
A Software Impact Analysis Tool based on Change History
Learning and its Evaluation

Haruya Iwasaki Tsuyoshi Nakajima
 Department of Computer Science and Engineering

 Shibaura Institute of Technology
 Tokyo, Japan

{ ma20501,tsnaka}@shibaura-it.ac.jp

Ryota Tsukamoto Kazuko Takahashi Shuichi Tokumoto
 Information Technology R&D Center

 Mitsubishi Electric Corporation
 Kamakura, Japan

{ Tsukamoto.Ryota@dy, Takahashi.Kazuko@dx,
Tokumoto.Shuichi@dr}.MitsubishiElectric.co.jp

2.1 Characteristics of target projects
In software development of high-mix and continuously evolving
products (called high-mix small-change development), thousands
of changes are made to the relatively large-scale source code base
in order to periodically add new functions to it and customize them
for different hardware sets and various shipping destinations. Many
small projects run in parallel, with shortage of programers having
knowledge about the source code base enough to do impact analysis
accurately and efficiently.

The target project group adopts the same derivative development,
in which one change design document is created for every change
request including a requirement in natural language and its
implementation of changes on software design specification and
source code. About thirty projects occur every year, each of which
has ten change requests on average. Nearly a thousand change
design documents have been created for three years. The source
code base consists of 32 components.

2.2 Approach and its implementation
Because the target projects have a lot of change design documents,
we thought it may be possible to infer modification candidates from
the new change request by learning these documents. Based on this
thought, we developed an impact analysis tool, which inputs a
change request and outputs a list of modification candidates in
descending order of likelihood of occurrence.

Figure 1 shows the configuration of the tool. The tool firstly
extracts the text of the change request written in Japanese from the
change design document and then translates the text into a vector
(called requirement vector) using a word-embedding technique,
and secondly extracts the names of the modified components and
then convert it into the component vector, each element of which is
1 when the component is modified due to the change request / 0
when not modified). The machine-learning component inputs
requirement vector and outputs the component vector.

To vectorize change requests, we use Doc2vec bundled in genism
[2] and MeCab [3] as a Japanese morphological analyzer. To
generate the corpus for them, we use not only Wikipedia in

ABSTRACT
Software change impact analysis plays an important role in
controlling software evolution in the maintenance of continuous
software development. We developed a tool for change impact
analysis, which machine-learns change histories and directly
outputs candidates of the components to be modified for a change
request. We applied the tool to real project data to evaluate it with
two metrics: coverage range ratio and accuracy in the coverage
range. The results show that it works well for software projects
having many change histories for one source code base.

1 INTRODUCTION
In case that a lot of small projects that make small changes to a
large source code base continuously occur, the accuracy and
efficiency of impact analysis on change requests are crucially
important because it determines the quality and productivity of
such projects. Impact analysis is the task of determining the extent
to which a change request affects when implemented [1].

We developed an impact analysis tool, which machine-learns
change histories to generate a list of candidates of program
components to be modified from a change request. The change
history to be machine-learned includes a pair of a change request in
natural language and a list of the corresponding modified
components. This tool was applied to real project data and
evaluated with two metrics: coverage range ratio and accuracy. The
result shows that the tool works well for the software projects that
have change histories are accumulated for the same program base.

2 PROPOSED IMPACT ANALYSIS TOOL
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ICSE-SEIP '22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9226-6/22/05…$15.00
https://doi.org/10.1145/3510457.3519017

11

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)
20

22
 IE

EE
/A

CM
 4

4t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 S
of

tw
ar

e
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e
(IC

SE
-S

EI
P)

 |
 9

78
-1

-6
65

4-
95

90
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
SE

-S
EI

P5
53

03
.2

02
2.

97
93

55
0

Japanese but all the change requests, so that they can handle all the
words in change requests.

As a machine learning component, we used a convolutional neural
network (CNN) with four hidden layers. The requirement vector
has 100 dimensions, and the component vector has 32 dimensions
corresponding to the number of the existing program components.
Considering CNN as a classifier, this problem comes down to the
multi-label classification. In other words, it is a problem of
selecting multiple labels for one input pattern. In this case, CNN
can handle this type of problem using sigmoid as the output
function and binary cross entropy error as the loss function. The
following hyper parameters for the CNN are used: Number of
epochs is 50, Batch size is 50, and Learning rate is 0.1.

We use the sigmoid values of the component vector as its score,
and the modification candidates are sorted in descending order of
the score to display. This allows developers to review components
with a higher likelihood first.

3 EXPERIMENTAL EVALUATIONS

3.1 Target projects and their data
The target projects are for developing software embedded in mass-
produced products that undergo model changes every year, which
are typical high-mix small-change development ones. About 30
projects run annually on the same source code base, and each
project implements about 10 change requests on average. Each
project has multiple change requests, creates a change design
document for each, and implements them by modifying the source
code based on the documents.

3.2 Evaluation method
In this evaluation, 405 modified design documents are used,
including 325 for training data, and evaluated with 80 test data. This
testing was carried out 5 times in different training/test
combinations. The evaluation is based on the average of the results.

3.3 Metrics for evaluation
Our tool needs to be evaluated from the following two points. One
is for the modification candidates not to miss modification targets
as much as possible. This is because overlooking some

modification targets may result in incomplete or inconsistent
implementation of the change request. The other is to reduce the
number of modification candidates as much as possible. This is
because reducing the number of components to review will make
the task for determining the modification targets more efficient.

To evaluate from these two points, we use two metrics: coverage
range ratio and accuracy in the coverage range.

The coverage ratio Rc is the average percentage of the components
to be reviewed in the source code base for a change request, and the
closer it is to 0, the better the evaluation.

𝑅𝑐＝𝐴𝑣𝑒𝑟𝑎𝑔𝑒 !
𝐶

𝑊
" （1）

C : rank of the last correct component in the list
W : length of the whole list

The accuracy in the coverage range Ac is the average percentage of
the actually modified targets included in the coverage range, and
the closer it is to 1, the better the evaluation.

𝐴$＝𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (
%
&
) （2）

T: number of components to be changed for the change request

3.4 Results of experiment
The results of the experiment are:

l Rc is 16.6%, which means that the modification targets can
be covered by reviewing about 1/6 of the total number of
components for one change request on average.

l Ac is 67.1%, which means about 2/3 of the reviewed
components are right ones. Thus, it is found that our tool can
significantly reduce the workload of impact analysis.

4 CONCLUSION AND FUTURE ISSUES
We developed a tool that machine-learns the histories and outputs
a ranking list of the components to be modified from a change
request. Furthermore, its performance was evaluated with the two
metrics of the coverage range ratio and the accuracy in the coverage
range. To evaluate this tool, we applied it to the data from a group
of actual high-mix, small-change software development projects,
and the results show its good performance. This indicates that the
tool is likely to be applied with high accuracy to a group of software
projects that record many change histories for the same source code
base, such as OSS projects where many developers are constantly
modifying using issues, and ticket-driven derivative development
projects where a change request is handled as a ticket.

REFERENCES
[1] Sunil Sikka and Ankit Dhamija: Software Change Impact Analysis,

BookRix (2020)
[2] Genism, https://radimrehurek.com/gensim/（Retrieved on Oct.15, 2021）
[3] Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto. 2004. Applying

conditional random fields to Japanese morphological analysis, In
Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP 2004), volume 2004.

Figure 1 Configuration of the proposed tool

Change request
（text） Component 2

Component 4

Modified targets
Change design document
CR

Extract

Change request
(text) Vectorization

Machine-
learning

component
(CNN)

Requirement
vector

Component vector
(when ML: 0,1/

at inferring: score)

0
1
0
1
0
0
0

Extract

12

