looping expressions, such as the for-loop, can be difficult
to analyze statically. This is because the condition breaking
the loop can be complex. However, we noticed that the exact
analysis of looping expressions was not important for the
inference of constraints. Looping statements were sometimes
used for parameters which have an array value, e.g., "people":
[{”name” : ”Frank”, ...}, ...]. For such array values, any
conditions within the body of a loop would apply to all values
that would be iterated over. Hence, analyzing the body of a
for-loop once was sufficient.

2) Sensitivities: We perform analysis which is flow-
sensitive, partially path-sensitive and context-sensitive. In the
analysis, the branches of the control flow graph (CFG) are
considered without explicitly taking the previously evaluated
path into account. This makes the analysis only partially path-
sensitive. To exemplify this, consider a node C reachable
through either A or B. When evaluating C the program is ag-
nostic to whether the execution trace would have gone through
A or B. If a variable is modified in two exclusive branches,

then the most recent modification is chosen. Similarly, we do
also not keep track of data conditions that would result from
taking one path or the other. For example, if a branch has
offset > 80 as a guard then we do not assume anything
about the value of offset outside the branch’s body.

3) Inter-Procedural Analysis: We generate a static call
graph, starting from the controller method. We recursively
construct this call graph up until a pre-defined depth. For us,
a depth of 15 was sufficient. The bodies of the methods in
the call graph are analysed with the arguments that are passed
from its calling context. We then recursively merge all the
constraints we find in the bodies of the methods throughout
the call graph.

4) Variable Stack: Knowing which variables correspond
with which parameter is essential for extracting parameter
constraints from the code. When a variable is referenced, we
want to know if it is related to a parameter and, as such,
relevant for the constraints we will extract. To keep such
references, we maintain a variable stack. The stack keeps track
of known concrete values for variables and which parameters
correspond with which variable.

For Java primitives, including strings, we evaluate basic op-
erations such as addition and subtraction. E.g. ”en”+”_US”
is resolved as ”en_US”. For booleans, we resolve binary
operations only if it can be said that they are surely false or
true. E.g. given A||B with A = true we know the expression
is true. If such expressions are assigned to a variable, then we
update the variable stack accordingly. Any expression that we
can not resolve result in the value being equal to null.

For collections, such as arrays, we keep track of the contents
of the collection if the contents are primitive types or enum
values. Given APIs often consume simple types, these basic
collections are the most significant for inferring constraints.
For example, if the stack keeps track of a list of countries in
the countries variable, and the country variable corresponds
with the parameter country, then later on we could parse the
statement if(countries.contains(country)) to a meaningful
precondition of a constraint.

5) Boolean Function Calls: The guards of conditional
statements, such as if-statements, may depend on the result of a
boolean function call. In order to infer which conditions apply
to either a ’true’ or ’false’ result, we use an adaption to the
default approach for analyzing function calls. In this adapted
approach, all conditions are collected that would result in the
function returning ’true’. For simplicity, we assume functions
do not return null.

6) Common Expressions: The core Java language includes
common methods whose logic is hard to infer using static
analysis, but can still be given meaning to individually due to
their common nature. In this case, we do not use the default
parsing process, but map the expression to a manually defined
machine-readable output. Examples of these are the .length()
method for strings and the .equals(arg) method. We deal with
the .length() to be able to infer constraints on the length of
string type parameters and the .equals(arg) operation can be

parsed as a simple equality constraint. We applied the same
concept for a handful of common methods used within Adyen.

7) Guard Parsing: We parse guards (i.e., conditional state-
ments such as an if statement) as a collection of ANDs
and ORs. In the process of parsing these statements, the
expressions that occur directly in the guard are evaluated, i.e.,
any referenced variables are retrieved from the variable stack,
and expressions are resolved as described earlier.

8) Unparsed Statements: The parts of conditional state-
ments that can not be parsed to a constraint on a pa-
rameter are annotated as unparsed, but still shown in the
representation. Since code is (often) written to be legible
by humans, this allows us to retain some information the
condition might have. Suppose the !isValidCard(card) &
card.getIssuer() != null. Assume that we could not resolve the
reference to isValidCard(card). The guard would be parsed to
and(!Unparsed(isValidCard(card)), issuer != null).

9) Duplicated Parameter Names: In APIs with object en-
capsulation, the same parameter name may be used multiple
times for different parameters. An example of this is the
parameter ’reference’ in a number of Adyen endpoints. As
a result of this, any reference to ’reference’ can reference
multiple ’reference’ parameters.

The correct parameter is inferred from the context of the
most recently accessed variables. For example, given we just
accessed the ’card’ parameter, then we can infer that the ’ref-
erence’ parameter probably corresponds with ’card.reference’
and not (e.g.) ’bank.reference’.

10) Request to Object Conversion: Typically the request
passed to an API is deserialized from its original format
(JSON, XML) to an object model. Within Adyen parameter
names correspond directly with the resulting object fields after
deserialization. This allows us to maintain the link between
request parameters and fields accessed through the code.

11) Identifying Invalid States: We use throwable exceptions
occurring in the code to know if the preconditions leading to
that condition should be avoided. Any code statement that tells
us the preconditions should be avoided is marked as an ’invalid
state’. In most cases, checking the code for such throwable
exceptions was enough for extracting constraints. However,
there are cases in which parameter constraints may not be
enforced by explicit exceptions. Take a try-catch construction
in Java, for example. If an error is thrown, we do not directly
know what caused it. This may require the use of static null-
pointer detection (e.g. [14]). We did not encounter such try-
catch constructions; as such, we only dealt with explicit invalid
states.

Errors may also be deferred to a later point in program
execution. In this case the results of a validation step may be
added to a result map, which is later used to throw exceptions.
Due to the nature of our static analysis, such flows are difficult
to identify. Our solution is to identify patterns, that can be
used to identify such a deferred invalid state. For example,
any statement containing x.addError(...) could be tagged as
an invalid state.

IV. RESEARCH METHODOLOGY

To assess the efficiency of documentation-based and code-
based inter-parameter constraint identification techniques, we
propose the following research questions:
RQ1: How effective are documentation- and static code anal-

ysis in identifying parameter constraints in a large-scale
enterprise API?

RQ2: What are challenges faced by documentation and code
analysis techniques that identify inter-parameter con-
straints in a large-scale enterprise API?

In the remainder of this section, we explain the APIs and
endpoints we selected, how we build the ground truth used to
compare to the output of the approach, and finally how we
performed the analysis.

A. Selected Endpoints

We aimed at selecting a representative set of Adyen APIs
and endpoints which were publicly accessible. At the time
of writing, there are three distinct public APIs: Checkout,
Payments, and Adyen for Platforms.

We selected endpoints on the basis of the following criteria:
an endpoint has to contain inter-parameter constraints, and the
internal logic must be dissimilar enough from any previously
selected endpoints. This dissimilarity criterion comes from
the observation that endpoints frequently featured the same
(inter-)parameter constraints, as a result of strong code reuse.
Including such similar endpoints would lead to an unbalanced
set of endpoints, in which we would effectively be analyzing
the same code a number of times.

We selected the following APIs and endpoints:
• Checkout: /payments
• Payments: /authorise, /capture, /storeDetailAndSubmit-

ThirdParty, /getCostEstimate.
• Adyen for Platforms: /createAccountHolder, /getAccoun-

tHolder, /updateAccountHolder, /createAccount, /upload-
Document.

B. Ground Truth

To understand the effectiveness of our approach, we need
to compare the obtained results to a known ground truth. The
ground truth used in this study consists out of a representative
set of constraints which we manually collected for each of
the selected endpoints. These constraints include both inter-
and single-parameter constraints. Three aspects of the ground
truth are particularly important: the collection, selection, and
representation. Note that we do not publish this ground truth
for security reasons.

1) Collection: Given that only a number of constraints were
known beforehand, we had to carefully inspect the code of all
selected endpoints for constraints. In this process, we start at
the controller method and follow the code until its end, taking
note of any constraints we find along the way. Any constraints
were validated by making API requests corresponding with the
constraint in order to ensure their correctness. Additionally,
developers from the respective APIs were asked for guidance

in pointing out constraints known by them and the general
logic of handling requests related to that API.

2) Selection: Some inter-parameter constraints are trivial
and, as such, not every constraint which is technically a
constraint is included. For example, given we have an address
object with, amongst others, a country field which is known
to be required. In this case, address → country is techni-
cally an inter-parameter constraint. We choose to not include
these as inter-parameter constraints, because of their frequent
occurrence and triviality.

C. Representation

How constraints are represented can strongly impact the
results. For example, if we choose to represent A → B & C
as A → B and A → C, then we end up with twice the
constraints. The same applies for A ||B → C.

Generally, we opt to group logical ORs and logical ANDs
together. This is done in order to match how constraints would
be present in IF-statements; multiple conditions in the guard
(left-side) would lead to a number of consequences in the body
(right-side). If-statements are a particularly common control
structure to encode constraints.

D. Analysis

We manually compared the output given by the approaches
to the ground truth. If the identified constraint and ground
truth constraint are logically equivalent, then we consider
them to be the same constraint. Given that both approaches
represent the output of constraints using logical formulations,
this comparison can be done directly.

Sometimes only part of a constraint was identified. For
example, given A → B & C, it would only identify A → C.
In these cases we deviate from the representation standard es-
tablished in Section IV-C, and represent the constraint A → B
as unidentified and A → C as identified.

V. RESULTS

A. RQ1: How effective are documentation- and static code
analysis in identifying parameter constraints in a large-scale
enterprise API?

1) Inter-parameter Constraints: We show the number of
inter-parameter constraints identified by each approach in
Table I.

We observe that code and documentation analysis together
detected 36 ((28+12)-4) out of the 53 constraints. In other
words, 68% of the inter-parameter constraints. We note that
the approach was able to identify constraints in all APIs.

We also note that code and documentation analysis detect
different constraints. Between the 28 and 12 constraints found
in the code and documentation approach, respectively, only
four were found by both approaches. This indicates that
both approaches are indeed complementary and, when used
together, improve the overall results.

Finally, we also observe that code analysis detects more
constraints, but with more false positives. The documentation
analysis found fewer constraints, but did not produce any false

TABLE I
THE TOTAL NUMBER OF MANUALLY IDENTIFIED INTER-PARAMETER

CONSTRAINTS, THE NUMBER OF CONSTRAINTS IDENTIFIED BY THE CODE
AND DOCUMENTATION ANALYSIS, WITH THEIR RESPECTIVE FALSE
POSITIVES (FP), AND THE NUMBER OF CONSTRAINTS THAT WERE

IDENTIFIED BY BOTH.

Total Code FP Doc FP Both

/payments 17 11 2 0 0 0
/authorise 15 11 4 3 0 2
/capture 5 2 0 1 0 0
/storeDetail... 5 2 0 1 0 1
/createAccount... 4 0 0 3 0 0
/getAccount... 1 0 0 1 0 0
/updateAccount... 1 1 0 0 0 0
/createAccount 1 0 1 1 0 0
/uploadDocument 3 1 1 1 0 1
/getCostEstimate 1 0 0 1 0 0

Total 53 28 8 12 0 4

TABLE II
THE TOTAL AMOUNT OF PARAMETER CONSTRAINTS AND THE NUMBER OF

IDENTIFIED SINGLE-PARAMETER CONSTRAINTS USING CODE ANALYSIS.

Total Identified

/payments 9 8
/authorise 14 10
/capture 5 5
/storeDetailAndSubmit... 4 4
/createAccountHolder 4 1
/createAccount 1 1

Total: 37 29

positives. The code analysis approach detected around 2.5
times more constraints than documentation analysis.

2) Single-Parameter Constraints: We show the results in
Table II. Note that this only includes code analysis, since our
documentation analysis approach is not set up to find single-
parameter constraints.

The code analysis approach detected 29 out of 37 the
single-parameter constraints (or 78%). For some endpoints, it
manages to find all parameter constraints. The success of the
approach in detecting single-parameter constraints since the
code structures that handle these constraints are often simple
to be parsed. For example, the fraudOffset parameter having
to be smaller than 999 would be done with a check similar to
if(request.getFraudOffset() < 999). Some notable challenging
cases, which our approach failed, include regex patterns not
being parsed to something meaningful, and the parsing of
dates.

The code and documentation approaches, when combined,
identify 68% of the inter-parameter constraints. The code
analysis approach identifies 78% of the single-parameter
constraints.

B. RQ2: What are challenges faced by documentation and
code analysis techniques that identify inter-parameter con-
straints in a large-scale enterprise API?

1) Documentation Analysis: We identify four reasons (lack
of information, implicit references, value not detected, and
unobserved constraints) that explain the failures in the docu-
mentation analysis approach. In Table III, we show how often
each of them occurred.

Lack of Information (A1). The most common reason for
not identifying a constraint is the absence of information
about the constraint in the documentation. For example, the
two parameters paymentMethod.type and returnUrl in the
/payments endpoint have a constraint between them, but the
documentation does not mention it.

Implicit References (A2). Some constraints were not de-
tected due to the use of implicit information. There were a
number of cases in which the OAS did include documentation
on a constraint, but the description did not explicitly mention
the name of a parameter (or at least not in a way that
our approach could identify). For example, the description
of the stateOrProvince parameter states ’Required for the
US and Canada’. Any human would know that the country
parameter’s value being equal to ’US’ or ’CA’ would require
stateOrProvince.

Value not Detected (A3). Finding the exact values that
the constraints depend on can be difficult. As examples,
for constraint recurring.contract = ”ONECLICK” →
card.cvc the value ONECLICK was not detected, and for the
country = ”US” → stateOrProvince constraint, the value
US was not detected. Although these values were present in
the documentation, they did not have any special formatting,
nor were they in the OpenAPI specifications, which makes
them hard to be detected.

Unobserved Constraints (A4). Constraints may only be
partially detected, which results in that constraint not being
detected at all. For example, assume a constraint A → B&C.
In the first step of documentation analysis (candidates infer-
ence), we only find that A and B co-occur. In the second
step (validation of the candidates), we find that combinations
including A always fail, because both B and C are required.
As a consequence, we fail to detect the actual constraint
between A and B.

The most common reason for the documentation approach
to not detecting constraints is the absence of information
that explicitly describes the constraints in the documen-
tation.

2) Code Analysis: We identified eight reasons (parameter
not detected, parameter de-referenced, static variable stack,
pre-conditions, control structure, data flow, arithmetic con-
straint syntax, and framework) that make the code analysis
to fail. In Table IV, we show their prevalence.

TABLE III
THE REASONS THE DOCUMENTATION ANALYSIS WAS NOT ABLE TO

IDENTIFY AN INTER-PARAMETER CONSTRAINT. ONE CONSTRAINT MAY
NOT HAVE BEEN IDENTIFIED FOR MULTIPLE REASONS.

A1 A2 A3 A4

/payments 15 2 0 0
/authorise 7 2 3 2
/capture 4 0 0 0
/storeDetail... 3 1 0 0
/createAccount... 0 1 0 0
/getAccount... 0 0 0 0
/updateAcount... 0 1 0 0
/createAccount 0 0 0 0
/uploadDocument 2 0 0 0
/getCostEstimate 0 0 0 0

Total 30 7 3 2

Parameter not Detected (B1). We only identify constraints
for the variables marked as parameters of the API. The list
of parameters comes from the OpenAPI documentation. We
have observed different reasons for a parameter not being
documented: from a business perspective, these parameters
may not be referenced because a function is in the process
of being deprecated, or because certain functionality is only
intended to be used by a select group of API consumers; from
an API design perspective, these parameters might be missing
because documentation still needs to be added.

As a possible solution for this problem, future implemen-
tations may consider all the fields from data model classes as
parameters of the API. Given that the list of data model classes
can be often inferred automatically (e.g., they all exist in the
same package, or follow some naming convention), we see
this as a viable alternative in cases where even the parameters
that the API receives is not completely documented.

Parameter De-referenced (B2). A large number of pa-
rameter references are de-referenced at some point. Typically,
we lose the reference to the parameter due to our parser
not being able to parse all Java expressions. In this case
study, this usually happened when new objects holding the
values of parameters were created, either via traditional class
instantiation or deserialisation.

For cases where new data objects are instantiated, and the
parameter values are passed, we see a solution by improving
the way our parser works. More specifically, references could
be retained if we keep track of all the instantiated objects
in our static variable stack. When parsing the construction
of an object, we can theoretically keep track of which fields
of that object correspond to which parameter(s). Due to time
restrictions, we have not explored this in more detail.

However, we note that, in case of deserialisation, maintain-
ing the references forms a significant challenge with no easy
solution. This is mostly because the deserialisation steps are
tightly interwoven with the framework that is being used at
the company.

Static Variable Stack (B3). Maintaining basic values in the
variable stack is sufficient for inferring most inter-parameter

constraints. These basic values include Java primitives, strings,
and parameter references. This tends to be enough since values
in API requests are typically basic types. For example, a
’name’ would be a string, and an ’amount’ would be an integer.
However, just maintaining basic values is not always enough,
as often these parameter values as stored in more complex
types (e.g., a domain object). Keeping these objects in the
stack presents, however, an engineering challenge.

Pre-conditions (B4). Some constraints have complex pre-
conditions resulting in another parameter being required
or not. For example, consider a hypothetical function
isV alidIban(iban) in which validity of the IBAN itself
depends on a large number of conditions, which the approach
aims to parse. Typically, such preconditions exhibit expres-
sions that are difficult for any static code analysis to parse. As a
result, our approach would produce pre-conditions containing
an often large number of unparsed elements. While somewhat
related to B2 and B3, we put it as a separate challenge category
as we conjecture this also requires a different solution.

Control structure (B5). We observe that for-loops are used
in a number of cases to validate parameter constraints within
the source code itself. When for-loops were used, this was
typically done for parameters with array values, e.g., “people”:
[{”name” : ”Frank”, ...}, ...]. At times, it was also used for
arithmetic constraints of the type P1 + P2 + ... = Pn.
As discussed in Section III-B1, evaluating the body of the
for-loop once would be sufficient to infer the constraints.
However, our for-loop parsing approach was limited in some
cases. For example, when iterating a collection: for(person :
request.getPeople()) or for(i = 0; i < people.size; i++).

Theoretically, a more advanced analysis of for-loops could
be needed. Consider a for-loop which iterates over a number
of parameter objects. Each of these parameter objects could
implement their own validate() method. The aforementioned
heuristics would not suffice. However, although not unlikely,
we did not encounter such a structure within the code base.

Data Flow (B6). In some cases, the limitations related to
the tool’s ability of tracking the data flow caused our approach
to not identify the constraint. These limitations involved the
lack of path sensitivity and not keeping track of fall-through
conditions on certain branches.

Making static analysis path-sensitive is possible [15]. How-
ever, we currently do not see an easy way to implement it in
our current approach. As such, within the analysis of parameter
constraints, this is still an open challenge.

Arithmetic Constraint Syntax (B7). Arithmetic constraints
include parameters that are related to each other by means of
arithmetic. For example, A+B > 10. Within our case study,
such constraints were often directly present in the code, e.g.,
A >= B would have a corresponding if(A >= B) statement.
However, other constraints were encoded through loops, e.g.,
sum(split.value) = total, which our tool was not able to
properly detect.

Arithmetic constraints can get as complex as mathematics

TABLE IV
THE REASONS THE CODE ANALYSIS WAS NOT ABLE TO IDENTIFY AN

INTER-PARAMETER CONSTRAINT. ONE CONSTRAINT MAY NOT HAVE BEEN
IDENTIFIED FOR MULTIPLE REASONS.

B1 B2 B3 B4 B5 B6 B7 B8

/payments 1 1 0 1 1 1 0 2
/authorise 0 3 2 1 3 0 1 0
/capture 0 3 2 0 3 0 1 0
/storeDetail... 0 0 0 0 0 3 0 3
/createAccount... 0 2 2 0 4 2 0 0
/getAccount... 0 0 0 0 0 1 0 0
/updateAccount... 0 0 0 0 0 0 0 0
/createAccount 0 1 0 0 0 0 0 0
/uploadDocument 0 2 0 0 0 0 0 0
/getCostEstimate 0 1 1 0 0 0 0 0

Total 1 13 7 2 11 7 2 5

itself. However, we observe in our case study that complex
constraints are, in fact, rare. Common arithmetic constraints
can be supported easily, whereas slightly more complicated
constraints (sum(splits) = total) provide more challenges to
overcome.

Frameworks/Libraries (B8). The remote procedure call
(RPC) based framework within Adyen was occasionally used
to dynamically add new tasks. These tasks get passed through
the framework, to then be handled as a kind of internal API
request. Due to certain characteristics of the framework, such
as multiple layers of abstraction, resolving which tasks get
executed is especially difficult.

The challenges in the code analysis are the engineering of
a sound static code analyser that is sensitive to data-flow,
that maintains longer parameter references throughout the
API’s code, and that is able to symbolically execute the
several libraries and frameworks used by the API.

VI. DISCUSSION

In this section, we compare our work to the existing
literature, how much we expect our results to generalize to
other APIs and, finally, the threats to the validity of our wok.

A. Comparison to Previous Works

We argue that the major difference between our work and
the related work was our need to work with a large and
complex API. Existing works that specifically focused on
inter-parameter constraints for Web APIs evaluated APIs with
a small number of parameters (i.e., around 5 parameters).
The works by Gao et al. [10] and Wu et al. [5] had an
overall recall of 95.5%. We obtain a recall of 23% using a
documentation analysis approach; with a more extensive code
analysis approach we obtain a recall of 53%. We argue that
this is largely due to the differences in the complexities of the
studied APIs.

Concerning code analysis, Wu et al. [5] is, to the best of
our knowledge, the only work which describes the analysis

of code to infer inter-parameter constraints. We highlight
several differences between our works. First and foremost,
their approach performs data-flow analysis, whereas we extract
a constraint structure directly. Secondly, their approach does
not address some of the features that exist in Adyen’s code
base. Key examples are the analysis of methods separately, as
opposed to within its given context, and the lack of support for
value-dependent constraints. The latter effectively made their
approach to not support single-parameter constraints or any
constraints such as X = V → Y .

B. Generalizability of Our Findings
We conjecture that software development teams developing

web in any programming language rely on similar sets of
(language) expressions and make use of similar frameworks
in the process. To this extent, we conjecture that a large
number of challenges we describe above would apply to other
software companies, even those using a different programming
language.

The studied API makes use of RPC. Remote procedure call
(RPC) based frameworks treat API requests as calls to func-
tions, where the arguments to the function are put in either the
query string or the body. This is contrary to REST, which often
involves path parameters such as /store/orders/orderID.
We nevertheless do not see a reason to believe that our
approach would be dependent of how the API is published.

The size and complexity of the API may have influence on
the timeliness of the feedback. Complex APIs, such as ours,
are likely to have more code, making fast sound analysis a
point of focus. After all, extensively analyzing every method
might be too computationally intensive. We note that the
approach we describe in this paper is able to analyze methods
quickly enough for large software systems. However, the chal-
lenges we identified seem to require more sophisticated static
analysis techniques. We argue that future researchers should
monitor the trade-offs between a more accurate approach
versus the time it will take to run.

C. Security Concerns
Constraints can reveal information companies do not want

the public to know. After all, the constraints that are extracted
from the source code reflect the code to a certain extent.

Attackers might make use of this information. For example,
the constraints provide information on boundary conditions
used within the code. A malicious third party could potentially
use this information to exploit the API more easily. As such,
automatically making all identified constraints available to the
general public is not preferable. Moreover, the constraints may
reveal features that are still in development or that are only
intended to be used by a select group of API consumers.

Therefore, we argue that the output of such tools should be
carefully analyzed by developers and security experts before
becoming public.

D. Threats to Validity
In the following, we discuss the threats to the validity of

this paper and actions we took to mitigate them.

1) Internal Validity: The ground truth we used consists
out of a representative set of constraints which we manually
collected for each of the selected endpoints. In this process,
we thoroughly inspected the related code and verified them
by making requests to the API. As such, we are confident that
we have a correct set of constraints. When selecting the set of
APIs to study, we made sure to select a diverse set of APIs
and constraints. As such, we are also confident that the results
represent the different APIs within Adyen well.

2) External Validity: Given that this research is a case study
done in one company, research into other complex APIs is
needed for further generalization of the results. However, given
the size and scale of Adyen’s software, we are confident that
the results found in our study can be representative for other
large-scale APIs.

VII. CONCLUSION

Understanding the parameter constraints of Web APIs is
fundamental when comes to their usability. On one hand,
documenting them all may require a large effort from the
development and documentation teams; on the other hand,
incomplete or incorrect documentation on these constraints can
waste a lot of time and cause costly integration faults.

In this paper, we describe our case study at Adyen, where
we experiment the effectiveness of the existing approaches for
inferring parameter constraints in our Web APIs. Our results
show that the documentation and code-based approaches can,
together, identify a total of 68% of the inter-parameter con-
straints in the large and complex APIs we use as case study.

While we believe that the current results are already
promising and development teams can use such approaches to
support their documentation teams, there is still much room for
improvement. We hope that the list of challenges we discuss in
this paper will pave the road for future research on the topic.

REFERENCES

[1] W. Maalej and M. P. Robillard, “Patterns of knowledge in api reference
documentation,” IEEE Transactions on Software Engineering, vol. 39,
no. 9, pp. 1264–1282, 2013.

[2] N. Oostvogels, J. De Koster, and W. De Meuter, “Inter-parameter
constraints in contemporary web apis,” in International Conference on
Web Engineering. Springer, 2017, pp. 323–335.

[3] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “A catalogue of inter-
parameter dependencies in restful web apis,” in International Conference
on Service-Oriented Computing. Springer, 2019, pp. 399–414.

[4] J. Aué, M. Aniche, M. Lobbezoo, and A. van Deursen, “An exploratory
study on faults inweb api integration in a large-scale payment company,”
in 2018 IEEE/ACM 40th International Conference on Software Engi-
neering: Software Engineering in Practice Track (ICSE-SEIP). IEEE,
2018, pp. 13–22.

[5] Q. Wu, L. Wu, G. Liang, Q. Wang, T. Xie, and H. Mei, “Inferring
dependency constraints on parameters for web services,” in Proceedings
of the 22nd international conference on World Wide Web, 2013, pp.
1421–1432.

[6] I. Rauf, E. Troubitsyna, and I. Porres, “A systematic mapping study of
api usability evaluation methods,” Computer Science Review, vol. 33,
pp. 49–68, 2019.

[7] M. P. Robillard and R. Deline, “A field study of api learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[8] M. Piccioni, C. A. Furia, and B. Meyer, “An empirical study of api
usability,” in 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. IEEE, 2013, pp. 5–14.

[9] I. Rauf, P. Perälä, J. Huotari, and I. Porres, “Perceived obstacles by
novice developers adopting user interface apis and tools,” in 2016
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2016, pp. 223–227.

[10] C. Gao, J. Wei, H. Zhong, and T. Huang, “Inferring data contract
for web-based api,” in 2014 IEEE International Conference on Web
Services. IEEE, 2014, pp. 65–72.

[11] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar,
“Inferring method specifications from natural language api descriptions,”
in 2012 34th International Conference on Software Engineering (ICSE).
IEEE, 2012, pp. 815–825.

[12] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Rest-ler: automatic
intelligent rest api fuzzing,” arXiv preprint arXiv:1806.09739, 2018.

[13] S. Bordag, “A comparison of co-occurrence and similarity measures as
simulations of context,” in International Conference on Intelligent Text
Processing and Computational Linguistics. Springer, 2008, pp. 52–63.

[14] F. Spoto, “Precise null-pointer analysis,” Software & Systems Modeling,
vol. 10, no. 2, pp. 219–252, 2011.

[15] I. Dillig, T. Dillig, and A. Aiken, “Sound, complete and scalable
path-sensitive analysis,” in Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2008, pp. 270–280.

