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Abstract—We propose NNStreamer, a software system that
handles neural networks as filters of stream pipelines, applying
the stream processing paradigm to deep neural network applica-
tions. A new trend with the wide-spread of deep neural network
applications is on-device Al It is to process neural networks
on mobile devices or edge/loT devices instead of cloud servers.
Emerging privacy issues, data transmission costs, and operational
costs signify the need for on-device Al, especially if we deploy
a massive number of devices. NNStreamer efficiently handles
neural networks with complex data stream pipelines on devices,
significantly improving the overall performance with minimal ef-
forts. Besides, NNStreamer simplifies implementations and allows
reusing off-the-shelf media filters directly, which reduces develop-
mental costs significantly. We are already deploying NNStreamer
for a wide range of products and platforms, including the Galaxy
series and various consumer electronic devices. The experimental
results suggest a reduction in developmental costs and enhanced
performance of pipeline architectures and NNStreamer. It is an
open-source project incubated by Linux Foundation Al, available
to the public and applicable to various hardware and software
platforms.

Index Terms—neural network, on-device Al, stream processing,
pipe and filter architecture, open source software

I. INTRODUCTION

We have witnessed the proliferation of deep neural networks
in the last decade. With the ever-growing computing power,
embedded devices start to run neural networks, often assisted
by hardware accelerators [2]], [7], [18], [20], [21], [27],
[32]], [38[]. Such accelerators are already common in the
mobile industry [2]], [32]]. Running Al mechanisms directly
on embedded devices is called on-device Al [26]. On-device
Al can be highly attractive with the following advantages of
in-place data processing.

« Avoid data privacy and protection issues by not sharing

data with cloud servers.

e Reduce data transmissions, which can be crucial for

processing video streams in real-time.

« Save operating costs of servers, especially crucial with

millions of devices deployed.

Limited computing power, high data bandwidth, and short
response time are significant challenges of on-device Al: e.g.,

*The corresponding author.

AR Emoji [31]], Animoji [1]], robotic vacuums, and live video
processing. With more sophisticated Al applications, multiple
input streams and neural networks may exist simultaneously
as in the complex camera systems of high-end smartphones
of today. Numerous neural networks may share inputs, and
outputs of a neural network may be inputs of others or the
network itself. Composing a system with multiple networks
allows training and reusing smaller networks, which may
reduce costs, increase performance, enhance robustness, or help
construct modular neural networks [33], [34], [36]]. Managing
data flows and networks may become highly complicated
with interconnections of networks and other nodes along with
fluctuating latency, complex topology, and synchronizations.
Such interconnections are data streams between nodes; thus, we
may describe each node as a filter and a system as a pipeline,
“pipe and filter architectures” [29]].

The primary design choice is to employ and adapt a mul-
timedia stream processing framework for constructing neural
network pipelines, not constructing a new stream framework.
The following significant problems and requirements, which
are part of the observed ones of our on-device Al projects, have
already been addressed by conventional multimedia frameworks
for years:

P1. Fetching and pre-processing input streams may be ex-
tremely complicated; i.e., video inputs may have varying
formats, sizes, color balances, frame rates, and sources
determined at run-time. Besides, with multiple data
streams, processors, and algorithms, data rates and latency
may fluctuate and synchronizing data streams may become
extremely difficult.

P2. Components should be highly portable. We have to reuse
components and their pipelines for a wide range of
products.

P3. It should be easy to construct and modify pipelines
even if there are filters executed in parallel requiring
synchronization. The execution should be efficient for
embedded devices.

P4. We want to reuse a wide range of off-the-shelf multimedia
filters.



Some other significant problems and requirements are either
introduced by reusing conventional multimedia stream process-
ing frameworks (P5) or not addressed by such frameworks (P6
and P7).

P5. Input streams should support not only audio and video, but
also general tensors and binaries. It should also support
recurrences, which are not allowed by conventional media
frameworks.

P6. Different neural network frameworks (NNFW) such as
TensorFlow and Caffe may coexist in prototypes. We
want to integrate the whole system as a pipeline for such
prototypes as well.

P7. Easily import third-party components. Hardware acceler-
ators often require converted neural networks with their
dedicated format and libraries instead of general formats
and NNFWs [9], [24].

We choose GStreamer [16] as the basis framework.
Gstreamer is a battle-proven multimedia framework for various
products and services and has hundreds of off-the-shelf filters.
It is highly portable and modular, and virtually everything can
be updated in a plug and play fashion. To address P1 to P7,
we provide numerous GStreamer plugins, data types, and tools,
described in Section which allow interacting with various
NNFWs, hardware accelerators, and other software components
or manipulating stream paths and data.

Our major contributions include:

o Show that applying stream processing paradigm to com-
plex multi-model and multi-modal AI systems is viable
and beneficial in various environments, and provide
an easy-to-use, efficient, portable, and ready-to-deploy
solution.

o Provide standard representations of tensor data streams
that interconnect different frameworks and platforms and
off-the-shelf media filters to Al systems with minimal
efforts, which efficiently allows processing complex
pipelines and attaching Al mechanisms to applications.

o Allow developers to add arbitrary neural network frame-
works, hardware accelerators, models, and other compo-
nents easily with the given frameworks and code templates.
Then, make the proposed mechanism product-ready and
release it to various platforms and products.

NNStreamer is an open-source project incubated by Linux
Foundation Al, released for Tizen, Android, Ubuntu, OpenEm-
bedded, and macOS. NNStreamer provides Machine Learning
APIs of Tizen, an OS for a wide range of consumer electronics.
We are applying NNStreamer to Android and Tizen products,
as well. It supports Tizen Studio natively (C and C#) and
Android Studio via JCenter, and Play Store offers NNStreamer
sample applications.

II. RELATED WORK

GStreamer [16] is the multimedia framework of Tizen and
many Linux distributions. GStreamer provides APIs in various
programming languages and utilities to construct, execute, and
analyze media stream pipelines for different operating systems

along with hundreds of off-the-shelf filters, which NNStreamer
inherits. GStreamer is highly modular; every filter and path
control is a plugin attachable in run-time. Various systems,
whose reliability and performance are crucial, use GStreamer.
For example, the BBC uses GStreamer for its broadcasting
systems [8]]. Samsung (Tizen) and LG (WebOS) use it as
the media engine of televisions. Centricular uses it for TVs,
set-top boxes, medical devices, in-vehicle infotainment, and
on-demand streaming solutions [11]], [12], [17], [39], [40].

FFmpeg [5], another popular multimedia framework, is not
modular, and everything is built-in; thus, it is not suitable for
our purposes. StageFright [13] is the multimedia framework
of Android, depending on Android services. Unlike GStreamer,
it is not portable for general Linux systems and does not allow
applications to construct arbitrary pipelines. AVFoundation [3]]
is the multimedia framework of i0OS and macOS. AVFoundation
may provide input frames to Core ML [4]], the machine
learning framework of iOS and macOS, to construct a neural
network pipeline. However, app developers cannot apply neural
networks as native filters of multimedia pipelines, and they
need to implement interconnections between neural networks
and multimedia pipelines. DirectShow [0] is the multimedia
framework of Windows. DirectShow and AVFoundation are
proprietary software for proprietary platforms; thus, we cannot
alter them for the given purposes.

Google has proposed MediaPipe [25] to process neural
networks as filters of pipelines. It supports Linux, Android, and
iOS, but it is not portable enough. Its dependency on Google’s
in-house tool, Bazel, and inflexible library requirements make
it not portable for embedded systems; i.e., it is hard to share
system libraries with other software. MediaPipe re-implements
a pipeline framework and cannot reuse conventional media
filters; thus, P1 to P4 are only partially met while P5 is not
an issue. Initially, it has targeted server-side Al services, not
embedded devices; thus, P1, P2, and P4 might have been
not considered. Specifically, for in-house servers, they may
restrict input formats (P1 and P4 are irrelevant) and consider
homogeneous platforms and architectures (P2 is irrelevant).
Another issue is that MediaPipe allows only a specific version
of TensorFlow as NNFWs; e.g., TensorFlow 2.1 for MediaPipe
0.7.4. Such inflexibility makes integrating other NNFWs or
hardware accelerators unnecessarily tricky. In Section [[V] we
show an example (E4) of how critical this can be. We expect
that they probably have more features hidden in-house; they
have partially opened MediaPipe since 2019. On the other
hand, NNStreamer has been fully opened since 2018.

Nvidia DeepStream [22], 28] provides GStreamer plugins
to process neural networks with NVidia’s proprietary hardware;
thus, P2 and P7 cannot be achieved while P1, P3, and P4 are
achieved. DeepStream addresses PS5 indirectly and partially
by embedding tensors in metadata of streams (no recurrence
support). In other words, DeepStream requires conventional
media (audio/video/text) for inputs and does not consider
tensors as first-class citizens of stream data. Therefore, if the
topology is complicated or inputs are arbitrary binaries, writing
a pipeline can be difficult.



NNStreamer provide interconnections between pipelines of
different frameworks or remote nodes by proposing a standard
tensor stream protocol via Flatbuf [14] and Protobuf [/15].
NNStreamer can collaborate with MediaPipe pipelines by
embedding MediaPipe pipelines into NNStreamer pipelines.

III. DESIGN AND IMPLEMENTATIONS

Each neural network model is an atomic filter of a pipeline
(pipe and filter architecture [29]). We delegate executions of
neural network models to their corresponding NNFWs, such
as TensorFlow. Delegation allows NNStreamer to execute each
model efficiently with P6 and P7 satisfied and to focus on
how to describe and integrate interconnections and filters. For
example, to accelerate a TensorFlow model with GPU in a
pipeline, users simply need to make sure that a compatible
TensorFlow-GPU exists. Similarly, installing libraries properly
and writing a pipeline consisting of Vivante models allows
accelerating the pipeline with a Vivante NPU [37]. This
approach keeps the performance of and compatibility with
off-the-shelf execution environments.

We recognize tensors as first-class citizens of stream data,
unlike DeepStream [28]], not limiting streams to conventional
media, and add stream path controls for tensors. We define
two GStreamer data types: other/tensor and other/tensors.
An other/tensor has an element type, dimensions, and a
frame rate (e.g., uint8, 640:480:3, 20 Hz). An other/tensors
combines up to 16 (default limit of memory chunks in a frame)
different tensors with a synchronized frame rate. We store each
tensor in an individual memory chunk so that mux and de-mux
do not incur memory copies.

We do not express rank numbers in tensor stream types;
thus stream types of compatible data formats (e.g., 640:480
[rank 2] and 640:480:1:1 [rank 4]) are considered to be
equivalent by stream type checkers of GStreamer, which
“negotiates” stream types between elements of pipelines in
run-time. However, there are a few NNFWs (e.g., TensorRT),
which require to identify the rank numbers of input and output
data as well as their dimensions and types. Users may explicitly
express rank numbers (e.g., “input=640:480" denotes rank 2
and “input=640:480:1:1" denotes rank 4) in such cases to
satisfy such NNFWs.

Figure [I] shows an exemplary pipeline demonstrating NN-
Streamer components omitting a few trivial filters, such as
queues. Lightly shaded boxes with bold borders are NNStreamer
components. Clear boxes are off-the-shelf components. Shaded
boxes with thin borders show properties of tensors. In the
figure, names are abbreviated; i.e., “T” denotes Tensor, the
prefix of NNStreamer filters.

The two neural networks in the figure, NN models, 1 and 2,
use TensorFlow-lite and NCSDK2 sub-plugins (plugins of a
plugin) of Tensor-Filter plugins, respectively. NNStreamer
1.6.0 of October 2020 provides sub-plugins for ARMNN,
Caffe2, NNFW(ONE)-Runtime, OpenVINO, PyTorch, Qual-
comm SNPE, Samsung SNAP, TensorFlow, TensorFlow-Lite,
TensorRT, EdgeTPU, NCSDK2 (Movidius-X), Vivante, Me-
diaPipe, and custom functions in C, C++, and Python. Users

may use such sub-plugins or write their own with the provided
code templates and generators.

Tensor-Filter and its sub-plugin structure allow developers
to use neural network models of the above frameworks with
a unified interface even without pipelines as well. In order to
allow developers using the unified interface without pipelines,
we provide “Single API sets” for Tizen (C/.NET) and Android
(Java) products.

Inputs and outputs of Tensor-Filter are tensor streams.
Tensor-Converter converts media streams to tensor streams.
Sub-plugins of Tensor-Converters may accept unconventional
(neither audio, video, nor text) data streams, e.g., Flatbuf [14]
or Protobuf [[15] streams. Tensor-Decoder may convert tensor
streams to media or other data streams with sub-plugins, e.g.,
create a video stream of transparent backgrounds with boxes
of detected objects or a Flatbuf stream from tensors.

Tensor-Mux bundles multiple other/tensor streams to
an other/tensors stream. Tensor-Demux un-bundles such
a stream back to individual tensor streams. Tensor-Merge
creates an other/tensor (no “s”) from multiple other/tensor
streams, modifying dimensions. Tensor-Split splits an
other/tensor stream into multiple other/tensor streams.
From two 3x4 streams, Tensor-Merge creates a 6x4, 3x8, or
3x4x2 stream, and Tensor-Mux creates a {3x4, 3x4} stream.
Users may choose synchronization policies for Mux and Merge:
slowest (drop frames of faster sources), fastest (duplicate
frames of slower sources), and base (keep the frame rate
of the designated source). Tensor-Aggregator merges frames
temporally (e.g., merging frames 2: and 2: + 1, halving the
frame rate), which may help implement LSTM or Seq2seq [35].
All merging filters choose the latest timestamp. A Tensor-
Repo-Src/Sink pair may share a named repository to construct
a recurring data path without a GStreamer stream, which
prohibits cycles. Tensor-Src-I1O creates tensor streams from
Linux Industrial I/O [19] sensors. Tensor-Transform applies
operators to tensors: typecast, add/sub/mult/div, normalization,
transpose, and so on. Streams may be connected to and from
application threads, networks, or files. There are components
not shown in the figure, as well. Tensor-ROS-Src/Sink interact
with ROS [30], a popular robotics framework. Tensor-Src-
TizenSensor connects with Tizen Sensor Framework. Amesre
connects with Android MediaCodec (AMC).

Product engineers have added more technical requirements
during commercialization.

« Transparent and easy-to-apply parallelism, which is met

and shown with experiments (E1).

o Dynamic pipeline topology, which is achieved by the

nature of GStreamer.
o Interact with other frameworks such as ROS [30], Android
media framework, Tizen sensor framework, and Linux
ITO [[19]], which are achieved by NNStreamer components.

o Dynamic flow control, which is mostly achieved by off-
the-shelf filters if application threads may control flows
directly: valve and input/output-selector. With Tensor-
If, developers can control flows based on tensor values
without the interventions of application threads.
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Fig. 1. An exemplary pipeline with representative NNStreamer components.

« Rate override and QoS control, which is addressed by
Tensor-Rate.

IV. EVALUATIONS

We have released NNStreamer for multiple consumer elec-
tronics prototypes and products of different software and hard-
ware platforms. Quality control teams have tested NNStreamer,
and related products will soon be available for consumers. We
show the following sets of experimental results:

El. Multi-model pipelines with AMLogic A311D SoC: 4
Cortex-A73 and 2 Cortex-AS53 cores, 4 GiB RAM, and
a Vivante neural processing unit (NPU, a hardware
accelerator for neural networks). E1 demonstrates how
efficiently and easily NNStreamer utilizes different com-
puting resources. E1 has the same configuration with some
2021 consumer electronics models.

Activity Recognition Sensor (ARS) with Nexell S5P4418
SoC: 4 Cortex-A9 cores and 1 GiB RAM. E2 shows
how easily and efficiently developers can implement and
execute multi-modal and multi-model applications. ARS
is deployed to hospitals and elderly care facilities.
Multi-Task Cascaded Convolutional Networks (MTCNN)
[10], [42]. E3 evaluates an extremely complicated pipeline
in various hardware platforms.

Performance comparison against MediaPipe in a desktop
PC (Intel 17-7700 and 16 GiB RAM).

E1 in Figure 2] evaluates the performance with heterogeneous
resources: CPU and NPU. Table [I] compares the conven-
tional implementation (Control) and various configurations
of NNStreamer pipelines (NNS) with 3000 input frames at 30
frames/s (fps). Before the introduction of NNStreamer, product
engineers have implemented conventional code (Control),
which processes every required operation serially for each
input frame. Higher performance (throughput), lower overheads
(CPU, memory), and ease of implementation have successfully
helped them abandon the conventional and adopt NNStreamer.

Case ¢ and d show performance improvement with the
stream pipeline architecture. Case e shows the base performance

E2.

E3.

E4.

with CPU cores by using TensorFlow-lite instead of Vivante-
NPU and its run-time libraries. Case f shows that NNStreamer
can efficiently execute multiple models sharing an NPU with
virtually no overheads; it has improved the overall performance
by 4.5%. The output rates of individual models in g and
h are virtually not affected while both are simultaneously
executed; they suffer only 0.8% and 4.0% of overheads. This
result shows that NNStreamer efficiently utilizes heterogeneous
computing resources. Case i shows that NNStreamer can utilize
shared resources and heterogeneous resources simultaneously
and efficiently. The improved throughput (or overhead of
multi-model executions) is calculated by (fps(I3)/fps@c +
fps(Y3)/fps@d + fps(CPU-13) /fps@e) /#HW, where #HW is
I in f and 2 in g to i. The capability to execute multiple
models in parallel with virtually no overheads and with higher
performance combined with the ease and flexibility of writing
pipeline applications has been the reason for replacing the
conventional implementations with NNStreamer. The memory
usage cannot be compared against a and b directly because
a and b are too inefficient, caching everything in memory.
Comparing h to {f, g, h} or {f, g, h} to {c, d, e} suggests
that a larger pipeline with multiple models may be much
more efficient than individual pipelines with a single model,
especially if they are executed serially.

E2 evaluates the performance and developmental efficiency
of ARS, whose pipeline is shown in Figure [3| which consists
of multiple sensors and neural networks. Input stream feeding
and synchronizations of such pipelines are not trivial and
have a significant impact on performance and reliability. The
introduction of NNStreamer to ARS has significantly reduced
developmental effort. Before NNStreamer, a few developers
have been implementing the pipeline partially for several weeks.
Then, with NNStreamer, one developer has completed the
pipeline within a few hours (only a dozen lines of codes) and
optimized its performance by tweaking parameters within a
couple of days.

The NNStreamer pipeline runs faster and more efficiently, as
well. The memory usage is reduced by 48% (448 MiB to 234
MiB). The CPU workload with 30 fps live inputs is reduced by



TABLE I
E1 RESULTS OF 100-SECOND EXECUTIONS. I3 IS INCEPTION-V3, AND Y3 IS YOLO-V3. C/I3 USES CPU; OTHERS USE NPU.
NEGATIVE VALUES SHOW RESOURCE SHARING OVERHEADS.

Number of . Throughput CPU usage  Memory usage Improved
models Configuration (framis/p;) (%) ¢ (M?IB) ¢ throlilghput
a.Control / I3 19.4 161.8 84.5 -
b.Control / Y3 9.5 145.2 87.4 -
1 c.NNStreamer / I3 28.0 17.0 24.5 443% / a
d.NNStreamer / Y3 10.8 40.7 274 13.7% / b
e.NNStreamer / C/13 1.2 115.0 479 -
f.NNStreamer / I3 + Y3 11.0, 7.0 44.7 32.6 4.5% [ c+d
2 2.NNStreamer / I3 + C/I3 27.8, 1.2 122.0 58.8 —0.8% [ c+e
h.NNStreamer / Y3 + C/13 10.5, 1.1 146.6 63.3 —4.0% / d+e
3 iNNS /I3 + Y3 + C/I3 11.0, 6.7, 1.1 151.7 68.4 —2.3% | c+d+e
416x416 Y3.nb,YI_3.so .
RGB 30fps tensor- N queue N tensor-transform N tensor-transform N tensor-filter tensor-sink
queue p{ videoscale p converter (leaky)|” |transpose 1:2:0:3 " | div(2), type(int8) "Y3"
299x299 13.nb,13.s0
RGB 30fps| [ tensor- | queue Ly tensor-filter > tensor-sink | queue (leaky):
queue P videoscale B converter (leaky) "I3"
299x299 13.tflite queue
RGB 30fps| [ tensor- queue |, | tensor-filter | [tensor-sink | 1©aky=GST_QUEUE LEAK DOWNSTREAM
queue p{ videoscale P converter > (leaky) ” "C/I3" max-size-buffers=2

Fig. 2. Pipeline of El (case i in Table [[). Others (cases ¢ to h) are sub-pipelines of i.
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Fig. 3. Pipeline of E2, which is a multi-modal and multi-model pipeline for ARS devices.

43% (90.43% to 51.35%), and both do not have frame drops.
The batch processing rate for recorded inputs is improved by
65.5% with NNStreamer: 46.0 to 59.4 in (a), 2.5 to 3.2 in
(b), and 9.3 to 25.5 in (c¢) of Figure [3] Note that because of
aggregators, (b) and (c) process at slower rate.

E3 evaluates MTCNN performance. Figure 4] describes the
complex topology of MTCNN. The output is a video display
(“Video Sink™”) showing both camera inputs and inference
results simultaneously. We compare C/C++ implementations
of NNStreamer and ROS [30]] (Control) with Full-HD videos
in various devices: A (mid-end embedded, Exynos 5422), B
(high-end automotive embedded, Exynos 8890), and C (PC
with Intel i7-7700). A ROS-fluent team (independent from the
NNStreamer team) is assigned for Control so that developers
would implement efficient codes for Control.

There are several sub-pipelines with neural networks and
merging points, which require synchronization and stream
throttling. For example, in P-Net Stage, processing a layer much
faster (e.g., 30 fps) than other layers (e.g., 15 fps) is mean-
ingless and deteriorates the overall performance. Exploiting

parallelism with proper synchronization and throttling becomes
trivial with NNStreamer as in E2: e.g., a dozen lines of C
codes describe P-Net Stage.

Table [[I| compares the performance of NNStreamer and Con-
trol. NNStreamer (NNS) has lower overall latency (measured
with 1 fps inputs) and higher throughput (measured with 30 fps
inputs). Row 2, compares the performance without the impact
of pipeline data-parallelism [23]] by processing a single input
frame at a time, but with the effects of functional parallelism
at P-Net (row 3) despite slower R-Net and O-Net (row 4 and
5). The NNStreamer case has 1959 lines of C codes (1004 of
them are re-implementation of non-max suppression, bounding
box regression, and image patch), which is slightly longer than
Control (1644 lines of C++ codes). Note that the NNStreamer
case supports exception handling and dynamic layers and video
formats, which are not supported by Control, and provides a
higher degree of parallelism.

E4 compares the performance of a MediaPipe sample
pipeline and its equivalent NNStreamer pipeline. The neural net-
work model for E4 is “ssdlite_object_detection.tflite”,
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Fig. 4. Pipeline of E3 (MTCNN). N denotes non-maximum suppression (NMS). B denotes bounding box regression (BBR). I denotes image patch generation.

TABLE 11
MTCNN (E3) PERFORMANCE. IMPROVEMENT IS BASED ON THE GEOMETRIC MEAN OF RATIOS.

A / Mid-end B / High-end c/PC Improved by
Control ~ NNStreamer  Control ~ NNStreamer  Control = NNStreamer  NNStreamer (%)
1. Throughput (fps) 1.01 1.73 1.48 4.02 1041 13.76 82.21
2. Overall latency (ms) 981.8 811.0 704.5 539.4 94.3 85.9 16.79
3. P-Net latency (ms) 795.7 531.5 614.3 358.1 74.3 41.1 40.06
4. R-Net latency (ms) 82.4 174.4 67.7 101.4 9.7 25.9 —6.61
5. O-Net latency (ms) 103.6 105.2 91.1 80.2 10.3 18.9 —18.08
(a), (b) » y t t Model tflite (c)
] ! 4] video video |, | queue ensor- ensor- queue ) -
filesrc pridecodebin ) h tensor-filter sink
- - convert|” | scale [ [(size 3)[ |converter| ransfor (size 3) TFlie Detection_Tensors
(d) Pipeline (c) || Transt - |
- N — || video video tensor- queue . . mage Transformation
convertl scale converterk(size 3)k tensor-filter sink . Model.tﬂlte
MediaPipe | TFLiteConverter TFLiteInference

Fig. 5. Pipelines of E4. NNStreamer with 2 TensorFlow versions: a and b, MediaPipe: ¢, hybrid: d.

TABLE III
E4 RESULTS WITH 10 EXECUTIONS OF 1818 FULL-HD FRAMES. - SHOWS STANDARD DEVIATIONS.
(a) NNStreamer-a  (b) NNStreamer-b  (c) MediaPipe (d) Hybrid
1. CPU (%) 352.8 £ 0.44 168.7 £ 0.13 168.2 + 0.08 168.0 £ 0.11
2. Throughput (fps) 469 £ 0.14 13.8 £+ 0.03 13.3 £ 0.03 12.8 + 0.01
3. Latency (ms) 20.8 + 1.21 727 £ 2.05 74.5 £ 2.20 76.3 £ 2.18
4. Mem access (billions) 219 £ 0.11 21.8 £+ 0.05 23.5 £ 0.04 253 £ 0.08
5. Mem size (MiB) 199.5 £+ 5.60 194.9 £+ 0.32 185.1 £0.39 3004 + 3.36

a MediaPipe reference model. Figure [5] shows the 4 cases:
a and b test NNStreamer pipelines of different TensorFlow-
lite versions (a: 1.15.2 and b: 2.1), c tests a MediaPipe
pipeline, and d tests an NNStreamer pipeline that has the
pipeline ¢ embedded as a filter. We have removed some
queues from c and d because they deteriorate their performance.
The cycle from “Detection_Tensors” feeds the flow status so
that FlowLimiter may throttle input rates. NNStreamer does
not need it because GStreamer already has a bi-directional
metadata stream channels for QoS controls embedded in the
unidirectional data stream, which is why a stream path cycle
is prohibited.

Table [IT] shows the benchmark results of E4. Comparing
(b) and (c) indicates that NNStreamer has higher throughput
(3.8%) and lower latency (2.4%). More significantly, if NN-
Streamer uses TensorFlow-lite 1.15.2 (a) instead of 2.1 (b),
the throughput is more than tripled (x3.54), and the latency is
almost quartered (1/3.67). This improvement demonstrates the
significant disadvantage of the inflexibility; i.e., MediaPipe
of May 2020 (commit b6e680647) is strictly bound with
TensorFlow 2.1 by its build system. In other words, the ability to
choose different NNFW versions may enhance the performance
dramatically. Therefore, the inflexibility, forfeiting P6, not only
loses the compatibility with hardware accelerators and NNFWs



but also misses the chances to perform better.

Another inefficiency comes from the primary design choice
of re-implementing the pipeline framework. This choice en-
forces to re-implement media filters and path controls; thus,
abandoning opportunities for code reusing. For 1818 input
frames, if we execute pre-processors only, pre-processors of
(b) and (c) consume CPU time (overhead) of 29.5 s and 41.4
s and real time (latency) of 9.86 s and 12.34 s, respectively;
thus, MediaPipe’s Open-CV re-implementations of media
plugins perform 25% worse and have 40% of more overheads.
Inefficient pre-processing of (c) may be responsible for the
performance deterioration, only partially; pipeline architectures
can hide latency from throughput. More critically, devices often
have media processing hardware accelerators, which signifies
the importance of off-the-shelf filters; i.e., mobile phones and
TVs often have media decoders and format converters on chips
and integrated with media frameworks.

In (d), pre-processors of both NNStreamer and MediaPipe
exist; however, those of MediaPipe have less workload (al-
ready pre-processed by NNStreamer), which results in not-
so-deteriorated performance even though both frameworks are
simultaneously used. This implies that NNStreamer may import
and execute arbitrary MediaPipe pipelines without a significant
performance penalty.

Row 4, the number of memory access measured by perf [41]],
shows that MediaPipe accesses memory more by 8.0%. Massive
memory accesses can significantly deteriorate the performance
of embedded devices with NPUs, where NPUs enhance
computing power, but memory bandwidth is limited; i.e., in E3,
memory read bandwidths of a PC (c) and an embedded device
(a) are measured to be 18.5 GiB/s and 2.6 GiB/s, respectively.
Row 5, memory size measured by peak VmRSS, suggests
that NNStreamer may consume a little more memory. Memory
size is affected by queues we have added to promote higher
parallelism; each of the two queues may consume up to 17.8
MiB in (a) and (b).

NNStreamer provides pipeline and functional parallelism
transparently. It also allows higher utilization and sharing
of different hardware resources virtually without efforts or
overheads. In other words, merely describing the topology with
NNStreamer enables a higher degree of optimization without
system software techniques. The degree of optimization will
be much higher with appropriate system software techniques,
time, and efforts; however, such resources are scarce even in
large companies. Results of E4 show the importance of initial
design choices as well.

V. CONCLUSIONS

From the experiences of on-device Al products, we show
that the stream processing paradigm may significantly improve
performance and productivity. By deploying NNStreamer, we
have achieved improvements for on-device Al applications:
higher throughput, more straightforward developments with
more features and less effort, and improved code quality.
Traditional multimedia developers may also employ arbitrary
neural network models in their pipelines with NNStreamer.

The lessons learned during the development and deployment
of NNStreamer include:

« Stream processing paradigm works appropriately for on-
device Al systems and makes their implementation much
more straightforward. However, optimizing pipelines still
requires some degree of technique and experience. Placing
and configuring queues, branching and merging, and
choosing proper filters for given operations have been
sometimes not so trivial.

« Showing that a new framework improves performance and
efficiency alone is not enough for products or platforms
to adopt it. As long as conventional implementations meet
functional requirements, product engineers are reluctant
to adopt a new framework even if costs per application
grow excessively. We have integrated the work into
the software platform along with APIs, user manuals,
automated build and deployment systems, test cases, and
sample applications. We have written first versions of
applications and systems, including hardware adaptations
with product engineers. Then, showing higher productivity,
performance, and efficiency has worked.

« Analyzing pipeline performance is often complicated and
requires specialized tools for visualization and profiling.
Training developers with such tools may be required.

« For a framework helping applications, developer relations
of both public and in-house is crucial. Besides, for in-
house developers, releasing it as an open-source helps
break down silos.

o Open sourcing a framework along with opened processes
and governance may appear to incur more workloads.
However, such workloads include better documentation,
rules, policies, broader test cases, and public CI/CD
systems, which help improve the overall code quality.
Besides, we have received more bug and test reports,
usage cases, documentation, and code updates.

This work is being deployed for various commercial products
and platforms and is actively and continuously developed with
various future goals. NNStreamer is the standard on-device
Al framework of Tizen, which is the OS for a wide range
of devices. We are also deploying NNStreamer for Android
products. Developers may install ready-to-use binary packages
for Android Studio (JCenter), Ubuntu (PPA), OpenEmbedded
(layer), macOS (Homebrew), and Tizen Studio (pre-installed).

BROADER IMPACT

Initially, we have designed NNStreamer for autonomous
vehicles. We have soon discovered that it is applicable for
any devices that process neural networks for online data:
i.e., analyzing live video streams. Then, we have successfully
deployed NNStreamer to Tizen 5.5 (2019.10) and 6.0 (2020.5)
as its standard machine learning framework and API. Tizen
is an operating system for general consumer electronics,
including mobile phones, TV sets, wearable devices, robotic
vacuums, refrigerators, smart ovens, [oT devices, and so
on. For example, the first product using Tizen 5.5, Galaxy
Watch 3, uses NNStreamer for its on-device Al applications



including “Smart Reply”. We are applying NNStreamer to next-
generation Android phones and different consumer electronics
in the affiliation; thus, we expect to see its actual usage in
large volume immediately, as well. By making NNStreamer
compatible with ROS and OpenEmbedded/Yocto, we are
providing NNStreamer to robotics communities as well.

We have opened the developmental processes and released
source codes and binary packages for various platforms
as an open-source project. Therefore, anyone may adopt
NNStreamer freely for their research or products and contribute
to NNStreamer. We already have a few third party companies
applying NNStreamer for their own products and prototypes.

We have found a significant concern for on-device Al
projects. Machine learning experts are usually not interested in
writing optimized or maintainable codes for embedded devices.
Moreover, often, system programmers are also not interested in
analyzing and re-implementing codes written by such experts.
With NNStreamer, an easy-to-use pipeline framework for Al
projects, we hope to close the gaps between the two parties by
adopting pipeline topology as a communication protocol. Note
that this is not necessarily limited to on-device Al projects but
also applicable to general server/workstation-based Al projects.

We expect that NNStreamer will help improve the productiv-
ity of Al researchers in general. However, the learning curve of
describing appropriate pipelines exists, and profiling pipeline
performance issues require proper tools and some experiences
along with some understandings in queuing theory. Fortunately,
when we have trained developers who have just received their
bachelor’s degrees in computer science, their learning curves
have not been too steep. They have started writing appropriate
pipelines within a few days and optimized pipelines within a
couple of weeks. To further assist novice developers, we are
implementing pipeline visualization tools and provide pipeline
performance profiling tools.

NNStreamer extensions for Protobuf and Flatbuf provide
standard representations of tensor streams to interconnect
heterogeneous pipelines of MediaPipe and DeepStream. We can
construct pipelines across sensor nodes, edge and mobile de-
vices, workstations, and cloud servers of different stakeholders,
which are often referred as “Edge-AI”.

Stream processing does not need to be restricted to inferences,
but can be extended for training. We are implementing
NNTrainer (https://github.com/nnstreamer/nntrainer) so that
we can apply on-device training with NNStreamer for person-
alization (adapting a pre-trained neural network for specific
users) with personal data kept in the device. The initial version
of NNTrainer is already being deployed for personalization
services of next-generation products along with NNStreamer
pipelines. Besides, stream processing does not need to be
restricted to on-device Al application, but can be extended to
cloud or server-based Al applications.

There are a few services developed by other affiliations
preparing server-based Al services with NNStreamer as well
as on-device Al systems and devices of different affiliations.
We do not have any contracts or relations with such affiliations
except for sharing the same GitHub repository and commu-

nicating with them via public channels. We gather additional
requirements from developers of such affiliations and accept
contributions from them as well. In the course of such open
collaboration we could have the following benefits:

« We have been further required to consider the extensibility,
which allowed NNStreamer to be adopted to new products
in the affiliation that the authors have not imagined.

« We have received extensive usage examples and test results
from users across various affiliations, which helps improve
the functionalities and the robustness.

« We have received bug fixes, example applications, new
features, and documentations from different affiliations.

o Developers have become more enthusiastic with open
source software developmental environments. In such en-
vironments, daily work including the codes and documents
are exposed to the public and the developers are supposed
to communicate with developers from different affiliations.

We could enjoy such benefits opening not only the source code,
but also the whole developmental and policy making processes.
We hope that we could get more contributors and users for
the NNStreamer project and, someday, we could have voting
members and committers in its technical steering committee
from various affiliations. Then, we expect that such higher
degree of public inter-affiliation collaboration will help improve
both functional and non-functional properties of NNStreamer
and its sub-projects greatly.

AVAILABILITY

Readers may visit our GitHub pages to get the full source
code and its history, sample application code, binary packages,
documentations. We welcome everyone to join NNStreamer’s
public events, to contribute code commits, to use NNStreamer
for any purposes, or to discuss via various channels.

o Web page: https://nnstreamer.ai

o GitHub main: https://github.com/nnstreamer/nnstreamer

« Gitter: https://gitter.im/nnstreamer

o Slack: http://nnstreamer.slack.com

e Mailing list: https://lists.lfai.foundation/g/nnstreamer-

technical-discuss/

o Tizen: Machine Learning APIs are NNStreamer APIs.
o Ubuntu PPA: ppa:nnstreamer/ppa

o Android Studio: JCenter “nnstreamer”

e Yocto/OpenEmbedded Layer: meta-neural-network
e MacOS Homebrew: nnstreamer (#5926)

« Sample: https://github.com/nnstreamer/nnstreamer-example
o ROS extension: https://github.com/nnstreamer/nnstreamer-
oS
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