
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Case Study on Data-driven Deployment of Program Analysis on an Open Tools Stack

Ljungberg, Anton; Åkerman, David; Söderberg, Emma; Sten, Jon; Lundh, Gustaf; Church,
Luke
Published in:
Proceedings of the 43rd International Conference on Software Engineering: Software Engineering in Practice

DOI:
10.1109/ICSE-SEIP52600.2021.00030

2021

Link to publication

Citation for published version (APA):
Ljungberg, A., Åkerman, D., Söderberg, E., Sten, J., Lundh, G., & Church, L. (2021). Case Study on Data-driven
Deployment of Program Analysis on an Open Tools Stack. In Proceedings of the 43rd International Conference
on Software Engineering: Software Engineering in Practice IEEE - Institute of Electrical and Electronics
Engineers Inc.. https://doi.org/10.1109/ICSE-SEIP52600.2021.00030

Total number of authors:
6

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 27. Apr. 2024

https://doi.org/10.1109/ICSE-SEIP52600.2021.00030
https://portal.research.lu.se/en/publications/9003b4cc-df9b-49cb-ad5e-caad35ae8f45
https://doi.org/10.1109/ICSE-SEIP52600.2021.00030


Case Study on Data-driven Deployment of Program
Analysis on an Open Tools Stack

Anton Ljungberg
Qlik

Lund, Sweden
anton.ljungberg@qlik.com

Gustaf Lundh
Axis Communications

Lund, Sweden
gustaf.lundh@axis.com

David Åkerman
Axis Communications

Lund, Sweden
david.akerman@axis.com

Jon Sten
Axis Communications

Lund, Sweden
jon.sten@axis.com

Emma Söderberg
Lund University
Lund, Sweden

emma.soderberg@cs.lth.se

Luke Church
University of Cambridge

Cambridge, United Kingdom
luke@church.name

Abstract—
Program analysis can assist software development but its use is

limited by a number of usability issues, including false positives
and integration issues. Previous systems have show significant
progress addressing these by using a data-driven approach to
track the ’not useful’ results, and integrating the results into code
review. However, these systems were very context dependent. In
this paper, we motivate the application of the same data-driven
principles and code-review based integration to the design of the
MEAN system, an analysis infrastructure running on an open
tools stack. We then evaluate its implementation within a local
software company, and present implications for the design of
future program analysis systems.

Index Terms—program analysis, usability, case study

I. INTRODUCTION

Program analysis tools can provide useful information to
help software developers improve performance, make code
more maintainable, fix bugs and perform many other tasks.
However, the use of program analysis results is hindered by a
number of usability issues [1]–[3]. These include distracting
false positives, incomprehensible messages, and poor integra-
tion into developer’s workflows.

One approach to tackling these issues is that taken at Google
by the Tricorder system [4], a static analysis platform that
integrates program analysis results into the developer workflow
at the point of code review. Here, program analysis results are
displayed as generated comments. The comments have buttons
associated with them where developers can indicate that the
comment was ’not useful’. Engineers tune the infrastructure
to maintain a so called ’not useful’ rate of below 10%. The
tuning of the system is by a large extent done by analyzer
maintainers outside the Tricorder team.

The Tricorder system exemplifies Google’s philosophy for
program analysis [4] expressed as the following five principles;
1) ”no” false positives, 2) empower users to contribute, 3)

This work was partly funded by the Swedish Foundation for Strategic
Research (grant nbr. FFL18-0231), the Swedish Research Council (grant
nbr. 2019-05658), and Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

make data-driven improvements, 4) workflow integration is
key, and 5) project customization over user customization.
Principles 2 and 5 address challenges beyond the individual
usability issues described above, for instance, how to handle
the maintenance load of many analyzers, and how to handle
disagreement about analyzer results. Whilst these issues don’t
limit the usability of the analysis results on an individual basis
they become significant issues when a platform is broadly
adopted.

The results that this philosophy has attained are encouraging
for the adoption of program analysis, however it is not obvious
that this success generalises outside Google. In this work
we explore whether it is possible to reproduce the success
at Google in another context. The Tricorder deployment at
Google has a number of particularities. It is developed and de-
ployed within a single large corporation, so it is comparatively
easy to justify the allocation of engineering resources to build
infrastructure that benefits the engineers across the company
and to build a sense of community where engineers using the
system take the time to submit feedback in the confidence that
it will be acted upon.

Secondly, the code base at Google is stored in a single
monolithic repository with a standardised set of working
practices around it. Whilst this has resulted in the need to
develop special purpose tools, it has created a single point of
integration within the developer workflow. This is significantly
different to common multi-tool, multi-repository setups used
in other organisations.

In this paper, we describe the design and deployment of
an open source system called MEAN (for MEta-ANalyzer
system), that embodies the five Tricorder principles. With no
existing open platforms embodying the philosophy above1, we
conducted an experiment where we developed an open plat-
form in close collaboration with the developer infrastructure
team at the company, which we then gradually deployed.

1The closest system is the Tricium system [5] run by the Chromium project
(also supported by Google) but it closely tied to custom infrastructure used
by the Chromium project.



As well as the open nature of the platform, we expand upon
previous work by developing better indicators of the success
of the approach. The Tricorder system reports users clicking
on results on average 0.8% of the time, and 5% out of the
times users clicked on results they reported that comments
were ’not useful’. Whilst these metrics indicate significant
usage when applied to the scale of a Google codebase they
leave open questions - how many of the results are being
used? How were they perceived by developers? What would
make the system more approachable? By designing a socio-
technical method for the design, deployment and operation of
an analysis system, we explore the possibility of a data-driven
program analysis deployment. In doing so, this paper makes
the following contributions:

• The open-source MEAN system.
• A description of how developers responded to the system

during their work.
• Design recommendations for static analysis infrastructure

to support adoption.
The rest of this paper is structured as follows; we give some

background and cover related work in Section II, describe our
methodology in Section III, before we introduce the results
of our study in Section IV, Section V and Section VI. We
identify threats to validity in Section VII, and then we discuss
results in Section VIII and conclude in Section IX.

II. BACKGROUND AND RELATED WORK

In this section, we briefly describe the Tricorder system
and cover related work exploring data-driven improvements
to program analysis usability.

A. The Tricorder System

The Tricorder system [4] is a closed source program anal-
ysis platform developed at Google for its internal developer
infrastructure. The system has a microservice architecture in
the form of a static analysis pipeline that reacts to events in the
developer workflow. The pipeline computes analyzer results
at different stages; FILES, DEPS, COMPILATION. At each
stage information is added, starting with the content of a file,
for lexical analysis, and ending with dependency information
for replaying of a compilation for compiler-based analysis. The
primary workflow integration point is code review where the
system reacts to uploads to so called changelists under review
in the internal code review tool.

When results are reported as so called robot comments
in code review, users can interact with robot comments by
clicking on buttons on the comment. Users have the option
of, for instance, clicking PLEASE FIX, APPLY FIX, or NOT
USEFUL on a robot comment. PLEASE FIX is available on
all robot comments and provides the means for users to
communicate around a robot comment in a code review. The
APPLY FIX button is available on robot comments offering a
suggested fix, which is applied if users click on the button
(they can also preview solutions in this case). If a user clicks
the NOT USEFUL button they get the option of reporting a
bug with more details about why the comment was found

not useful. The additional information is provided in a bug
tracking tool, which users get redirected to via a link. All clicks
on comments are logged and used to compute a so called NOT
USEFUL rate (NOT USEFUL/ NOT USEFUL + PLEASE FIX +
APPLY FIX), which can be broken down to specific analyzers
and their different categories. This rate is used to monitor and
tune the system to maintain a rate below 10%.

During 2014, the system produced on average 93K results
per day and on average 716 PLEASE FIX and 48 NOT USEFUL
clicks daily. Based on these numbers, there was an estimated
average user engagement with comment of 0.8% on a daily
basis. The overall NOT USEFUL rate of the system was around
5% during 2014, while the NOT USEFUL rate of individual
analyzers and their categories was occasionally higher. Any
analyzer getting a rate above the threshold of 10% is put on
a probation list where analyzer maintainers are engaged to
address the issue, and if any analyzer category receives a rate
above 25% it is turned off directly by the system maintainers.

Further, there is a reported learning effect where developers
learn from seeing antipatterns flagged in code review. The
effect is manifested as users stopping to introduce certain
problems into the code base at the same time as they start to fix
existing occurrences. The Tricorder system is also designed for
plugability, and this property appears to have been successful
with many contributions of analyzer from outside the analyzer
team (13 of 16 reported analyzers are contributed from outside
the maintainer team).

B. Data-driven Improvements to Program Analysis Usability

The Tricorder system has two descendants developed in
close proximity to the system. The first system, Shipshape [6],
was developed shortly after the report on the Tricorder paper
was published as an open-source version of Tricorder. The
Shipshape system utilizes a similar microservice architecture
as that used in Tricorder, but adapted to an open-source setting
with fewer dependencies to the details strongly coupled to the
internal Google infrastructure. As a consequence, the system
has fewer stages (PRE-BUILD and POST-BUILD, mapping
to the FILES and COMPILATION stage in the Tricorder
system) and is designed around use of Docker containers,
where analyzers are bundled as Docker images that implement
a remote procedure call API. The Shipshape design enables
pluggability, but there is no support for gathering of ’not
useful’ feedback, and the system has since been archived.

The second system, Tricium [5] is developed for the open-
source Chromium project hosted by Google. The Tricium sys-
tem lifts the concept of stages into a configuration language,
detaching it from the system design and making it easy to
add new stages if needed without changing the system. It is
further open-source, designed for pluggability and it integrates
with code review via the Gerrit code review system. However,
its pluggability approach and its execution platform is closely
coupled to the specific infrastructure of the Chromium project
which limits the possiblity for adoption in other contexts.

Considering approaches further away from Tricorder, Nanda
et al. [7] deployed a static analysis online portal called



Khasinia at IBM in 2010. The main design goal of Khasinia
was to provide static analysis as a service, using a portal as
a way to skip client tool integration and eliminate installation
overhead. Users could upload code to the portal where it would
be analyzed by a selection of tools. When done, the portal
would list found defects where users could report defects
as ”Invalid”, ”WontFix” ”Confirmed” and ”Not Attended”.
Results from the used tools are merged and aggregated, then
filtered and sorted based on user-specific analysis and user
feedback. According to feedback of anecdotal form, the system
was appreciated for filtering false positives and the ability to
view only defects introduced in a certain build.

III. METHODOLOGY

In this section we present our research questions, research
method and threats to validity.

A. Research Questions

The overall goal of this research is to explore the applicabil-
ity of Google’s philosophy for program analysis to a different
setting. We picked a company with a different culture and
internal organisation and based on a more typical open tools
stack. We seek to answer the following research questions in
this research setting:

RQ1 What is the experience of using program analysis?
To inform the design and deployment of a program
analysis infrastructure we need to first characterise what
the existing experience developers have with program
analysis is.

RQ2 What does a system based around an open tools
stack look like? It is not clear to what extent Google’s
philosophy for program analysis is shaped by its approach
to managing code and development practices in general.
In order to explore this, we build a similar system, but
based around an open tooling stack, and consider the
design decisions involved, and what they imply about the
feasibility of applying the philosophy outside Google.

RQ3 What is the effect of deploying the resulting system? In
the exploration of RQ2 we unpack the technical choices
that need to be different in an open tools stack. However
for these to be relevant the system must be beneficial.
We expand on the limited evidence for the effects of
deploying Tricorder, by answering the following:

RQ3.1 What is the level of user engagement?
RQ3.2 How many results are used?
RQ3.3 What is the user experience?
RQ3.4 What is the maintainer experience?

B. Research Method

To answer our research questions we used case study
research [8] in an exploratory fashion. The case study was
performed at a company with over 3, 000 employees of which
1, 150 work in R&D on software and hardware development.
The teams within R&D have broad control over their envi-
ronment, and a number of editors and IDEs are used. Open

developer tools like Git2, Gerrit3, and Jenkins4 (an open tool
stack also reported from other companies [9]), are used by a
large portion of the developers, and the company has a team
dedicated to maintaining these tools. During the experiment
described here, the Gerrit code review system had more than
850 unique active users per week.

We gathered data from different sources; semi-structured
interviews with senior employees connected to historic use of
program analysis at the company (RQ1), informal discussions
with the maintainers of the developer infrastructure during
seven software development iterations to inform the system
design (RQ2), quantitative logs analysis from a deployment
of the system over 8 weeks together with a follow-up survey
to get insights into the effects of deploying the system in this
context (RQ3).

Interviews. We conducted 3 semi-structured face-to-face
key informant interviews [10] with senior engineers at the
company who were involved in the deployment of program
analysis at the company. The interview subjects were selected
by the authors of the paper asking their contacts who should
be interviewed. The selected participants have been involved
in creating a program analysis culture at the company in the
fields of security, kernel development and video streaming
development. They all had over 10 years of experience in their
respective fields, and two of them had been working at the
company for over 20 years. The interview protocol, included
questions about the use of program analysis at the company,
how it has been integrated and configured, and how user
feedback has been managed. The purpose of the interviews
was to help form the research hypothesises and ensure that the
experiment was aligned to the practice at the company. The
interviews were recorded and then reviewed by the authors for
key themes and insights that are described in this article.

System Development and Deployment. The MEAN sys-
tem was designed by a comparative survey of the architec-
ture of the existing systems (Tricorder, Shipshape, Tricium),
followed by 7 weekly iteration cycles with design meetings
with the maintainers of the developer infrastructure at the
company. Subsequently we deployed the MEAN system to
more users over a period of 8 weeks, starting with 3 weeks for
the developer infrastructure team at the company (35 users),
then an identified client team was added for an additional 3
weeks (adding 50 more users), and then finally, all of the R&D
team was added for the final 2 weeks. The initial deployment,
and the deployment to all of R&D, was proceeded by a ”quiet”
roll out where results were computed but not presented5. This
progressive roll-out enabled the developers of the system to
ensure that its behaviour was reasonable before affecting a
large number of engineers. Based on informal discussions
with the developer infrastructure team and the client team
about their program analyzer needs, we selected 7 analyz-

2Git - a distributed verson control system, https://git-scm.com/
3The Gerrit code review tool, https://www.gerritcodereview.com/
4Jenkins - a continuous integration system, https://www.jenkins.io/
5Any time we report number of results it refers to results published as robot

comments, i.e., not results computed in quiet deployments.



ers to integrate into MEAN; Ansible-lint6. CommentCheck7,
Flake88, Hadolint9, Macrocheck10, PyLint11, and Shellcheck12.
For each analyzer, we wrapped it in a Docker container
complying with the MEAN analyzer API.

During the deployment we monitored the published robot
comments and NOT USEFUL clicks, for every analyzer cate-
gory. We used a 5% NOT USEFUL rule to guide decisions,
where a category was disabled if more than 5% of the
published comments within that category were reported as not
useful. The reliability of the percentage of NOT USEFUL robot
comments for a category was judged to be high enough to
disable a category if there were 100 existing robot comments
in that category. In effect, this meant that categories with
less than 100 published robot comments and at least 5 NOT
USEFUL clicks were disabled. The 5%-rule was complemented
with manual inspection of robot comments and informal user
feedback regarding robot comments. We paid extra attention
to the manual inspection during the ”quiet” roll out of newly
introduced analyzers, and in the early stages of deployment
we paid extra attention to informal feedback.

Analysis of Robot Comment Data. In line with Tricorder,
we call comments that contributed to a review by an analyser
’robot comments’. We analyzed these comments to estimate
the number of results from MEAN that were used. We define
a comment as showing one result, and by ’used’ we mean that
the code was changed in such a way to prevent the comment
occurring. When we refer to a result as being ”fixed” we mean
its corresponding published robot comment to have been used.
We estimate this by computing the number of robot comments
in the last patchset minus the number in the first patchset,
taking into account cases where the change could be caused
by configuration changes rather than developer actions. We
computed used comments using unique robot comments in
a change, and we computed unique comments by removing
duplicates. We consider two robot comment to be equal (i.e.,
duplicates) if they have the same category and appear on the
same line and file. In addition, when we report NOT USEFUL
clicks, we only count a maximum of one click per user for
each robot comment.

Survey. We created a questionnaire in the form of an email
that was sent to 20 randomly selected MEAN users. Half of
the selected users were owners of changes with used robot
comments, and half without. We composed a list for each
survey recipient with changes that they owned which had
received robot comments. They were then asked to pick a
change from the list and to answer questions in relation to
this change. With this strategy, we aimed to mitigate the
risk of recall bias. The survey was answered by 10 users,
their responses where open-coded to observe any patterns in

6Playbook analyzer, https://ansible-lint.readthedocs.io/
7Coding convention check GStreamer, https://gstreamer.freedesktop.org/
8Python style checker, https://flake8.pycqa.org/
9Docker file analyzerhttps://hadolint.github.io/hadolint/
10Coding convention check GStreamer, https://gstreamer.freedesktop.org/
11Python file analyzer, https://pypi.org/project/pylint/
12Shell script analyzer, https://www.shellcheck.net/

why ’not-useful’ was clicked. Whilst this small sample can’t
be considered conclusive the answer give indications about
common patterns reported in the results section.

IV. RESULTS: EXPERIENCE OF PROGRAM ANALYSIS

In order to understand how the design may need adapting
to the context, we used key informant interviews to build an
understanding of the use of program analysis at the company.
The results that are relevant to (RQ1) are described here. The
interview subjects are referred to as (S1)-(S3).

To a large extent teams have a lot of freedom and can
adjust their development practise to their needs. Consequently,
there is variation in how developers use program analysis, it
is used in editors, as pre-commit hooks in Git, and in the con-
tinuous integration system Jenkins. Jenkins has a connection
to the code review system Gerrit, where it posts a message
with a summary and a link to a Jenkins log with more details.

The extent to which teams use program analysis varies.
(S3) reported that ”other methods to minimize the number
of defects are at times more efficient”, with some teams
preferring other approaches to code quality, such as testing.
The interviewees viewed the decision to start to use program
analysis, especially static analysis, as a trade-off between costs
and benefits, as viewed by management.

Finding 1. The practise around use of program analysis
varies between teams and is tied to a cost/benefit
analysis on team level.

The cost of using static analysis has been salient to de-
velopers. Triaging of results to identify positives can be a
very costly activity. Triaging is often complex and requires
domain-specific knowledge, and does not fit within developers’
daily work practices. The company has explored an approach
where a specialized team runs certain analyzers, triages the
output, and then files bugs against different components. This
strategy was found to be especially useful for components with
less active development.

This experience with triaging has resulted in a practice
where the tools used on a daily basis only integrate certain
analyzers, referred to by one interviewee (S2) as analyzers
”built for zero false positives”. Static Analyzers that have
been found to be acceptable from this ”zero false positives”
perspective include Cppcheck 13, analyzers included in the gcc
compiler 14, and analyzers focusing on a very specific context,
like Sparse 15. (S2) summarized the mindset as ”analyzers that
do one simple thing well and have very few false positives fits
a lot better in the daily developer workflow than analyzers
that are able to find many complex problems but have many
false positives”.

Another issue is that analyzers flood users with too many
results. (S1) mentioned an example with an analyzer for C

13http://cppcheck.sourceforge.net
14https://gcc.gnu.org
15https://www.kernel.org/doc/html/v4.12/dev-tools/sparse.html



which reported so many results it hampered developers’ work,
resulting in developers across the company stopping usage of
the analyser. All interviewees agreed that analyzers that find
too many defects are not suitable for integration into daily
used tools.

None of the interviewees were aware of any systematic
approach for gathering developer feedback relating to program
analysis.

Finding 2. The cost of managing false positives have
lead to a practice where use of analyzers in daily
development is limited to analyzers that are ”built
for zero false positives”. There has further been no
systematic gathering of user feedback in relation to
program analysis.

The experience of using dynamic analysis has been
more positive, for instance, Valgrind 16 is widely used at
the company and is often used while running automated
unit tests, however in some cases, especially with embedded
systems, there may be memory restrictions preventing the use
of dynamic analysis. In these places where dynamic analysis
is not possible, using static analysis has been seen as a good
investment.

Across the organisation, the company has been moving
towards a more centralized model for the use of analysis.
This is due to the costs associated with setting up analysis in
a decentralised setting, resulting in complicated installation
processes. One interviewee (S3) summarized the developer
perception as ”developers at this point often want tools to
just work in the build chain”, while another interviewee (S1)
summarized the shift in terms of the trade-off involved as
”using a centralized model has the advantage of decreasing
the risk of the analysis not being done and is preferred as
long as centralized configuration can be done in a reasonable
way. The decentralized model has the advantage of faster and
more domain-specific decision making, while leaving the risk
of the job not getting done”.

Finding 3. A more centralized model for developer tool
maintenance moves part of the cost/benefit analysis of
using program analysis to a dedicated tools team.

V. RESULTS: SYSTEM DESIGN

To address our second research question (RQ2), we de-
signed and implemented a system we call MEAN (MEta
ANalyzer), shown in Figure 1, using the iterative approach
outlined in Section III. We provide an overview of the design
here and refer to the open source implementation 17 for more
details.

16https://valgrind.org/
17https://gitlab.com/lund-university/mean

System Components The design uses a micro-service ar-
chitecture with a main service (MEAN Main) that coordinates
communication between other services and keeps track of sys-
tem state, a publisher service (MEAN Trigger) that detects
and propagates change events, an analyzer executor service
(MEAN Executor) manages the execution of analyzers, a
robot comment publisher service (MEAN Publisher) inte-
grating with the code review tool, and a storage publisher ser-
vice (MEAN Storage) that manages storage, e.g., analyzer
results and user feedback.

System Control Every event and request in the system trav-
els through the MEAN Main service, which has the following
responsibilities; 1) compute request-specific configurations by
merging local and global configurations, 2) determine which
analyzers to run and how they should be configured, 3)
emit MEAN Event:s to trigger execution of analyzer and to
report results from the MEAN Executor, 4) keep track of
the current state of analyzers to describe what is currently
happening in the system. MEAN Main keeps track of requests
by use of states; Scheduled, NotRelevant, Started,
Error, Timeout, and Result. The NotRelevant state
is used for cases where it is not relevant to analyze some
files, for instance, PyLint should not analyze Java files. Re-
quests get assigned Scheduled after they have been sent to
MEAN Executor, and then later get assigned Started and
finally Error, Timeout, or Result, depending on how the
execution went.

System Communication To make the system less de-
pendent on different communication protocols we designed
the system around four interfaces that handle the com-
munication between the services. As a core service in
the system, MEAN Main receives MEAN Request:s and
Analyzer Event:s, and sends Analyze Request:s and
MEAN Event:s (shown in Figure 1). In our implementation
we use RabbitMQ for sending requests and listening for
events, but Apache Kafka, HTTP or many other communica-
tion protocols could be used instead, even combining different
communication protocols for different interfaces is valid.

Analyzer Execution The MEAN Executor service
is responsible for running program analyzers. For each
Analyze Request it receives, it walks through the fol-
lowing steps: 1) Creates a file tree for communication
with the analyzer to run (with directories called code,
input, output, 2) Translates the request to a JSON file
(input/analyze_request.json), 3) Updates MEAN
Main on progress (sends a Started event), 4) Retrieves the
code to analyze (saves it in code), 5) Runs the analyzer
with access to the created file tree, and starts a timeout timer,
6) When the analyzer is done it inspects the result (checks
output and runtime behavior) and communicate the result to
MEAN Main. In our implementation we implemented MEAN-
executor on top of Jenkins, but this dependency is isolated
from the rest of the system and another continuous integration
system could be used instead.

Analyzer Containers Analyzers used by MEAN run as



MEAN Main

Developer Workflow Integration

Code

Review

MEAN

Trigger

MEAN

Publisher

Analyzer Execution

MEAN

Executor

PyLint

ShellCheck

...

MEAN

Storage
Storage

Change event MEAN Request

Analyze Request
Start Analyzer

Result

Analyzer Event

Robot comments

MEAN Event

NOT USEFUL feedback

Fig. 1. Overview of MEAN An overview of the design of the MEAN system. MEAN-* map to services in the system. Solid arrows show events and requests
in the system and dashed arrows show information being communicated. Yellow parts in the workflow integration section (two services and a code review
plugin) and analyzer execution section (a service and Docker containers wrapping analyzer), indicate part connected to MEAN.

Docker containers18, which are started each time a new request
for an analyzer and a file is received. Consequently, to add an
analyzer to the system, it needs to be wrapped in a Docker
container and the input and output of the analyzer needs to
be connected to how MEAN Executor communicates with
analyzers via the earlier mentioned file tree. That is, analyzers
can see the request in the analyze_request.json file,
find files to analyze in the code directory, and communicate
results via the output/result.json file.

Workflow Integration The MEAN system is triggered
via instances of MEAN Trigger services that connect to
different developer workflow integration points, for instance,
an editor or a code review tool. Consequently, each integration
point requires one dedicated MEAN Trigger service that
translate events in the integration point to MEAN Request:s.
Likewise, it needs to have a dedicated MEAN Publisher to
integrate results.

Code Review Integration As the primary integration point
for the Tricorder system, we aimed to also integrate MEAN
with code review. To this end, we implemented a MEAN
Trigger and MEAN Publisher to connect Gerrit, and
we further implemented a Gerrit plugin to control the display
of robot comments19. Using the options for interaction with
human comments as a starting point, we let robot comments
have the following buttons: PLEASE FIX, NOT USEFUL,
DONE, and ACK. All interactions with a comment, except NOT
USEFUL, can later be marked as RESOLVED, and we give both
owners and reviewers the option of clicking NOT USEFUL.
The possibility of giving further feedback is integrated into
the interaction with comments, and any REPLY (or QUOTE)
to a robot comment is collected by MEAN and summarized
per analyzer and category.

Finding 4. The cost of giving further feedback depends
on the possibilities in the integration point. By letting
users reply directly to comments in Gerrit we keep
them in context, while in Tricorder users are sent to a
different tool.

18https://www.docker.com
19We used an existing Gerrit plugin developed for Tricium as a starting

point, https://chromium.googlesource.com/infra/gerrit-plugins/tricium/.

We decided to publish robot comments on unchanged lines
because a change may produce new robot comments on un-
changed lines. Tricorder also publish comments on unchanged
lines, but has the comments on unchanged lines hidden by
default and leaves it up to the user to toggle the visibility of
these comments [4]. The version of Gerrit we used did not
support toggling comments on unchanged lines.

Configuration To support configuration differences be-
tween teams, analyzers are configured via a global and a
local configuration. The global configuration is stored with
the system, while the code review system is used to host the
local configuration (we use the Gerrit plugin to manage this
connection). All analyzers running in the MEAN system must
have an entry in the global configuration, but these analyzers
can be customized in a local configuration by a team. A
configuration entry includes an analyzer name, analyzer status,
Docker image, execution timeout, regex matching files to run
on, and analyzer categories.

Feedback and System Tuning When designing the code
review integration, we did not include the option of applying
a fix. The reason for this was an uncertainty to what extent the
Gerrit code review tool would support this kind of interaction
without significant effort, and we also do not have analyzers in
our selection that provide suggested fixes. One consequence
of this decision is that no data for clicks of this kind are
gathered in the system. Hence, we cannot include APPLY FIX
when computing a NOT USEFUL rate, but we consider this to
not be an issue as this is also the case for analyzers with no
suggested fixes in the Tricorder system.

Still, this difference sheds light on the strong coupling of
the interaction options and the integration point, and a more
general description of the NOT USEFUL rate may be of use as
a guide for new integration points. On an abstract level we see
negative and positive signals where users have engaged with
robot comments, and on that abstract level we can compute a
negative user engagement rate (negative / negative + positive).

If we consider the signals we have about robot comments in
MEAN, we have PLEASE FIX, DONE, ACK, REPLY, QUOTE,
and RESOLVED. Among these, we consider NOT USEFUL to
be negative (and possibly REPLY), while we consider the rest
to be positive, with RESOLVED as the strongest signal. Based
on this assessment, we express the negative user engagement
rate as NOT USEFUL/ (NOT USEFUL + RESOLVED) (assuming



Analyzer Published NOT
USE-
FUL

RESOL-
VED

User
En-

gage-
ment

%
NOT
USE-
FUL

Est-
imated

as
Used

Pylint 11, 333 159 177 3.0% 1.4% 614

Comment-
check

3, 185 196 44 7.5% 6.2% 48

Flake8 2, 273 0 0 0% 0% 163

Shellcheck 2, 204 164 29 8.8% 7.4% 44

Macrocheck 1, 117 40 36 6.8% 3.6% 59

Hadolint 660 12 6 2.7% 1.8% 21

Ansible-
lint

62 0 0 0% 0% 8

Total 20, 834 571 292 2.9% 2.7% 957

Fig. 2. User Engagement and Use of Results The number of robot comments
published for each analyzer, the number of interactions with these, the user
engagement for all comments, % of NOT USEFUL for all comments, and
number of results estimated as used.

that REPLY overlaps with NOT USEFUL).

Finding 5. We found a need for a more general notion
of the NOT USEFUL rate in the form of a ’negative user
engagement rate’ (negative / negative + positive).

From what we know, the NOT USEFUL rate in Tricorder is
computed based on interactions with a small fraction of robot
comments, estimated to 0.8% in Section II. We further note
that a single NOT USEFUL click for an analyzer will give it
a NOT USEFUL rate of 100%. It is unclear how many clicks
should be gathered before the rate should be considered stable
enough to take into consideration, or if some minimal number
of results should have been produced. We see an opportunity
for mere guidance here and also exploration of other models,
for instance, models based on the number of results produced,
or models combining clicks and results. Other examples of
models to explore include percentage of not useful results
(NOT USEFUL clicks / published results), or percentage of
used results (estimated as used / published results).

Finding 6. There is a lack of guidance for how to
use the NOT USEFUL rate and it is unclear how it
compares to other models for tuning as a signal for
system health.

VI. RESULTS: EFFECTS OF DEPLOYMENT

Finally, with our last research question (RQ3), we seek to
understand the effects of deploying the system presented in
Section V.

Quantitatively during the deployment, the MEAN system
analyzed patchsets from 485 changes, which resulted in
20, 834 analyzer results published as robot comments in Gerrit
(3, 497 on changed lines). A total of 407 users were connected
to the analyzed changes, as either change owners or reviewers.

(a)

(b)

(c)

(d)
Fig. 3. Results, clicks in log-10 scale and NOT USEFUL rate over time.



0

20

40

60
N

O
T

U
S

E
F

U
L

C
lic

ks HadoLint

PyLint

ShellCheck

Macrocheck

Commentcheck

Fig. 4. NOT USEFUL Clicks per Unique User per user and analyzer. The
two cut off bars have a max of 118 (last is ShellCheck) and 162 (last is
Commentcheck). Total number of users is 52.

Figure 2 shows the number of robot comments published for
each analyzer and quantitatively how users interacted with
these published comments, in terms of NOT USEFUL and
RESOLVED. Figure 3(a) shows the results computed per day
and analyzer during the deployment (week 7 coincided with a
school holiday).

A. RQ3.1 What is the level of user engagement?

Considering all published comments and the data gathered
for NOT USEFUL and RESOLVED (listed in Figure 2), we
see users engaging with 2.9% of published robot comments
(column 5). We note that this is higher than that estimated for
the Tricorder system (0.8%). When we consider the percentage
of comments receiving NOT USEFUL clicks (Column 6), we
see a tendency for increased user engagement (in comparison
between analyzers) when the percentage of robot comments
with NOT USEFUL clicks go up.

When we inspect the NOT USEFUL and RESOLVED clicks
over time (Figure 3) we see that NOT USEFUL clicks spike
at specific times during the deployment and that the higher
spikes correlate with times when more results were produced
(Figure 3(a)). We further see users engaging with comments
via RESOLVED, especially for PyLint in week 6.

When we look closer at unique users and how they engaged
via NOT USEFUL clicks (shown per user in Figure 4), we see
that it was provided by 52 users, i.e., 12.8% of users connected
to analyzed changes. We see spikes in NOT USEFUL clicks by
a small group of users for ShellCheck and Commentcheck.
We note that these two analyzers have the highest user
engagement, percentage of NOT USEFUL robot comments, and
NOT USEFUL rate (Figure 2), and the highest NOT USEFUL
click spikes (Figure 3(b)) are also for these two analyzers.

When we consider the total number of interactions with
robot comments, for comments anywhere in a change and the
subset of comments on changed lines, we see; NOT USEFUL
572 (129), PLEASE FIX 31 (14), DONE 223 (128), ACK 39
(8), REPLY/QUOTE 32 (8), and RESOLVED 292 (145). We note
that NOT USEFUL and REPLY/QUOTE were primarily clicked
on comments not connected to changed lines (78% for NOT
USEFUL and 75% for REPLY/QUOTE).

Finding 7. We see a user engagement of 2.9% (vs.
0.8% for Tricorder) and NOT USEFUL clicks from
12.8% of users. We further see that NOT USEFUL
clicks primarily happened on robot comments outside
changed lines, and we see that a small group of users
can significantly influence the metrics for an analyzer.

B. RQ3.2 How many results are used?

To estimate the number of used results, we used the method
outlined in Section III to reduce the total number of published
robot comments to 10, 640 unique comments. Then we esti-
mated the number of used results per analyzer and change. We
identified changes with published robot comments and with
more than one patchset, and analyzed each such identified
change for each analyzer (identified change * analyzer =
265 cases). We found 121 cases with a decrease (23 had
an increase) corresponding to 1, 132 potentially fixed robot
comments.

To account for configuration changes, we compared the
times when patchsets were uploaded with when the configura-
tion changed. We found that a decrease of 175 robot comments
was explained by configuration changes. When we remove
these comments, 957 robot comments remained among the
ones we estimate as fixed, i.e., 9.0% of all unique comments.
Figure 2 shows the estimated number of used results per
analyzer (Column 7). We note that Flake8 and Ansible-lint
have 0% user engagement and at the same time have relatively
many used results.

When considering unique comments on changed lines
(1, 778), we find 513 fixed comments, i.e., er estimate 28.9%
of comments on changed lines to be fixed and 5.0% for
unchanged lines.

Finding 8. We estimate that 9.0% of unique results
were used and results presented as robot comments on
a changed line were more likely to be used (28.9% on
changed lines vs. 5.0% on unchanged lines).

C. RQ3.3 What is the user experience?

To gather data on the user experience, we sent a survey to
developers. Among the 12 respondents, 6 had used results, 2
had clicked NOT USEFUL (and not used results), while 4 had
not engaged with robot comments (by either using or clicking).
Survey participants were asked whether they agreed with the
robot comments on a change; 5 respondents agreed with all
robot comments, 5 had a mix of disagreement and agreement,
and 1 respondent agreed or had no opinion. No participants
only disagreed.

Respondents that had not engaged with robot comments
generally agreed with all comments (one respondent in this
group had mixed agreement). Among the two respondents
that had clicked NOT USEFUL, one agreed with all comments



despite having a large number of comments on the selected
change (114), and the other had mixed agreement. Among the
respondents that had not clicked NOT USEFUL, 3 disagreed
with comments and in two cases significantly (32 of 34
comments, 12 of 14 comments).

When asked about why robot comments may be not use-
ful respondents mentioned: false positives (mentioned by 4
respondents), comment on unchanged line (3), low payoff
(2), against coding standard (2), irrelevant (1), and repeated
comment in the same file (1). Comments on unchanged lines
was pointed out by several respondents (6) as not actionable
in the context of a Gerrit change. One respondent expressed
agreement with all comments in the selected change but ig-
nored them because they were on unchanged lines (”comments
unrelated to the changed code is something that you want to
fix in a separate change”).

We note that we see examples of user behavior with users
who completely agree but do not use results, and users who
disagree but do not click NOT USEFUL. We see an overlap
with the first behavior and comments on unchanged lines. For
users not clicking NOT USEFUL we see examples of confusion.

Finding 9. Comments on unchanged lines stand out as
less useful (and sometimes ignored) and at odds with
the code review workflow, The NOT USEFUL feedback
captures usability concerns beyond false positive results.

D. RQ3.4 What is the maintainer experience?

The maintainers disabled a total of 20 analyzer categories
(PyLint: 9, Shellcheck: 8, Macrocheck: 1, and Commentcheck:
2) via 7 configuration changes (Figure 3), with one very
early configuration update and the rest during the middle of
the deployment. Figure 3(d) shows the NOT USEFUL rate
accumulated over time, where spikes in NOT USEFUL clicks
(Figure 3(b)) bring the graphs up, while spikes in RESOLVED
(Figure 3(c)) bring the graphs down.

Of the 20 disabled categories, the decisions to disabled 16
were taken due to feedback via NOT USEFUL, guided by the
5% rule (Section III). The remaining 4 categories (all PyLint)
were disabled quickly in the early testing of MEAN in the first
two weeks of the deployment (import-error, line-to-long and
[C]onvention were noticed to have big potential of flooding or
false positives), or due to feedback from developers in close
proximity to the maintainers. (wrong-import-order produced
a lot of false positives due to a lack of knowledge of third-
party packages in the Docker container wrapping the PyLint
analyzer).

We note that the close proximity to the developer in-
frastructure team, together with the individual assessment of
the maintainers, allowed for early tuning of MEAN (first
configuration marker in Figure 3(b)). When we consider the
deployment to another team (during day 21-41 in Figure 3(b)),
we see spikes in feedback for Commentcheck in the beginning
and later Shellcheck. We note that these NOT USEFUL spikes

correlate with configuration changes (blue markers in the
bottom) and we do not see spikes to the same extent afterwards
(except for one smaller spike for ShellCheck that may be
due to other users giving feedback due to a larger group of
users) despite results still being produced for these analyzers
(Figure 3(a)).

Finding 10. The NOT USEFUL feedback enabled
tuning of MEAN when the distance between users and
maintainers increased.

VII. THREATS TO VALIDITY

Internal Validity - Credibility Robot comments counted
as used, can also be explained by removed code. There is a
risk that the number of used robot comments are estimated
higher than the number of robot comments that were fixed,
while keeping functionality. Some developers at the company
used Gerrit with an old user interface or a command line
interface. These two interfaces did not support displaying and
responding to inline robot comments. This may explain some
of the cases where robot comments were not responded to. The
email-based survey were not anonymous and this may have
resulted in participant response bias [11], but we encouraged
recipients to provide feedback and we did receive negative
feedback.

Analyser selection We picked analysers based on discus-
sions with the dedicated tools team at the company. Different
analysers have different response properties, for example with
linters being more noisy than other analysers, but more local
in their results.

External Validity - Generalisability We designed this
study to investigate to what extent Google’s philosophy of
program analysis is transferable to a different socio-technical
context. The results are not fully generalisable to all develop-
ment contexts, for example, they may not apply to a volunteer-
based open source project. However we sought a case study
that we think is representative of a broad set of organisations
doing development.

VIII. DISCUSSION

The change in the context from Google to different software
development organisations has brought with it a different
focus. This work places much less emphasis on scale, but
more on the need for supporting large variation and the
independence of teams (Finding 1). As the social distance
between the maintainers of the infrastructure and their users
increase the existence of tools to measure and understand the
experience of the users becomes crucial (Finding 10). We have
seen that NOT USEFUL feedback plays this role by supporting
tuning of the system by a centralised group.

The experience the organisation has had with program
analysis is similar to that described in the literature [1]–[3].
This has lead to practices where teams reduce the noise by
a limited selection of analyzers (Finding 2). However one



of the limitations of the approaches typically taken in data-
driven analysis so far is that it is easier to measure the
costs of program analysis, in false positives and not-useful
comments, than to measure the benefits which tend to fall
back to rhetorical justifications. Better measures of the benefits
of program analysis would be a useful direction for future
research.

A further avenue to explore is around measuring engage-
ment. We see a higher user engagement (Finding 7) than we
predicted based on the user engagement of Tricorder (Sec-
tion II). This may be related to the Tricorder estimate being
from an average over a year and after longer tuning while
ours is from total user engagement after the 8 first weeks of
deployment. We tracked additional metrics for estimating used
results (Finding 8) and gathered data on the user experience
(Finding 9). By splitting data on the level of individual users
we see that a small group of users can have a large effect on
the metrics (Finding 7).

The focus on the individual user experience with both
quantitative and qualitative assessment has highlighted some
new usability issues. For example we find comments on
unchanged lines to be a significant issue (Finding 7, Finding
9), and comments on changed lines had a significantly higher
chance of being used (Finding 8). A key takeaway for how
to integrate code review is that comments that the users can
action should be prioritized.

Despite being of limited scale, our study gives indications
for what the early deployment of the approach may look
like. For example, we see stormy periods when new analysers
are enabled. The maintainers of the Tricorder system has a
practice of putting noisy analyzers on a probation list [4]. Our
experience confirms this strategy and we further recommend
putting all analyzers on a probation list in early deployment,
and the maintainers should be especially attentive to the
feedback they receive. We speculate that metrics like the NOT
USEFUL rate or the 5% rule may play a bigger role as the
system becomes more mature, and the risks become easier
to manage, but that during the onboarding process for new
analyzers richer feedback mechanisms are needed to manage
the existence of unknowns.

Future Work The approach of using mixed methods to
understand the experience of developers and to use data about
their experience to drive the improvement of the system shows
promise. We see several areas for future work:

Firstly: Whilst the precision of the ’used results’ metric
requires further improvement, we see that the significant

Secondly: The meaning of the NOT USEFUL metric within
Tricorder was strongly coupled to its code review integration.
We map this to a more general ’negative user engagement’
metric (Finding 5), but suggest that the integration within a
broader review system may mean that alternative feedback
signals are also available. There is a clear gap in knowledge
about how to operationalise the feedback signals, especially
in early deployment. We explore a different metric, the 5%

majority of results are not being used. Further research is
needed to understand this phenomenon.
rule, where we add additional guidance for when to take the
metric into account. An application of our mixed methods
approach could be used to better understand how to design and
operationalise a range of feedback mechanisms at the different
stages of development.

IX. CONCLUSIONS

In this paper we have described how we have designed and
deployed the MEAN system for data-driven deployment of
program analysis on an open tools stack. In doing so, we have
replicated some of the success of the Tricorder system in a
different context and have also learned more about the user
interaction. Our results indicate that the use of NOT USEFUL
feedback enables tuning of the system as distance between
developers and maintainers grow. We further see a slightly
higher user engagement than for the Tricorder system, but
also identify integration pain points centered around presenting
results on unchanged lines in code review. Our results suggest
that the design principles for static analysis, embodied in
the Tricorder system and now the MEAN system, may fit
best in a context with centralized tooling and with resources
available to dedicate maintainers to the system, especially in
early deployment.

REFERENCES

[1] B. Johnson, S. Yoonki, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?.” ICSE’13:
35th International Conference on Software Engineering, pp. 672 – 681,
2013.

[2] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, A. Zaidman, and
H. C. Gall, “Context is king: The developer perspective on the usage
of static analysis tools,” SANER’18: 25th International Conference on
Software Analysis, Evolution and Reengineering, pp. 38–49, 2018.

[3] N. Imtiaz, A. Rahman, E. Farhana, and L. Williams, “Challenges with
responding to static analysis tool alerts.” MSR’19: 16th International
Conference on Mining Software Repositories, p. 245, 2019.

[4] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in ICSE’15: 37th
International Conference on Software Engineering. IEEE, 2015, pp.
598–608.

[5] E. Söderberg, “Tricium – Tricorder for Chromium. Early design doc-
ument.” https://bit.ly/tricium-early-design, 2016, accessed on Jan 22,
2021.

[6] Shipshape committers, “Shipshape,” https://github.com/google/
shipshape, accessed on Jan 22, 2021.

[7] M. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidt, and P. Bal-
achandran, “Making defect-finding tools work for you.” ICSE’10: 32nd
International Conference on Software Engineering, vol. 2, pp. 99 – 108,
2010.

[8] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study reseach in software engineering,” Empirical Software Engineering,
vol. 14, 2008.

[9] H. Munir, P. Runeson, and K. Wnuk, “Open tools for software engineer-
ing: Validation of a theory of openness in the automotive industry,” in
EASE’19: Evaluation and Assessment on Software Engineering. ACM,
2019, pp. 2––11.

[10] C. Robson, Real World Research. John Wiley & Sons Ltd., 2011.
[11] N. Dell, V. Vaidyanathan, I. Medhi, E. Cutrell, and W. Thies, “”Yours

is Better!”: Participant response bias in HCI,” CHI’12: Conference on
Human Factors in Computing Systems, p. 1321–1330, 2012.


