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2.1 Characteristics of target projects 
In software development of high-mix and continuously evolving 
products (called high-mix small-change development), thousands 
of changes are made to the relatively large-scale source code base 
in order to periodically add new functions to it and customize them 
for different hardware sets and various shipping destinations. Many 
small projects run in parallel, with shortage of programers having 
knowledge about the source code base enough to do impact analysis 
accurately and efficiently. 

The target project group adopts the same derivative development, 
in which one change design document is created for every change 
request including a requirement in natural language and its 
implementation of changes on software design specification and 
source code. About thirty projects occur every year, each of which 
has ten change requests on average. Nearly a thousand change 
design documents have been created for three years. The source 
code base consists of 32 components. 

2.2 Approach and its implementation 
Because the target projects have a lot of change design documents, 
we thought it may be possible to infer modification candidates from 
the new change request by learning these documents. Based on this 
thought, we developed an impact analysis tool, which inputs a 
change request and outputs a list of modification candidates in 
descending order of likelihood of occurrence. 

Figure 1 shows the configuration of the tool. The tool firstly 
extracts the text of the change request written in Japanese from the 
change design document and then translates the text into a vector 
(called requirement vector) using a word-embedding technique, 
and secondly extracts the names of the modified components and 
then convert it into the component vector, each element of which is 
1 when the component is modified due to the change request / 0 
when not modified). The machine-learning component inputs 
requirement vector and outputs the component vector.  

To vectorize change requests, we use Doc2vec bundled in genism 
[2] and MeCab [3] as a Japanese morphological analyzer. To
generate the corpus for them, we use not only Wikipedia in
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two metrics: coverage range ratio and accuracy in the coverage 
range. The results show that it works well for software projects 
having many change histories for one source code base. 

1 INTRODUCTION 
In case that a lot of small projects that make small changes to a 
large source code base continuously occur, the accuracy and 
efficiency of impact analysis on change requests are crucially 
important because it determines the quality and productivity of 
such projects. Impact analysis is the task of determining the extent 
to which a change request affects when implemented [1]. 

We developed an impact analysis tool, which machine-learns 
change histories to generate a list of candidates of program 
components to be modified from a change request. The change 
history to be machine-learned includes a pair of a change request in 
natural language and a list of the corresponding modified 
components. This tool was applied to real project data and 
evaluated with two metrics: coverage range ratio and accuracy. The 
result shows that the tool works well for the software projects that 
have change histories are accumulated for the same program base. 
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Japanese but all the change requests, so that they can handle all the 
words in change requests. 

As a machine learning component, we used a convolutional neural 
network (CNN) with four hidden layers. The requirement vector 
has 100 dimensions, and the component vector has 32 dimensions 
corresponding to the number of the existing program components. 
Considering CNN as a classifier, this problem comes down to the 
multi-label classification. In other words, it is a problem of 
selecting multiple labels for one input pattern. In this case, CNN 
can handle this type of problem using sigmoid as the output 
function and binary cross entropy error as the loss function. The 
following hyper parameters for the CNN are used: Number of 
epochs is 50, Batch size is 50, and Learning rate is 0.1. 

We use the sigmoid values of the component vector as its score, 
and the modification candidates are sorted in descending order of 
the score to display. This allows developers to review components 
with a higher likelihood first. 

3 EXPERIMENTAL EVALUATIONS 

3.1 Target projects and their data 
The target projects are for developing software embedded in mass-
produced products that undergo model changes every year, which 
are typical high-mix small-change development ones. About 30 
projects run annually on the same source code base, and each 
project implements about 10 change requests on average. Each 
project has multiple change requests, creates a change design 
document for each, and implements them by modifying the source 
code based on the documents.  

3.2 Evaluation method 
In this evaluation, 405 modified design documents are used, 
including 325 for training data, and evaluated with 80 test data. This 
testing was carried out 5 times in different training/test 
combinations. The evaluation is based on the average of the results. 

3.3 Metrics for evaluation 
Our tool needs to be evaluated from the following two points. One 
is for the modification candidates not to miss modification targets 
as much as possible. This is because overlooking some 

modification targets may result in incomplete or inconsistent 
implementation of the change request. The other is to reduce the 
number of modification candidates as much as possible. This is 
because reducing the number of components to review will make 
the task for determining the modification targets more efficient. 

To evaluate from these two points, we use two metrics: coverage 
range ratio and accuracy in the coverage range. 

The coverage ratio Rc is the average percentage of the components 
to be reviewed in the source code base for a change request, and the 
closer it is to 0, the better the evaluation. 
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C : rank of the last correct component in the list 
W : length of the whole list 

The accuracy in the coverage range Ac is the average percentage of 
the actually modified targets included in the coverage range, and 
the closer it is to 1, the better the evaluation. 
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T: number of components to be changed for the change request 

3.4 Results of experiment 
The results of the experiment are:  

l Rc is 16.6%, which means that the modification targets can
be covered by reviewing about 1/6 of the total number of
components for one change request on average.

l Ac is 67.1%, which means about 2/3 of the reviewed
components are right ones. Thus, it is found that our tool can
significantly reduce the workload of impact analysis.

4 CONCLUSION AND FUTURE ISSUES 
We developed a tool that machine-learns the histories and outputs 
a ranking list of the components to be modified from a change 
request. Furthermore, its performance was evaluated with the two 
metrics of the coverage range ratio and the accuracy in the coverage 
range. To evaluate this tool, we applied it to the data from a group 
of actual high-mix, small-change software development projects, 
and the results show its good performance. This indicates that the 
tool is likely to be applied with high accuracy to a group of software 
projects that record many change histories for the same source code 
base, such as OSS projects where many developers are constantly 
modifying using issues, and ticket-driven derivative development 
projects where a change request is handled as a ticket. 
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Figure 1 Configuration of the proposed tool 

Change request
（text） Component 2

Component 4

Modified targets
Change  design document
CR

Extract

Change request
(text) Vectorization

Machine-
learning 

component
(CNN)

Requirement 
vector

Component vector
(when ML: 0,1/

at inferring: score)

0
1
0
1
0
0
0

Extract

12


