
How to integrate with real cars - minimizing lead
time at Volkswagen

1st Jan Kantert
Digital Services & Data Analytics
Volkswagen Commercial Vehicles

Hanover, Germany
jan.kantert@volkswagen.de

2nd Michael Nolting
Digital Services & Data Analytics
Volkswagen Commercial Vehicles

Hanover, Germany
michael.nolting@volkswagen.de

Abstract—The most successful tech companies of the world
release new software versions to production multiple times a day.
Thereby, they are able to quickly fix emerging bugs and rapidly
deliver new features to their customers. This leads to short
development cycles, minimal lead times and a high customer-
centricity. Short development cycles are easy to achieve if you
start a software project on a green field. Nevertheless, this
does not apply to brown field environments which are usually
found in big corporates such as traditional car manufacturers.
For instance, if you want to integrate with real cars you have
to interface legacy systems with development cycles of up to
several months. We present a solution, which worked for one
of the world’s largest car manufacturer, leveraging in-house
core development teams, dynamic stages and feature-toggles to
overcome a brown field environment, allow for short development
cycles and minimize the lead time.

Index Terms—brownfield development, legacy systems, dy-
namic stages, automated testing, feature flags, lead time, deploy-
ment frequency, digital transformation

I. THE PROBLEM: MINIMIZING LEAD TIME

Fig. 1. Lead time and its phases in a corporate environment

Today, tech companies such as Google, Amazon or Face-
book adopt agile methods, DevOps principles and modern
software tools to deploy changes to production hundreds or
even thousands of times per day. In an age where compet-
itive advantage requires fast time to market and relentless
experimentation, organizations that are unable to replicate
these outcomes are cursed to lose in the marketplace to more

adaptive competitors and may go out of business entirely,
much like the manufacturing organizations that did not adopt
Lean principles in the past [1].

The lead time measures the performance in the technology
value stream, i.e. how fast a company is able to deliver new
software products or additional features to their customers.
Car manufacturers currently suffer from a lead time of several
months regarding the development of digital services. This is
mainly driven by the fact, that their integration process requires
a long time which is a common problem in large complex
organizations that are working with tightly-coupled, mono-
lithic applications, scarce integration test environments, long
test and production environment lead times, high reliance on
manual testing, and multiple required approval processes [7].
Due to various safetly regulations multiple test and approval
gates are implemented depending on the type of software [6].
All components within the car (i.e. electronic control units)
got very long development cycles while cloud backend with
less regulation can iterate much faster. When this occurs, our
value stream may look like figure 1, where each phase may
last weeks or months on its own.

II. THE SOLUTION: OWN YOUR CODE! OWN YOUR
PRODUCT!

To break free from legacy hell and minimize lead time we
had to achieve the following goals at Volkswagen:

1) In-house code hosting, build server and an in-house core
development team

2) Dynamic stages for fast feedback by early integration
3) Minimizing risk and experimentation in the car approval

process

A. In-house code hosting, build server and an in-house core
development team

Most IT development activity happened outside of Volk-
swagen in the past which had multiple adverse effects on the
overall progress [2]. A lot of internal teams lost the capabilities
to understand how their systems work. As a result, they were
no longer able to estimate efforts for new features or to
determine where failures were originating. Operations became
challenging.

ICSE-SEIP-38

ar
X

iv
:2

10
3.

05
53

7v
1 

 [
cs

.S
E

] 
 9

 M
ar

 2
02

1



To solve this dilemma, we started to build up an in-
house core development team to re-own our own products
technically. Our internal mission was: Own your code! Own
your product! The idea was not to replace external developers
but to meet them at eye level. As a result, we could leverage
feedback from our suppliers (as we had a common basis for
discussion now) and build a better product.

Due to the previous outsourcing process and mentality,
hosting of source code and the build systems for one project
were often distributed over multiple suppliers. That created
barriers and also lead to very heterogeneous development
environments. Getting access became a nightmare and any
efforts to perform large scale refactoring were hampered.
Building a single release often took days to weeks in such
environments.

We solved this by building up a shared CI/CD chain and
hosted the source code within the company. That allowed us to
share infrastructure between projects and lower the barrier for
entrance. We also noticed that suppliers started to cooperate
much more as a result of this as they could now access all
the code. In addition to this, we conducted quaterly Scrum-
based product increment plannings and relied on a scaled agile
framework (such as SAFEScrum) to scale the development [5]
and harmonize the system’s design process.

B. Dynamic stages for fast feedback by early integration

Automotive companies need to maintain their backends for
approximately 10 to 15 years as part of the vehicle’s life-
cycle. As a result, a lot of legacy systems exist for various
car platforms (i.e. there is a new platform every few years
and each of them is maintained for a long time). To develop
code in such an environment you need a lot of credentials for
many systems which is almost impossible for an individual
contributor to gather. Consequently, integration of code usually
happens rarely and very late in the development cycle. As a
matter of fact, postponed releases are the norm and not the
exception.

To solve this challenge, we started to offer dynamic stages
(similiar to Google’s pre-submit infrastructures [4]) to devel-
opers which allow them to integrate early and often for fast
feedback. Technically, we spin up all microservices in the
cloud and connect them to legacy systems (i.e. email, au-
thentification providers, vehicle backends, vehicle master data,
vehicle diagnostic error codes etc). Developers can choose if
they want mocked legacy systems or QA/approval instances.
If the corresponding system shares the infrastructure, we can
even spin up the latest development version of the other
project. When using QA instances, it is possible to test drive
the development stage with real vehicles (if the vehicle is
configured for the approval backend). This can happen in a
pre-merged state so that code can be tested before hitting the
development branch of our version control system.

For all those services, we try to offer maximum self-
service for developers, testers and quality insurance experts.
Previously, they had to communicate with a lot of people
just to get a single test stage. Now we can have one stage

per feature within a few minutes and test features early. To
minimize expose of credentials for legacy systems, we contain
those in the cloud environment but keep them available to
everybody. For instance, we offer self-service tools to request
tokens which are valid for a limited time but share certificates
to create tokens.

C. Minimizing risk and experimentation in the car approval
process

Eventually, our new software has to be approved as part
of a car’s start of production (SoP). The entire SoP process
usually takes five years and software should be completed at
latest one year before the car is produced. That certainly needs
to be the case for all components within the vehicle but it
is not realistic for backend components in the cloud which
can be updated in a matter of minutes. Before the SoP or
generally on any release, however, the eletronic development
and quality assurance departments will ensure that the software
still works with our vehicles. As you can imagine this is a very
conservative process which is conducted only a few times a
year and if you release rarely you will have large changes and
experience much pain.

To reduce friction in this process, we heavily rely on feature
flags [3] and create deterministic builds with fixed version
numbers over all micro services. We need one version for
the process to track bugs over all the involved parties. Later
we need to be able to know exactly which software commits
were included as development goes on and the manual tests
take a few days at least. With feature flags we can fail easily
if certain features lack maturity and do not block the process.
Even if all of our new features fail we should still be able to
deploy the previous feature set. It also allows us to include
small experiments into a release early on and disable them
if they cause issues. Furthermore, we build trust with other
parties in the approval process which enables us to push for
more frequent releases even if they are pure bugfix releases.

III. FUTURE WORK AND NEXT STEPS

To improve this further we started automated integration
tests and end to end tests. This allows us to test integration
between systems in a pre-merged state which is great feedback
for developers. Furthermore, we can automate certain tests
with real vehicles by simulating the backend communication
of vehicles. As part of releases we run those tests as smoke
tests to make sure that configuration and permissions of legacy
systems are correct which has been a source of issues when
releasing new features in the past.

REFERENCES

[1] G. Kim, “The Phoenix Project: A Novel about IT, DevOps, and Helping
Your Business Win.“, IT Revolution Press, 2013.

[2] J. Klünder, “Do You Just Discuss or Do You Solve? Meeting Analysis in
a Software Project at Early Stages“, Proc. 5th Int. Workshop on Emotion
Awareness in Software Engineering. ACM, 2020

[3] J. Meinicke, “Exploring differences and commonalities between feature
flags and configuration options.“, Proc. 42nd ACM/IEEE Int. Conf. on
Software Engineering: Software Engineering in Practice, 2020

[4] R. Potvin, “Why Google stores billions of lines of code in a single
repository“, ACM Com 59, 2016



[5] T. Dingsoeyr, “Agile Development at Scale: The Next Frontier“ in IEEE
Software, vol. 36, no. 2, Mar 2019

[6] ISO 26262-2:2018, “Road vehicles — Functional safety“, 2018
[7] A. Magnusson “Rethink EE architecture in automotive to facilitate

automation, connectivity, and electro mobility.“, Proc. 40th Int. Conf.
on Software Engineering: Software Engineering in Practice, 2018


	I The problem: Minimizing lead time
	II The Solution: Own your code! Own your product!
	II-A In-house code hosting, build server and an in-house core development team
	II-B Dynamic stages for fast feedback by early integration
	II-C Minimizing risk and experimentation in the car approval process

	III Future work and next steps
	References

