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ABSTRACT
Modern consumer electronic devices often provide intelligence ser-
vices with deep neural networks. We have started migrating the
computing locations of intelligence services from cloud servers
(traditional AI systems) to the corresponding devices (on-device AI
systems). On-device AI systems generally have the advantages of
preserving privacy, removing network latency, and saving cloud
costs. With the emergent of on-device AI systems having relatively
low computing power, the inconsistent and varying hardware re-
sources and capabilities pose difficulties. Authors’ affiliation has
started applying a stream pipeline framework, NNStreamer, for
on-device AI systems, saving developmental costs and hardware re-
sources and improving performance. We want to expand the types
of devices and applications with on-device AI services products of
both the affiliation and second/third parties. We also want to make
each AI service atomic, re-deployable, and shared among connected
devices of arbitrary vendors; we now have yet another requirement
introduced as it always has been. The new requirement of “among-
device AI” includes connectivity between AI pipelines so that they
may share computing resources and hardware capabilities across a
wide range of devices regardless of vendors and manufacturers. We
propose extensions of the stream pipeline framework, NNStreamer,
for on-device AI so that NNStreamer may provide among-device
AI capability. This work is a Linux Foundation (LF AI & Data) open
source project accepting contributions from the general public.
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1 INTRODUCTION
Since the rise of deep neural networks, we have witnessed a lot
of AI applications affecting our daily lives. Such AI applications
have been expanding and have started to run on devices: on-device
AI [14]. Mobile phones run photo enhancements, video stream fil-
tering, automatic speech recognition, noise-canceling, and object
detection with deep neural networks on devices. Televisions run
video stream filtering, audio enhancements, and contents analy-
sis. Robotic vacuums run object detection, localization, and map-
ping. Even consumer electronics products that do not appear to be
“smart”, ovens, refrigerators, and air conditioners, start to run deep
neural networks on devices. Running them on devices can preserve
privacy; consumers do not want to send live video streams from
robotic vacuums to servers. It reduces network costs, especially for
high-bandwidth live data such as camera streams. It also reduces
the cloud service costs; we have millions of new devices deployed
each month.

The previous work [8] is an on-device AI pipeline framework
enabling developers to describe and execute AI systems as stream
pipelines.We have deployed it to recent devices of the affiliation and
a few software platforms. Implementing on-device AI systems as
stream pipelines with NNStreamer has satisfied the related require-
ments mentioned in [8], has improved the overall performance, and
has saved the developmental costs. After its initial deployments, we
have observed new types of on-device AI applications pursued: dis-
tributed on-device AI systems where inputs, outputs, and inferences
might happen on different devices. Developers have implemented
prototypes of such systems with off-the-shelf GStreamer plugins
of TCP, UDP, and RTSP, allowing interconnecting independent
pipelines.

We envision an open IoT ecosystem where any vendors may
deploy their devices with AI services and connect to AI services
of nearby devices within a house, office, or building. Such an IoT
ecosystem should be able to avoid exposing data to clouds so that AI
services may fully utilize personal data safely. Intelligence services
may be executed on multiple devices in such systems, sharing
hardware resources and data: “among-device AI”. Among-device
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AI may improve user experiences. For example, devices without
high computational power may provide intelligence services by
connecting to nearby high-end devices, not cloud servers. In other
words, we can provide AI services with consistent quality regardless
of the computation capability of the interfacing devices; thus, we
can expand the interfaces and chances to provide AI services. We
may save average device costs by sharing computational power
because only a few devices need high computational power.

For instance, a television without computational power for real-
time pose estimation may provide an AI-based exercise trainer by
connecting to a mobile phone or a home IoT hub that has enough
computational power. Conventional speakers and cameras with
WiFi connections may become additional user interfaces or sensors
for intelligence services. An oven or washer/dryer unit without
powerful processors may provide intelligence services of automatic
speech recognition and context-aware natural language understand-
ing by connecting to nearby refrigerators or mobile phones.

Raw network connection plugins mentioned above have been
satisfactory for prototypes of the above examples. However, they
have critical issues for actual deployment, and AI application de-
velopers have expressed the need for improvement. More critically,
application developers want to connect pipelines by expressing
capabilities, not IP addresses. With initial prototypes satisfying
such needs, we could have acquired further requirements from
application developers and iterated a few times with a few more
prototypes. We can list up the requirements briefly as follows:

R1. Each AI or input/output service exists atomically and is
deployed independently. Such a service includes an AI infer-
ence processor, a shared input stream, or a user interface.

R2. Transmission between such entities may be schemaless, or
updating schema should not require recompiling or redeploy-
ing software. It should be able to compress and synchronize
transmitted data frames from different devices.

R3. Discovering such entities and connecting to them should not
require the knowledge of specific addresses (e.g., IP address).
Besides, there may be multiple entities discovered for a given
connection request, where one of them will be connected.

R4. If a connected entity becomes unavailable, it can be automat-
ically connected to an alternative entity.

R5. Any vendors and application developers may freely use,
alter, or redistribute the given software framework for any
purpose without charges. Besides, it is desirable if anyone
may participate in its development to reduce fragmentation
and a bias for an affiliation.

R6. It should be extensible for different platforms. In other words,
it should be able to be connected with different AI pipeline
frameworks (e.g., MediaPipe [12] and DeepStream [15]) or
services with different operating systems, especially those
for microcontrollers (a.k.a. RTOS).

R7. Each AI service is an on-device AI application that has re-
quirements mentioned in [8].

Our approach extends the on-device AI pipeline platform, NN-
Streamer, to the among-device AI pipeline platform. The on-device
AI capability inherited from [8] R7 is preserved while new require-
ments (R1 to R6) are satisfied by this work. To satisfy the new re-
quirements, we first extend the AI stream data type (“other/tensors”

MIME) to support tensors with flexible dimensions and schemaless
data streams. Then, in addition to off-the-shelf networking plugins
including TCP, UDP, and RTSP, we propose to use MQTT [4] for
service discovery and connections, which is applied to both pub-
lish/subscribe and workload offloading, along with synchroniza-
tion methods. We also provide a lightweight library with minimal
dependencies, “NNStreamer-Edge”, which allows implementing
non-NNStreamer software packages compatible with the proposed
among-device AI pipeline connections.

Our main contribution includes:
• Based on users’ feedback, including AI algorithm researchers,
application and OS developers, and device vendors, we iden-
tify requirements, propose a corresponding design, and de-
ploy the implementation.

• Extending the previous work [8], we provide mechanisms
reflecting the lessons learned by deploying products.

• We propose and deploy stream transmission protocols for
among-device AI systems tested for products. The imple-
mentation is open sourced and maintained in public so that
anyone may deploy products with the proposed mechanisms.

2 RELATEDWORK
NVidia has proposed a DeepStream AI pipeline framework based
on GStreamer for NVidia hardware customers [10]. Recent releases
of DeepStream [15] propose edge-to-cloud AI pipelines. In addition
to the issues of not treating tensors as 1st class citizens of stream
data [8], it is proprietary software dedicated to NVidia hardware,
which cannot meet R5, R6, and R7.

Google has proposed MediaPipe AI pipeline framework [12],
which is now targeting on-device AI applications of IoT devices
in addition to cloud AI services. Although they may have among-
device AI capabilities and inter-device connectivity internally, they
are not publishing documents or releasing codes of such features.

GStreamer [7] has already provided various connectivity plu-
gins so that multimedia pipelines may listen to media servers or
broadcast to media players: TCP, UDP, RTSP, and others. It also
provides data serialization plugins, GStreamer Data Protocol (GDP-
PAY [22]), to connect remote pipelines. Extending such capability,
TRAMP [24] has proposed a distributed multimedia system with
GStreamer pipelines partially satisfying R1, R2, and R3 for general
multimedia applications, which, in turn, has given hints when we
were requested to develop a software framework for edge-AI or
among-device AI systems.

The previous work [8] is an AI pipeline framework satisfying
requirements for on-device AI systems of various consumer elec-
tronics. We extend NNStreamer further with new requirements
identified for among-device AI systems.

3 DESIGN
As in the previous work [8], the first principle is to re-use well-
known and battle-proven open source software components. GStreamer [7]
and its off-the-shelf plugins are still the basis of this work. For
capability-based publish/subscribe stream connections, we adopt
MQTT [4] via “paho.mqtt.c” library [3]. We have started initial
prototypes with TCP and RTSP plugins. Then, we have applied Ze-
roMQ [9], which, fortunately, has an off-the-shelf and open sourced
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Figure 1: An offloading example with the previous work.

GStreamer plugin for second prototypes. Then, we have switched
to MQTT [4] for the last prototypes. We choose MQTT because,
ultimately, we want to contribute to IoT standards including Mat-
ter [1] and SmartThings [20], which include MQTT. Inter-pipeline
connectivity for among-device AI is deployed as GStreamer plugins
making it compatible with general GStreamer pipelines. As a result,
the provided capability is not restricted to AI applications but is
available to general stream pipelines.

Initially, for earlier prototypes for internal clients, we have as-
sumed that data serializations with GDPPAY [22], Protocol Buffers,
and FlatBuffers for static tensor streams would suffice along with
off-the-shelf network transport GStreamer plugins of TCP, UDP,
and RTSP. However, we have found requirements not satisfied by
such design by iterating prototypes with clients. R1, R2, R3, and R4
enforce applications to implement sophisticated network handling,
which can be avoided by providing such features with NNStreamer.
Besides, implementing such features in applications inevitably leads
to fragmentation and compatibility issues: every application may
implement protocols differently.

For example, a simple inference workload offloading (query)
application with TCP plugins in Figure 1 has initially appeared
satisfactory. However, having multiple clients–another additional
user requirement–over-complicates pipelines. Even with a single
client, separating query (tcpclientsink) and answer (tcpclientsrc)
filters of a client complicates pipelines with synchronization and
topology issues. Thus, this approach does not satisfy R1. Besides, it
requires clients to specify IP addresses and port numbers of servers,
neglecting R3 and making it challenging to satisfy R4.

For R1 and R4, we propose query capability as pipeline filters,
shown in Figure 2. Client pipelines become trivial, and we can easily
support multiple clients and multiple servers for an instance of ser-
vice. We integrate network protocols and serialization mechanisms
in the client/server filters for the simplicity of pipelines. For the
robustness of services, it is desirable to allow multiple servers (De-
vice B) compatible with given service requests from clients (Device
A).

Another demonstrative among-device AI user scenario is a sys-
tem with multiple input devices and independent processing and
output devices. The example application for this scenario has two
input devices with USB cameras, one processing device (demon-
strated with a Google Coral USB accelerator), and one output device

Figure 2: An offloading example with the proposed work.

(demonstrated with an LCD). This scenario stands for home IoT
systems with lightweight input devices (sensors, cameras, and mi-
crophones) and output devices (speakers and displays). Vendors
may expose their AI services via such lightweight devices (e.g.,
refrigerators, washers, and inexpensive display devices) while exe-
cuting AI services at home for privacy protection, network latency
reduction, and cloud cost reduction. Such AI services can be con-
sistently (for both latency and quality) provided across different
user interfacing devices regardless of their processing power if they
satisfy R1, R2, and R3. In other words, such services can achieve the
above if devices can discover available resources and services, con-
nect to the discovered ones efficiently, and provide their resources
to other devices. If a vendor wants to expand their device ecosystem
by inviting other vendors’ devices, R5 and R6 are also required.

Some internal clients have specified a data serialization method
for inter-pipeline connections: schemaless FlexBuffers of Flat-
Buffers. We do not recommend using schemaless FlexBuffers for
connecting stream pipelines; we recommend dynamic (flexible)
schema instead. Schemaless protocol usually incurs more over-
heads and run-time issues; we cannot verify data types at launch.
Moreover, being schemaless is meaningless in many among-device
AI systems; i.e., it transfers the responsibility of interpreting the
output of a neural network in a sender from the sender to the
receiver. In other words, except for not generating errors for data
type mismatches (we do not recommend this but have failed to
persuade the clients), it burdens the receiver to be more aware of
the specifications of the sender. However, we have accepted it with
the condition of using FlexBuffers only for research prototypes and
using “other/tensors” MIME types for products. Note that having
different data types between prototypes and products may incur
unnecessary technical debts.

Writing pipelines with raw network protocol plugins (TCP, UDP,
and RTSP) over-complicates pipelines, as we have experienced with
the previous example. For example, we may have multiple pipelines
sharing the output of a single pipeline. We may also have a pipeline
that needs to connect to any compatible pipeline available or does
not want to specify network addresses. Thus, after the initial pro-
totype with ZeroMQ [9], we have implemented MQTT [4] stream
pub/sub plugins compatible with general GStreamer data streams.
With MQTT pub/sub plugins, we have implemented prototype



ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA MyungJoo Ham, Sangjung Woo, Jaeyun Jung, Wook Song, Gichan Jang, Yongjoo Ahn, and Hyoung Joo Ahn

Figure 3: Stream pub/sub connections for distributed IoT AI
application example.

pipelines described in Figure 3, showing that NNStreamer meets
the requirements of the given application scenario. Because MQTT
requires a broker for relaying messages and discovering published
services, users need to deploy an MQTT broker service. In the
figure, we have omitted flows of messages redirected by the broker.

With this prototype instance, the client’s initial requirements (AI
application developers) have been satisfied. However, as it has al-
ways been, the client has found additional requirements after seeing
the demonstration. The client has requested another demonstration
of pipelines that minimizes the difference between timestamp val-
ues of the two camera input frames when Device P merges frames
from the two. In this system, Device C1 and C2 mark timestamps
when the data frame is created in the pipeline or given by the cam-
era hardware. Another additional requirement is the capability to
compress data transmitted between devices. The last additional
requirement is the robustness of connections where alternative
resources can be connected if one fails in run-time.

The first additional requirement is satisfied with the same
pipeline architecture by updating MQTT plugins (mqttsink and
mqttsrc) with additional features, including the NTP [13] protocol,
which we discuss in the next section. The second is about perfor-
mance optimization, which is more appropriate with products than
with prototypes. By abandoning FlexBuffers from the pipelines, as
mentioned above for products, we can easily apply compression
mechanisms (zlib-gst [2], JPEG for each frame, or MPEG real-time
compression). We further provide performance optimization for
inter-pipeline transmissions with an additional protocol for MQTT,
which we discuss in the next section. The nature of MQTT and the
way we use MQTT for inter-pipeline connections satisfy the last
additional requirement: connect with the capability of pipelines,
not with the address of devices. Note that some clients have ex-
plicitly requested sparse tensor streams to compress streams for
language and speech models.

4 IMPLEMENTATION
This section describes how we have upgraded NNStreamer for
among-device AI based on the design described in the previous sec-
tion: stream data types, protocols for inter-pipeline transmissions,
and “NNStreamer-Edge” library for further compatibility with dif-
ferent vendors and operating systems. Then, we describe how the
requirements, R1 to R7, are met with the given implementation.
Lastly, we describe additional features assisting among-device AI
features and updates from the previous work.

4.1 Data types
R2 does not only imply using FlexBuffers [5] for inter-pipeline
transmissions. Data streams in a pipeline are often required to be
schemaless (or dynamic schema). For example, a pipeline may pre-
process a live video stream with an object detection neural network
to crop the video, making a video stream filled with a detected
human body. Then, the pre-processed tensor stream representing
the cropped video may have varying dimensions per frame, which
another neural network (e.g., pose estimation) may use as its in-
put stream. Thus, even while schemaless data exchanges between
pipelines might be useless, there is a need for the dynamic schema.

We update the tensor stream data type, “other/tensors” (MIME
for GStreamer capability), so that users may specify the format of
static, dynamic, and sparse. The conventional tensor stream with
schema is static, and it is the default format. With dynamic format,
the dimension and type may vary for each frame in a stream, which
can serve schemaless data from remote pipelines and stream with
dynamic schema. Unlike static format, which does not have format
information in the buffers of a data frame, the dynamic format has a
header in each data frame buffer that specifies dimension and type
for each data frame. The other format, sparse, allows expressing
tensors with the coordinate list format (COO) [19].

Filters for tensor streams, tensor_* elements, are updated to han-
dle static and dynamic formats. However, tensor_* elements do not
directly handle sparse formats because its binary representation of
tensor data is not compatible with the other two formats. Thus, we
provide converting filters, tensor_sparse_enc and tensor_sparse_dec.

In addition to the Protocol Buffers and FlatBuffers support of the
previous work, we add FlexBuffers of FlatBuffers for schemaless
data transmissions as sub-plugins of tensor_converter (FlexBuffers to
“other/tensors”) and tensor_decoder (“other/tensors” to FlexBuffers).

4.2 Protocols
There are various raw network protocol stream filters as off-the-
shelf shared libraries of GStreamer. According to GStreamer’s ref-
erence page at https://gstreamer.freedesktop.org, they include TCP,
UDP, RTSP, HTTP, HTTPS, FTP, HLS, and many others with differ-
ent serialization mechanisms. However, as explained in the previ-
ous section, they are not enough for among-device AI applications
while they appear almost complete for multimedia applications and
services.

4.2.1 Pub/Sub Protocol. Publish-subscribe architecture has been
widely accepted by the robotics community, including ROS [16].
AI application and service developers have requested a similar
capability to publish services and subscribe to the services. After

https://gstreamer.freedesktop.org
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iterations of different implementations from ROS, ZeroMQ [9], and
MQTT [4], we have decided to use MQTT as the basis. ROS is
not chosen because it is over-complicated for the need, requires
recompiling software for updated schema, and excessively requires
software packages for its dependencies. On the other hand, ZeroMQ
and MQTT are lightweight and do not require additional software
packages for their dependencies. ZeroMQ is the most lightweight
among these; however, we have chosen MQTT because major home
IoT standards (Matter [1] and SmartThings [20]) use MQTT already.
We want to make the among-device AI capability of NNStreamer
compatible with such home IoT standards.

For pub/sub capability (Figure 3), we provide two GStreamer plu-
gins: mqttsink and mqttsrc. With mqttsink, a pipeline may publish
a stream (output of the pipeline) declared with a topic string. With
mqttsrc, a pipeline may subscribe to a published stream and fetch
an input stream for the pipeline from an output stream of another
pipeline discovered by the given topic string. The topic string is
independent of GStreamer capability (GSTCAP), representing the
type information of a stream between two pipeline elements. A
schemaless stream may have a GSTCAP of “other/flexbuf”, and a
receiving pipeline should interpret as a properly structured stream
type. A dynamic-schema stream may have a GSTCAP of “other/ten-
sors,format=flexible”, and a receiving element (a neural network or
a tensor processing element) can directly handle without additional
conversion or interpretation.

We use “Eclipse Paho MQTT C client library” [3] for MQTT
implementation. It is open source software with high coverage of
MQTT features and high portability (an independent C/C++ library),
which has a port for lightweight RTOS devices (e.g., FreeRTOS). Via
MQTT connections, among-device AI transport plugins transmit
data and metadata, including the corresponding GSTCAP and data
size.

4.2.2 Query Protocol. We provide three GStreamer plugins for
query capability (inference workload offloading in Figure 2): ten-
sor_query_client, tensor_query_serversrc, and tensor_query_server-
sink. In a pipeline, tensor_query_client behaves equivalently to
tensor_filter representing a neural network model. Thus, for other
parts of the pipeline or the application running the pipeline (the
client), tensor_query_client hides all the details for inference task
offloading transparently and may be switched with local on-device
AI elements. It sends queries (input stream for a neural network)
to tensor_query_serversrc and receives inference results from ten-
sor_query_serversink. In a server-side pipeline, the two elements,
tensor_query_serversrc (input for the server) and tensor_query_serversink
(output for the server), are paired and share information of client
connections. In case there are multiple clients for a server-side
pipeline, tensor_query_serversrc tags a client ID to the stream’s
metadata, which tensor_query_serversink accesses to choose the
proper client connections.

Query elements implement two different transport protocols that
users may choose: TCP-raw and MQTT-hybrid. With TCP-raw, the
connection between clients and servers are raw TCP connections,
which does not provide the flexibility and robustness required by
R3 and R4. MQTT-hybrid transmits the connection and control
information viaMQTT connections, which easily satisfies R3 and R4
by allowing multiple server pipelines compatible with a given topic

Figure 4: Timestamps from multiple source pipelines [21]

requested by a client. To allow multiple servers for a given topic
of a client pipeline, we use wildcards and topic filters for MQTT
topics, which subscribers (clients) use to choose publishers (servers)
dynamically. For example, with servers of “/objdetect/mobilev3”
and “/objdetect/yolov2”, a client may choose either of them by
subscribing to “/objdetect/#”.

MQTT-hybrid transmits data transmission via direct TCP con-
nections without brokers for higher throughput and lower broker
overheads. Note that MQTT connections are not suitable for high-
bandwidth streaming because of excessive overheads of a broker;
thus, per clients’ requests, we have designed the MQTT-Hybrid
protocol for queries. The clients of pub/sub have not yet requested
higher bandwidth; however, we will provide MQTT-hybrid along
with pure MQTT for pub/sub with the subsequent releases of NN-
Streamer.

4.2.3 Timestamp Synchronization. An internal client has requested
to minimize temporal differences between multiple input sources.
For such needs, we add an inter-pipeline synchronization mecha-
nism for pub/sub streams [21]. Note that “query” does not suffer
from such synchronization issues because client pipelines do not
depend on the timestamp values of servers. This timestamp syn-
chronization mechanism makes stream publishers send base-time
values of the publishing pipeline converted to universal time and
relative timestamp values of buffers. Then, receivers (subscribers)
correct timestamp values of incoming buffers with their base-time.
The mechanism relies on clock synchronization between connected
pipelines implemented by NTP protocol synchronizing relative
clocks of inter-connected pipeline elements (mqttsink and mqttsrc).
We can test this by injecting latency to a publisher in Figure 3 by
inserting the queue2 GStreamer plugin, which holds data until the
specified size or duration.
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4.3 NNStreamer-Edge Library
NNStreamer-Edge is a lightweight and portable library implement-
ing the proposed protocols to connect with NNStreamer pipelines
without adopting NNStreamer. NNStreamer-Edge is an open source
software package independent from NNStreamer and its basis,
GStreamer: https://github.com/nnstreamer/nnstreamer-edge. It
does not depend on NNStreamer or GStreamer so that devices that
cannot afford GStreamer or heavy operating systems may easily use
NNStreamer-Edge. NNStreamer-Edge has minimal library depen-
dency, Paho MQTT C client library. This library also has minimal
library dependency; if SSL is disabled, it only requires essential
tools (e.g., GCC and libc).

NNStreamer-Edge of October 2021 supports tensor stream pub-
lish for remote sensors and cameras: “edge_sensor” module. This
module behaves like an “mqttsink” NNStreamer element with “oth-
er/tensors” streams to connect with “mqttsrc” NNStreamer ele-
ments. We have designed other modules of NNStreamer-Edge,
“edge_output” and “edge_query_ client”, but have not yet released
them.

The primary objective is to extend connectivity for devices of
arbitrary vendors; thus, the proposed mechanisms should be com-
patible with or included in alliances such as Matter [1] and Smart-
Things [20]. Because NNStreamer-Edge has chosen Apache 2.0
license and does not have extra dependencies, anyone may im-
plement their proprietary software with NNStreamer-Edge. For
example, third-party developers may implement a proprietary Me-
diaPipe plugin with NNStreamer-Edge so that arbitrary MediaPipe
pipelines may communicate with NNStreamer pipelines. Note that
DeepStream pipelines are GStreamer pipelines; thus, they can triv-
ially connect to NNStreamer pipelines, which are also GStreamer
pipelines.

4.4 How the requirements are met
This section describes how the proposed implementation satisfies
each requirement mentioned in the first section.

R1. As long aswe implement AI services and shared input/output
streams as NNStreamer pipelines, we can deploy them atom-
ically as pipeline instances or pipeline descriptions. With
tensor_query_client/server, we can offload inference tasks to
another pipeline. With mqttsrc/sink, a pipeline may serve as
a data stream publisher or subscriber.

R2. If a stream is typed as “other/flexbuf” using “Flexbuf” sub-
plugins, it is schemaless. A NNStreamer-native stream can
be schemaless if it is typed as “other/tensor,format=flexible”.
The former is for compatibility with third-party software,
and the latter is for in-pipeline or inter-pipeline streams.

R3. The adoption of MQTT for connections has satisfied this re-
quirement. Multiple subscribers or clients can connect with
a server with topic names. Multiple publishers or servers
may be available for a given client or subscriber to choose
with topic filters and wildcards. The timestamp synchroniza-
tion mechanism described in Section 4.2.3 supports synchro-
nization. Sparse tensors and gst-gz [2] support compressed
transmissions.

R4. MQTT client libraries and MQTT brokers handle this.

R5. NNStreamer is LGPL 2.1 with all source codes included as
default plugins to satisfy this requirement. For systems with-
out NNStreamer and GStreamer, but with their proprietary
middleware, we release NNStreamer-Edge with Apache 2.0
so that users may distribute their software without the con-
dition of LGPL 2.1. Anyone may participate in designing and
developing both packages in open space, Github.com.

R6. NNStreamer is cross-platform and deployed for different
operating systems officially: Tizen, Android, Ubuntu, Yocto,
and macOS. In addition, users have reported using it in De-
bian and OpenSUSE as well. It would not be too difficult
to port it for Windows or iOS, but we have not tried it yet.
The inter-pipeline connectivity library, NNStreamer-Edge,
is designed to make the among-device AI capability compat-
ible with different operating systems and different pipeline
frameworks.

R7. We satisfy this by allowing developers to implement AI ser-
vices with conventional NNStreamer plugins and adding
inter-pipeline transmission plugins. For example, in Tizen,
adding among-device AI capability (Tizen 6.5 M2) does not
break the backward compatibility of the machine learning
API set.

5 USAGE EXAMPLE AND EVALUATION
This section describes exemplar among-device AI systems with
implementation details and experimental results.

5.1 Workload Offloading with Query

Listing 1: The code implementing workload offloading with
query elements, depicted in Figure 2.
# Device A code

v4l2src ! tee name=ts

ts. videoconvert ! videoscale !

video/x-raw ,width =300, height =300, format=RGB !

queue leaky=2 ! tensor_converter !

tensor_transform ${TROPT}$ !

tensor_query_client operation=${SVCNAME}$ !

tee name=tc

ts. queue leaky=2 ! videoconvert ! mix.sink_1

tc. queue leaky=2 ! appsink name=appthread

tc. tensor_decoder mode=${DECMODE} ${DECOPTS} !

videoconvert ! mix.sink_0

compositor name=mix sink_0 :: zorder =2 sink_1 ::

zorder =1 ! videoconvert ! videoscale !

video/x-raw ,width =640, height =480 ! ximagesink

# Device B code

tensor_query_serversrc operation=${SVCNAME} !

tensor_filter framework=tensorflow -lite model=${

MODELPATH}$ ! tensor_query_serversink

Listing 1 shows a script code representing GStreamer pipelines
in Figure 2. GStreamer API or its wrapper, NNStreamer API (Tizen
ML API), can execute such a script. We can also execute the script
directly on a shell with “gst-launch” for prototyping and testing.
We can apply such pipelines to home IoT systems consisting of a

https://github.com/nnstreamer/nnstreamer-edge
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device with comfortable user interfaces without high computing
power (e.g., an inexpensive TV) and a device with less comfortable
user interfaces with high computing power (e.g., a home IoT hub
or a mobile phone). In other words, if a user has an inexpensive
but large display (Device A) and a high-end mobile phone (Device
B). The user may run home fitness and training applications by
offloading a pose-estimation neural network to Device B while
using the camera and screen of Device A.

Please note the simplicity of server (Device B) code; declaring
the service name (${SVCNAME}) is all developers need to do. If
users want more operations in servers–e.g., pre-processing or data
collecting–, they may add corresponding filters to the pipeline. The
client-side pipeline is straightforward as well. The only changes
from its on-device AI equivalent pipeline are replacing tensor_filter
with tensor_query_client and declaring the service name. Then, we
may have multiple clients and multiple servers for the given service
name for resource sharing and robustness.

The string variables in Listing 1 depend on neural network mod-
els and their input and output formats. For example, if it is a Mo-
bilenet V2 object detection model [18] from TensorFlow Hub with
COCO 2017 dataset [23], the variables are:

TROPT = "mode=arithmetic␣option=typecast:float32 ,

add:-127.5,div :127.5"

SVCNAME = "objectdetection/ssdv2"

DECMODE = "bounding_boxes"

DECOPTS = "option1=mobilenet -ssd␣option2 =/PATH/

coco_labels_list.txt␣option3 =/PATH/box_priors.

txt␣option4 =640:480␣option5 =300:300"

MODELPATH = /PATH/ssd_mobilenet_v2_coco.tflite

Configurations and behaviors of queues and merging points
(compositor in this example) are crucial for the efficiency of par-
allelism. With the leaky=2 option, a queue drops older buffers if
it becomes full. Users may alter options, including the size of the
queue and leaky modes, for further optimization.

5.2 Stream Pub/Sub

Listing 2: The code implementing remote sensors with pub-
/sub in Figure 3 along with timestamps mechanisms.
# Device C1 / C2

v4l2src do -timestamp=true ! videoconvert !

videorate ! video/x-raw ,width=${W},height=${H},

format=RGB ,framerate =10/1 !

tensor_converter ! tensor_decoder mode=flexbuf !

queue ${OPT} ! mqttsink pub -topic=${CAM} sync=true

# Device P

tensor_merge name=m mode=linear option =1 !

tensor_decoder mode=direct_video ! videoscale !

video/x-raw ,width =300, height =300, format=RGB !

tensor_converter ! tensor_filter framework=edgetpu

, model=${MODELPATH} !

tensor_decoder mode=flexbuf !

mqttsink pub -topic=edge/inference

mqttsrc sub -topic=camleft is-live=false !

other/flexbuf ! tensor_converter ! queue !

m.sink_0

mqttsrc sub -topic=camright is-live=false !

other/flexbuf ! tensor_converter ! queue !

m.sink_1

# Device D

compositor name=mix sink_0 ::xpos=1 sink_0 ::ypos=0

sink_0 :: zorder =0 sink_1 ::xpos=${W} sink_1 ::

ypos=0 sink_1 :: zorder =0 sink_2 ::xpos=1 sink_2

::ypos=0 sink_2 :: zorder =1 !

videoconvert ! ximagesink

tensor_mux name=mux ! queue !

tensor_demux name=dmux

dmux.src_0 ! tensor_decoder mode=direct_video !

queue ! mix.sink_0

dmux.src_1 ! tensor_decoder mode=direct_video !

queue ! mix.sink_1

dmux.src_2 !

tensor_decoder mode=direct_video option1=RGBA !

queue ! mix.sink_2

mqttsrc sub -topic=camleft is-live=false !

other/flexbuf ! tensor_converter ! queue !

mux.sink_0

mqttsrc sub -topic=camright is-live=false !

other/flexbuf ! tensor_converter ! queue !

mux.sink_1

mqttsrc sub -topic=edge/inference is-live=false !

queue ! other/flexbuf ! tensor_converter !

other/tensors ,num_tensors =4, dimensions="

4:20:1:1 ,20:1:1:1 ,20:1:1:1 ,1:1:1:1",types="

float32 ,float32 ,float32 ,float32" !

option1=tf-ssd option2=${LABELPATH}

option3 =0:1:2:3 ,40 option4=${W}:${H}

option5 =300:300 !

tensor_converter ! queue ! mux.sink_2

Listing 2 shows a GStreamer pipeline description of the applica-
tion example shown in Figure 3, where FlexBuffers [5] serializes
published streams. When the v4l2src creates a video frame buffer,
fetching video streams from a USB camera attached to a Raspberry
Pi 4 board in our experiments, the v4l2src provides a timestamp
value with the option of do-timestamp=true to enable the mecha-
nism in Figure 4. Note that this code does not require the camera
to be a USB camera or the system to be a Raspberry Pi 4. The same
code works for an embedded camera of a mobile phone or a typical
Linux desktop PC without modification. If multiple cameras are
attached to the system, users may specify it with additional options;
otherwise, it uses /dev/video0.

The pipeline topology of the target application in Figure 3 has
become more complex than the application in Figure 2. It would
require a considerable amount of time and effort to implement such
systems without pipeline frameworks as we have experimented
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Figure 5: Augmented worker application with a wearable de-
vice and a mobile device.

in [8]; i.e., it would probably require well over thousands of lines
of codes. With the off-the-shelf GStreamer/NNStreamer plugins
and effortlessly applied pipe-and-filter architecture, users can write
such an among-device AI system within 100 lines of codes, which is
easy to extend and port. We can execute the same pipeline descrip-
tions in Ubuntu PC, Yocto devices, Tizen devices (TVs, home ap-
pliances, robots, and wearable devices), or Android mobile phones.
With the NNStreamer-Edge library, developers can interconnect
pipelines with more varying devices, including MediaPipe/Deep-
Stream pipelines running in clouds or workstations and lightweight
devices (microcontrollers) running RTOS.

Note that FlexBuffers, FlatBuffers, or Protocol Buffers are not
required to connect NNStreamer pipelines and NNStreamer-Edge
instances only. For other independent non-NNStreamer processes
subscribing to the published streams, we can apply FlatBuffers, Flex-
Buffers, or Protocol Buffers, popular data serialization mechanisms.

5.3 Multi-device and Multi-modal
Another example, Figure 5, shows an augmented worker applica-
tion, which is both multi-device and multi-modal. Such a system
may assist workers in manufacturing plants by detecting and noti-
fying events requiring attention. For example, if a worker assembles
parts incorrectly, the system sends an alarm to the worker.

In the left-hand side pipeline of the mobile device, the “DETECT”
model detects if an action of assembling parts is starting and let
the wearable device know. Then, the wearable device will start
streaming related data from the microphone and IMU sensors back
to the mobile device. Then, the right-hand side pipeline of the
mobile device decides whether the assembling activity is correct or
incorrect based on the data from the wearable device and reports to
the application logic. To further optimize power consumption in the
wearable device, we may turn on and off the sensors based on the
“activation” signal from the mobile device. As we demonstrate with
previous examples, the pipeline description code of this example
incurs short lines of codes as well; i.e., usually a single line per
block with exceptions of tensor_if, where we need to describe the
condition with a script or a C function.

Figure 6: Pipelines for performance evaluation.

5.4 Performance Evaluation
We evaluate the proposed among-device AI transport mechanisms:
MQTT pub/sub and MQTT-hybrid query along with their lighter
and faster counterparts: ZeroMQ pub/sub and TCP query. We have
experimented with Raspberry Pi 4 boards connected via Ether-
net and NNStreamer 2.1.0-unstable. Figure 6 shows the evaluated
among-device AI pipelines. Case A evaluates the stream pub/sub
of MQTT and ZeroMQ. Case B evaluates the query client/server
streams of MQTT-hybrid and TCP direct connections. We measure
the throughput, CPU usage, and peak memory consumption to eval-
uate both performance and overhead. We experiment with three
different bandwidths of input streams from Device A and Device
C: high, mid, and low bandwidths. Each bandwidth corresponds
to a Full-HD video stream, a VGA (640x480) video stream, and a
QQVGA (160x120) video stream with a 60 Hz framerate.

Figure 7 shows the evaluation results of MQTT pub/sub and
MQTT-hybrid query, normalized by their counterparts, ZeroMQ
and TCP, respectively. Bars in the figure are normalized standard
deviations, and values average five experimental runs of 30 seconds.
Case M and H have failed to transmit 60 Hz, implying that the
network bottlenecks the throughput. MQTT suffers from lower
throughput and higher client memory overhead with high band-
width streams (M and H). MQTT-hybrid successfully eliminates the
performance overheads of MQTT while keeping the rich features
of MQTT. For example, with the MQTT-hybrid query, if multiple
servers are compatible with the client’s topic, the client pipeline is
automatically switched to another server when a connected server
becomes unavailable. Moreover, server pipelines may declare ad-
ditional specifications for clients to choose, e.g., “server workload
status” and “neural networkmodel and version”. Note that the query
plugins have both TCP direct and MQTT-hybrid implementations
switchable at run-time. For higher performance, we plan to add
MQTT-hybrid for pub/sub plugins, as well.

6 CONCLUSION
We have extended the on-device AI pipeline framework [8] for
among-device AI systems (often marketed as edge AI). The pro-
posed framework, NNStreamer, is developed and released at the
GitHub organization owned by Linux Foundation, https://github.
com/nnstreamer, where anyone may participate in discussions and

https://github.com/nnstreamer
https://github.com/nnstreamer
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Figure 7: Evaluation results of Pub/Sub (MQTT normalized by ZeroMQ) and Query (MQTT-Hybrid normalized by TCP).

code contributions. It is deployed to the mentioned operating sys-
tems daily or regularly: Tizen (as default machine learning frame-
work), Android (for Android Studio via public repositories), Yocto
(via meta-neural-network layer), Ubuntu (Launchpad PPA), macOS
(homebrew repository). We are deploying the among-device AI
capabilities introduced in this paper via the Tizen 6.5 M2 release
in October 2021; note that a few features (NNStreamer-Edge and
MQTT-hybrid) are not yet approved by internal clients and are
omitted in Tizen 6.5 releases but available in GitHub. A few home
appliances of 2022, including TVs, will be using Tizen 6.5 M2; thus,
the mentioned features will be available for products in 2022, and
Tizen Studio users writing applications for such products.

6.1 Lessons Learned
After wide deployment of the previous work [8] across many proto-
types and products, includingmobile phones, wearable devices, TVs,
and home appliances, we have worked on prototypes of various
internal clients based on the proposed among-device AI methods.
As a result, we have observed the following lessons and future
work.

Many users appear to feel barriers against adopting pipe-and-
filter architecture. It is easy to show that pipelines with NNStreamer
work appropriately and significantly better than the conventional
implementation for both developmental costs and run-time per-
formance. However, we could have observed unexpectedly steep
learning curves to adopt pipeline concepts and to describe pipeline
topology. For the former issue, we are preparing to write more
diverse pipeline examples for users. For the latter issue, we are
implementing a WYSIWYG pipeline editor with a converter trans-
lating between GStreamer scripts and MediaPipe scripts (pbtxt) to
re-use MediaPipe’s pipeline editor.

Analyzing and profiling pipeline performance becomes more
complicated with among-device AI pipelines. We have an AI
pipeline profiling tool, nnshark, which forks GstShark [6], created
by a group of undergraduate students as an open source software
project. We have ported nnshark for Tizen and Android devices
and deployed it to users. However, with among-device AI capa-
bility, users are not satisfied with nnshark, and request profiling
capability for the whole system consisting of multiple pipelines
simultaneously.

We have been implementing initial prototypes or practicing pair
programming for internal clients to address learning curves and

developer relations. For external users of open source communities,
we try to catch up with technical questions in various channels
(Slack, Github issues, mailing lists, and direct contacts) in addition
to documents and sample applications. However, with frequent
requests from internal clients and our roadmap of new features,
writing documents and sample applications have always had lower
priority and been behind schedule. Besides, with a few core contrib-
utors focusing on code contributions, it is challenging to motivate
writing documents. It is also difficult to justify having a dedicated
document writer while we directly support internal clients so that
they do not even bother to read the documents.

NNStreamer has external users that have contacted the authors:
NXP Semiconductors, Collabora, ODKMedia, and fainders.ai. Feed-
back and contributions from them are constructive for identifying
issues and requirements. Motivating external users to communicate
with maintainers is essential; they are often too shy to do so. We
recommend keeping such communication in public channels to
motivate other users to communicate with maintainers and the
community.

Users often write pipelines incorrectly or inappropriately, and it
is usually too late when we find it out. For example, an NNStreamer
application [11] drawing bounding boxes of detected objects with
live video streams has an inappropriate pipeline design. Creating
video streams from neural network output is supposed to be han-
dled by tensor_decoder. Its authors [11] are aware of it; however,
for neural network output formats not supported by default sub-
plugins of tensor_decoder, they have abandoned tensor_decoder and
made their application thread directly decode outputs and push de-
coded data into the pipeline. It is supposed to write a tensor_decoder
sub-plugin for such a case, which incurs lower overhead, higher
throughput, and less implementation effort. Fortunately, although
inappropriately implemented, their NNStreamer implementation is
shown to beat Open CV implementation with higher throughput.
Promoting communication with the NNStreamer community may
address this issue; however, we have observed similar cases with
internal users: the users have sometimes released inappropriate
pipelines before addressing them. Such releases are especially trou-
bling considering that we are still at an early stage of deploying
the pipeline paradigm to AI developers in the affiliation. Besides,
the standard practice of software verification and testing is not
ready for such issues. We may need another verification and testing
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process for newly introduced frameworks with a new concept, al-
lowing framework developers to audit. Such processes will provide
more usage cases for framework developers and more chances to
improve their frameworks.

6.2 Directions of Evolution
NNStreamer has started evolving for among-device AI systems. Be-
sides the apparent performance optimization, we have suggestions
for among-device AI systems and pipeline frameworks as future
work.

With frameworks including NNStreamer [8], DeepStream [15],
and MediaPipe [12], developers have started writing AI systems as
pipelines. These frameworks provide various documents and sam-
ple pipelines to mitigate difficulties suffered by developers writing
AI pipelines. However, as our users have complained, they are not
enough.

We would like to suggest another method directly intervening
pipeline development process. First, we need to provide common
parts of pipelines (sub-pipelines) as libraries; that developers can
invoke or insert sub-pipelines in their pipelines. There are various
common parts in different AI applications: e.g., pre-processing video
streams for object detection or audio streams for RNN-T [17]. This
feature may often prevent inappropriately designing pipelines as
well.

Then, we need a pipeline run-time repository where processes
may register pre-defined pipelines, and other processes may in-
voke such pipelines. This feature enables operating systems or
middleware to register pipelines for applications. It enables ap-
plications without particular AI features to invoke such pipelines
without actually writing pipelines. Moreover, suppose a vendor
wants to separate the application development and AI development
divisions; this approach will cleanly separate code repositories for
corresponding divisions as a client has wanted.

We have further future directions that require more time and
effort; the above can be implemented and deployed within a year.
We envision an IoT ecosystem where devices of any vendors may
join, which is related to R5 and R6. Matter [1] along with Smart-
Things [20] is a promising candidate for such an IoT ecosystem;
however, it lacks a data transmission protocol for inter-device AI
services. In the future, we expect to propose such a protocol with
among-device AI capabilities mentioned in this paper with exten-
sions of interoperability with microcontrollers and other pipeline
frameworks. With such protocols included in the IoT ecosystem,
connected devices will be able to consistently provide AI services
regardless of interface devices’ computation power. This inclusive-
ness and consistency will promote the proliferation of various on-
device and among-device AI services without the need for exposing
privacy and private data to external computing nodes.
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