
Bug Tracking Process Smells In Practice

Erdem Tuna
erdem.tuna@bilkent.edu.tr

Bilkent University

Ankara, Turkey

Vladimir Kovalenko
Vladimir.Kovalenko@jetbrains.com

JetBrains Research

Amsterdam, The Netherlands

Eray Tüzün
eraytuzun@cs.bilkent.edu.tr

Bilkent University

Ankara, Turkey

ABSTRACT

Software teams use bug tracking (BT) tools to report and manage

bugs. Each record in a bug tracking system (BTS) is a reporting

entity consisting of several information fields. The contents of

the reports are similar across different tracking tools, though not

the same. The variation in the workflow between teams prevents

defining an ideal process of running BTS. Nevertheless, there are

best practices reported both in white and gray literature. Developer

teams may not adopt the best practices in their BT process. This

study investigates the non-compliance of developers with best

practices, so-called smells, in the BT process. We mine bug reports

of four projects in the BTS of JetBrains, a software company, to

observe the prevalence of BT smells in an industrial setting. Also,

we survey developers to see (1) if they recognize the smells, (2)

their perception of the severity of the smells, and (3) the potential

benefits of a BT process smell detection tool. We found that (1)

smells occur, and their detection requires a solid understanding

of the BT practices of the projects, (2) smell severity perception

varies across smell types, and (3) developers considered that a smell

detection tool would be useful for six out of the 12 smell categories.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;

Software configuration management and version control systems;

Maintaining software.

KEYWORDS

bug tracking system, empirical study, developer perception, bug

tracking smells, process smell

ACM Reference Format:

Erdem Tuna, Vladimir Kovalenko, and Eray Tüzün. 2022. Bug Tracking

Process Smells In Practice. In 44nd International Conference on Software

Engineering: Software Engineering in Practice (ICSE-SEIP ’22), May 21–29,

2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 10 pages. https://doi.

org/10.1145/3510457.3513080

1 INTRODUCTION

Developers inevitably introduce bugs to software. Quality assur-

ance engineers and end users encounter these bugs, which brings

the need for a communication channel to report the bugs and track

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513080

progress on their resolution. Companies, communities, and devel-

oper teams use the process of bug tracking (BT) to govern the bugs.

Dedicated bug tracking systems (BTS) provide a medium to run the

BT process in an organized manner. Although bots and automated

actors may take part in bug tracking [15, 30], the primary agent

of a BTS is individuals. Most actions in the bug tracking process,

such as submitting, triaging, assigning, prioritizing, linking, and

resolving the bugs, are conducted by humans: either developers or

end users reporting the issues.

To err is human, and the process and products of human work

are often suboptimal. A growing body of research in software engi-

neering is dedicated to identifying the so-called smells, the charac-

teristics and patterns in software systems that are either suboptimal

or dangerous per se or indicate underlying issues. The scope of re-

search on smells is very broad [20]. It ranges from code smells [28],

through higher-level architecture and design smells [17, 29], to the

team- and ecosystem-level community smells [2]. Smells can be

specific to a certain aspect, such as security [8].

The potential benefit of identifying smells in systems is multifac-

eted. First, the presence of smells indicates technical and organiza-

tional risks, which might help prioritize preventive measures such

as maintenance activities. Moreover, once detected, some smells

can be addressed with automatic approaches: for example, many

code smells can be eliminated with reengineering tools [10] or

automated suggestions from static analysis tools [23].

A less studied, yet emerging area is the identification of smells

in processes rather than artifacts. Process smells are defined as the

deviations from best practices in either the development process

as a whole [25] or in its specific parts, such as code review [6] and

bug tracking [18]. In a recent study, Qamar et al. [18] compile a

taxonomy of 12 potential smells in the bug tracking process and

propose algorithms for automated mining of these smells.

In this work, we put the taxonomy and the detection tools to the

test in an industrial setting. Through a case study at JetBrains, a

vendor of software engineering tools, we (1) investigate the occur-

rence of bug tracking smells in four industrial projects, (2) assess the

perception of the smells by internal users of the bug tracking tool,

and (3) gauge the potential added value of detecting and presenting

the bug tracking process smells to the users.

The contributions of this work are:

• The first study on the occurrence of bug tracking smells in

industrial software projects;

• An assessment of perception of relevance and severity by

software professionals for each of the bug tracking smells;

• An evaluation of the potential added value of automatic

detection of bug tracking smells.

The remainder of this paper is organized as follows. In the fol-

lowing section, we present the background information. In Section

3, the study design is described. Section 4 presents the results of the

77

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)
20

22
 IE

EE
/A

CM
 4

4t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 S
of

tw
ar

e
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e
(IC

SE
-S

EI
P)

 |
 9

78
-1

-6
65

4-
95

90
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
SE

-S
EI

P5
53

03
.2

02
2.

97
93

95
2

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Tuna et al.

empirical evaluation on four projects and the conducted survey. In

Section 5, the empirical results and the survey results are discussed.

Section 6 addresses validity threats of this study and finally, Section

7 presents our conclusion and future work.

2 BACKGROUND

2.1 Research on Bug Tracking

The process of issue tracking, and bug tracking in particular, is one

of the pillars of modern software engineering. Numerous studies in

the software research community have focused on understanding

the bug tracking process and proposing automated approaches

to enhance the bug tracking tools. Alipour et al. [1] developed

a context-aware bug deduplication method to find duplicate bug

reports. Zimmermann et al. [33] investigated the components of

a comprehensive bug report. They surveyed both developers and

bug reporters identified that stack traces and steps to reproduce

are the most helpful information in bug reports. Soltani et al. [21]

checked how significant different information provided in a bug

report. To curate developer views, they conducted interviews. They

validated their findings by surveying developers. It is concluded

that developers consider crash description and reproducing steps

are the most important information in a bug report (similar to [33]).

Tamrawi et al. [24] developed a fuzzy set approach combined with

caching technique to predict bug assignee. Besides, Xuan et al. [31]

found that more effective assignee prediction is possible if the used

number of data points is reduced. Tian et al. [26] introduced a

new framework for predicting the priority field in bug reports.

They extracted features from data and metadata of bug reports

such as bug description, author name, and severity level. Linear

regression-based classifier operates based on the generated features

and predicts the priority of a bug report. Umer et al. [27] studied

priority field prediction by considering deep learning techniques.

They utilize textual features obtained from the description of the

bug report and emotion value. Priority classification is realized

with a convolutional neural network model. Lamkanfi et al. [13]

explored the applicability of the machine learning concept into the

severity field prediction problem for the first time. They used Naïve

Bayes classifier using the textual features extracted from the text

in bug report descriptions.

There are also studies focusing on the reassignment of values in

different fields of bug reports [12] and classification of bug types [5]

The studies focus on specific parts or fields in the bug reports.

They provide ways to increase and enhance the accuracy or quality

of choosing a value of the related fields. Adopting better methods

is important to enhance a process. Observing the current status

enables recognizing the hotspot in a process. Hotspots could be

a problem of the present, but they could also hint at long-living

problems. Buse and Zimmermann [3] found that managers and

developers think that, related to a software process, the answer of

"what happened (in the past)" is more important than the answer of

"what will happen (in the future)". Thus, interpreting the past and

current status of a BT process would provide the relevant analytics

to practitioners.

2.2 Bug Tracking Process Smells

The literature investigating the smells in the BT process is new.

Qamar et al. [18] conducted the first study that systematically col-

lects and analyzes the potentially suboptimal patterns in the BT

process through a review of both white and grey literature. Qa-

mar’s study proposes a taxonomy of 12 bug tracking process smells,

which they define as "deviations from best practices". Along with

the taxonomy, they suggest methods to detect each of the smells.

Moreover, the study explores the frequency of each smell in six

open source projects. Their results suggest that the smells (1) do

occur in practice, and (2) each smell has a different occurence ratio

across different projects, and (3) some smells decrease in frequency

over time in specific projects. We refer the reader to [18] for the

complete definitions of the smells.

In this study, we want to observe the smells in an industrial

context (more specifically, projects of JetBrains) instead of open

source projects.

2.3 Industry Case Studies in Software
Engineering

Software engineering researchers conduct case studies in private

companies involving developers to explore the applicability and

relevance of academic research results in practice [4, 9, 14, 16, 19,

22, 32]. Empirical studies in industry are the ultimate means to

gauge the perception of the concepts and methods from academia

by software professionals.

Strand et al. [22] deployed and evaluated their new code re-

viewer recommendation tool at Ericsson. They employed surveys

and interviews to evaluate the tool’s performance and understand

the perception of practical feasibility of the tool by developers.

Sadowski et al. [19] analyzed the current practices and the driv-

ing motives for the code review process at Google. The authors

surveyed 44 developers to understand the value and effect of code

reviews. Moreover, they interviewed 12 developers about their moti-

vation for participation in the code review activity. Lewis et al. [14]

explored the benefits of a bug prediction system for developers.

They investigated the usefulness of two well-known bug prediction

algorithms in practice. By interviewing 19 developers at Google,

they found that the algorithms do not appear very useful to devel-

opers. Yan et al. [32] analyze the performance of a state-of-the-art

defect identification system on Alibaba projects. Their study re-

veals that tool recommendations are less accurate than prior studies

involving open-source studies. They conclude that the algorithms

should be customized to account for project-specific factors.

Industrial studies that involve techniques and tools originating

in academia are an invaluable source of information to validate the

correctness of assumptions and understand the potential barriers

to adoption of the techniques. Similarly to these studies, with this

one we are looking to confirm that the results generated by the

algorithms for bug tracking smells are indeed aligned with the in-

tention behind them, and to understand the developers’ perspective

on BT process smells.

3 STUDY DESIGN

Our study consists of several steps. First, we selected the target

projects and collected a historical dataset from the bug tracking

78

Bug Tracking Process Smells In Practice ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

system. Then, we adapted the smell detection algorithms [18] to the

YouTrack platform. After that, we detected the smells in the target

projects1 and obtained the data on prevalence of the smells. Finally,

we designed and ran a survey serving several purposes: (1) to vali-

date the smell detection algorithms and learn if developers consider

smells as a deviation from the ideal process; (2) to understand the

importance and severity of the smells from the developers’ point

of view; (3) to explore the demand and benefits of a potential smell

detection tool. This section expands the details of each step.

3.1 Research Questions

We build this study around the following research questions.

RQ1. How common is each of the bug tracking smells in

industrial projects?

The foundational study on bug tracking smells [18] inspects the

frequency of BT process smells in open source projects. We are

looking to explore the prevalence of smells in proprietary projects

to complement their results.

RQ2. Do developers agree on the definitions and detection

methodologies of BT process smells?

Generalization of the BT process smell detection algorithms

could lead to inaccurate analyses due to differences between prac-

tices in teams and the bug tracking systems they use. Every BTS

brings its own data format, and the details of smell detection de-

pend on it. The practices followed in different teams may influence

the existence of smells. A practice that is undesirable in one team

might be intentional in another. Even individual developers on the

same team may perceive the smells differently. With this research

question, we want to explore the understanding of the smells across

different teams and individuals.

RQ3.Howdodevelopers perceive the severity of each smell?

Even if a bug tracking process involves suboptimal patterns, and

developers accept them as smells, the smells should not necessarily

be addressed. For example, if fixing a smell is too cumbersome, the

optimal solution could be to continue the process as is. Thus, the

smells should be prioritized based on their severity. With this re-

search question, we want to understand the developers’ perception

of smells severity.

RQ4. Can a tool detecting and presenting smell results to

developers be helpful?

The bug tracking smells could potentially be automatically de-

tected and presented to the developers either within the bug track-

ing platform or in a standalone tool. With this research question,

we are looking to gauge the developers’ opinions on the potential

value of a smell detection tool in practice.

3.2 Scope and Data

3.2.1 Target Company. Our target company, JetBrains, is a world-

renowned vendor of software engineering tools. The company

employs over 1,500 people in multiple locations across the globe,

and offers over 20 products for individual software engineers and

software engineering teams.

One trait of JetBrains that makes it a particularly suitable target

for our case study is the lack of strictly imposed company-wide

process policies. This means that every team tailors their process

1In this paper, project refers to the BT projects in YouTrack (Section 3.2.2)

Table 1: Overview of target projects. The numbers are ap-

proximate.

Project
Number of

Issues

Number of

Bugs

Number of

Developers

Project-A 15,000 5,000 90

Project-B 25,000 15,000 100

Project-C 55,000 20,000 30

Project-D 230,000 150,000 150

to their own needs, which allows us to assess the perception and

potential usefulness of bug tracking smells in several diverse envi-

ronments.

3.2.2 Target Platform. The primary platform for issue tracking

(and bug tracking in particular) at JetBrains is YouTrack. It has been

in use for over 10 years, and is used by both internal reporters and

end users who can report bugs directly to development teams. Each

ticket in YouTrack belongs to a particular project. The format of

tickets (e.g. field set, requested fields, default automated workflows)

is customized per project.

3.2.3 Dataset. We selected four target projects based on the two

criteria: the number of bugs and developers. The number of bugs

is essential to make meaningful observations on patterns followed

in the BT process of a project. The results obtained from a small

number of bugs would limit generalizability. On the other hand,

selecting projects with more developers would increase the par-

ticipation in surveys. We present the information for the selected

projects in Table 1. For industrial secrecy and privacy reasons, we

do not disclose the project names and refer to them as ProjectA..D

in the paper.

We utilized the YouTrack REST API2 to download the complete

issue histories of the selected projects. The projects have varying

types of issues such as task, bug, or feature. The bug type is shared

among all selected projects, and we included the issues with the

type bug in our dataset and ignored the rest.

3.3 Smells and Detection

3.3.1 Smell Categories. As indicated in Section 2.2, we follow the

taxonomy of BT process smells defined by Qamar et al. [18]. The tax-

onomy consists of 12 potentially suboptimal bug tracking practices.

We group them into two categories, detailed below.

Smells from Fields. The smells in this category are detected by

inspecting the field values of the bug report. It includes five smells:

Unassigned Bugs, Bugs Assigned to a Team, Missing Environment

Information, Missing Priority, and Missing Severity. All these smells

can be detected by checking the corresponding field values.

Smells fromActivities. The smells in this category are detected

by inspecting the bug’s activities and, if required, some field val-

ues. The remaining seven smells are included in this category are

Reassignment of Bug Assignee, No Link to Bug-Fixing Commit, Not

Referenced Duplicates, No Comment Bugs, Non-Assignee Resolver of

Bug, Closed-Reopen Ping Pong, and Ignored Bugs.

2https://www.jetbrains.com/help/youtrack/devportal/youtrack-rest-api.html

79

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Tuna et al.

3.3.2 Customized DetectionMethodology. Qamar et al. [18] present

a methodology for the detection of the smells in addition to the

taxonomy. Originally designed to operate with the data format of

Jira3, the detection methodologies are directly compatible with the

data format of YouTrack with exceptions for some smells that we

could however address with minor customizations. In this section,

we detail these customizations.

Jira keeps the state and the resolution status of a bug report in

two separate fields. Also, resolution status can take several values.

However, YouTrack keeps only the state of a bug report. The reso-

lution status is embedded inside states as either true or false. This

fact prevents us from directly using the detection methodologies

presented. We adapted the detection methodologies accordingly by

checking the definition and the detection for the Jira platform. For

every project, we analyzed the states and their resolution values. In

this analysis, we also considered the state diagram of the projects

and the state transitions in practice in YouTrack. We clustered the

states into four and note that States-A and States-B are mutually

exclusive and constitute the whole States set of a project.

States-A: Every state in the project setting with resolution status

unresolved.

States-B: Every state in the project setting with resolution status

resolved.

States-C: Bug reports may require any kind of developer work

such as visual inspection, attempt to reproduce, commit, etc. Af-

ter developers conduct the required work, the report is resolved.

Thus, we include the states that involve any kind of work and

have resolution status resolved in this type. States-C is a subset of

States-B.

States-D: Similar to States-C, some states definitely require com-

mit activity by developers in version control systems. Thus, we

include the states that involve commit activity and have resolution

status resolved in this type. States-D is a subset of States-C.

We explain the use of the identified state types for the detection

of the related smells below. We follow the detection methodologies

for the rest of the smells as described in [18].

Unassigned Bugs: If the bug is in one of the states in States-C, the

bug is eligible for the smell analysis. If so, we check if the assignee

field is null or not.

No Link to Bug-Fixing Commit: If the bug is in one of the states

in States-D, the bug is eligible for the smell analysis. If so, we check

if there exists any version control activity in the bug history.

No Comment Bugs: If the bug is in one of the states in States-B,

the bug is eligible for the smell analysis. If so, we check if there

exists any comment activity in the bug history.

Non-Assignee Resolver of Bug: If the bug is assigned and in one

of the states in States-B, the bug is eligible for the smell analysis. If

so, we check if the assignee is the person who resolved the bug.

Closed-Reopen Ping Pong: We inspect the bug history and check

if there are any transitions from a state in States-B to a state in

States-A. This transition is classified as a reopen activity.

We share the source code of the implementation for the sake of

reproducibility of the work4.

3https://www.atlassian.com/software/jira
4https://doi.org/10.6084/m9.figshare.16822024

.

.

.Sm
el

l E
va

lu
at

io
n

To
ol

 S
up

po
rt

Smell Inspection (3 samples)

Open Text Box

Terminology Reminder

Smell Description

Phase 1

Introduction

Terminology

Demographics Survey

The study scope
and the purpose
is presented

The terminology
used is given

Phase 2
(12 rounds)

Inspecting given
samples
detected with the
smell presence

Various questions
to understand
severity, impact,
and the relevance
of the smell

Evaluation #1

Evaluation #2

Questions to
understand
suitable platform
for the tool and
possible benefits
of it

Phase 3

Evaluation #1

Evaluation #2

Evaluation #5

Rounded Box: Page, Rectangle Box: Section in a page.

Figure 1: The Survey Design.

3.4 Survey Design

We conducted a survey to understand the BT smell concept from

developers’ point of view. It was designed to provide answers for

the research questions RQ2, RQ3, and RQ4. We present the details

of the survey in this section.

3.4.1 Survey Content. We aimed to understand the perception

of developers related to the smells as indicated in the RQ2. More

specifically, wewanted to collect developer views on the importance

and the severity of the smells. We prepared the survey for this

purpose with the available smell results from the selected projects.

We designed the survey as in Figure 1 (inspired from [11]). We

share the anonymized survey5 to ensure the transparency of our

work as much as possible.

Introduction Page -We present the context of the work we are

running. Also, we include brief information related to the BT pro-

cess on this page, along with our reasons for conducting the survey.

Terminology Page - This page contains the terminology that we

use in our study. We expect a participant to read the text to get

familiar with the terminology and better understand the questions

5https://doi.org/10.6084/m9.figshare.16821358

80

Bug Tracking Process Smells In Practice ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: Smell occurences in bug reports for each project.

Smell Name
Project-A Project-B Project-C Project-D

False True NA False True NA False True NA False True NA

Bugs Assigned to a Team 93.9% 0.0% 6.1% 59.5% 0.1% 40.4% 89.9% 0.0% 10.1% 91.9% 0.0% 8.1%
Closed-Reopen Ping Pong 95.0% 5.0% 0.0% 96.2% 3.8% 0.0% 90.9% 9.1% 0.0% 95.9% 4.1% 0.0%
Ignored Bugs 100.0% 0.0% 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 0.0%
Missing Environment 93.3% 6.7% 0.0% 89.9% 10.1% 0.0% 73.8% 26.2% 0.0% 80.5% 19.5% 0.0%
Missing Priority 100.0% 0.0% 0.0% 40.2% 59.8% 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 0.0%
Missing Severity 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 0.0% 100.0% 0.0%
No Comment Bugs 39.9% 36.4% 23.7% 58.6% 24.0% 17.4% 60.1% 35.3% 4.6% 53.7% 24.3% 22.0%
No Link to Commit 34.4% 22.9% 42.8% 29.8% 12.5% 57.7% 44.5% 12.8% 42.7% 23.1% 14.1% 62.8%
Not Referenced Duplicates 5.5% 0.0% 94.5% 16.2% 0.0% 83.8% 12.1% 0.1% 87.8% 15.2% 1.1% 83.7%
Reassignment of Bug 95.2% 4.8% 0.0% 96.6% 3.4% 0.0% 92.5% 7.5% 0.0% 94.3% 5.7% 0.0%
Non-Assignee Resolver 62.9% 10.1% 27.0% 42.0% 9.4% 48.6% 67.6% 19.4% 13.0% 43.4% 25.0% 31.6%
Unassigned Bugs 58.0% 1.4% 40.6% 38.2% 6.6% 55.1% 59.7% 1.4% 38.9% 40.5% 1.1% 58.4%

presented in Phase 2 of the survey. We acknowledge that it is not

easy to remember new terms and concepts right away. So, we

replicate the text from this page on every page of Phase 2 to prevent

misunderstandings.

Demographics Survey Page - A participant indicates their experi-

ence level (as months or years) in the software development domain

and the company. This information is required to distinguish junior

developers’ answers from seniors. Besides, the participant indicates

their job title in a free text format. Developers in managerial po-

sitions may have a different perception of the smells compared to

individual contributors. Lastly, we ask participants to indicate the

way they interact with YouTrack. Developers’ perception of smells

might depend on what kind of tasks they usually perform. A devel-

oper using the platform to verify bugs could find the smells related

to bug report field values (e.g., Missing Priority, Missing Severity)

more critical than Missing Link to Commit smell.

Smell Evaluation Page -We present the main content of the sur-

vey in Phase 2, as 12 consecutive pages. We customized the template

page for each smell. It starts with a brief smell description and con-

tents of the Terminology Page. Then, the participant is asked to

inspect three bug report samples identified with the smell and de-

cide whether the smell exists (binary response format). We provided

screenshots and URL links of the samples. Afterwards, there are

five evaluation questions to understand developers’ perception of

the smell. The first two questions ask whether the smell and the

samples outline a deviation from the best practices in the BT pro-

cess. The third one is a Likert scale question to rate the severity

of the smell. In the fourth one, we want developers to think about

the possible impacts of the smell and indicate their opinion via

multiple selections or the free text field. Lastly, we ask about the

usefulness of the automatic detection of the smell in a Likert scale

question. We placed an optional text box at the end of the page to

let developers state their opinions as they like.

Tool Support Page - In Phase 3, we designed two questions to

measure the helpfulness of a tool that can detect smells. The former

is to find a suitable context for the tool (i.e., whether detection

should be within or out of the BTS). The latter one is to explore the

potential benefits of such a tool.

3.4.2 Pilot Run. Before sending the survey to the target partic-

ipants, we ran a pilot survey to correct and improve the survey

0.000 0.001 0.000 0.000

0.050 0.038 0.091 0.041

0.000 0.000 0.000 0.000

0.067 0.101 0.262 0.195

0.000 0.598 0.000 0.000

1.000 1.000 1.000 1.000

0.477 0.291 0.370 0.312

0.399 0.295 0.223 0.380

0.139 0.182 0.223 0.366

0.002 0.000 0.011 0.069

0.048 0.034 0.075 0.057

0.023 0.148 0.022 0.026

Project-A Project-B Project-C Project-D

Unassigned Bugs

Reassignment of Bug Assignee

Not Referenced Duplicates

Non-Assignee Resolver of Bug

No Link to Bug-Fixing Commit

No Comment Bugs

Missing Severity

Missing Priority

Missing Environment Information

Ignored Bugs

Closed-Reopen Ping Pong

Bugs Assigned to a Team

0

0.2

0.4

0.6

0.8

1
Ratio

Figure 2: Incidence of smells in target projects.

instruments. The pilot survey included two graduate students at

Bilkent University and one developer not working in the selected

projects at YouTrack. The respondents reported their estimated

completion times and grammar mistakes. We corrected some texts

in the survey along with the received feedback.

3.4.3 Target Participants. Our target audience was the developers

of the selected projects. The rough number (due to confidentiality)

of developers are indicated in Table 1. We sent messages to Slack

channels of the projects with a call to participate in our survey. In

the message, we indicated that the survey takes approximately 20-

30minutes.We sent two reminders to increase the participation rate.

We received 24 responses in total. The distribution of the responses

are 1 (Project-A), 8 (Project-B), 4 (Project-C), and 11 (Project-D).

4 RESULTS

This section reports the numerical and statistical values that we

obtained for all of the research questions.

4.1 Occurrence of the Smells (RQ1)

Our implementation of smell detection is based on the codebase by

the authors of the taxonomy study [18]. They utilized Perceval [7]

to download data and used the data format provided by the tool.

81

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Tuna et al.

However, as the bug report data format of YouTrack is not the

same as Perceval, we adapted the smell detection code to YouTrack.

We use three labels for the smell existence in a bug report. Not

Applicable (NA), if the bug report did not meet the condition for

the smell analysis. If the bug report is eligible for the smell analysis,

we label it True in case there is a smell, and False otherwise. We

obtained the labels for each smell for every bug report in the selected

projects and reported the values in percentage terms in Table 2.

For confidentiality reasons, we cannot provide the exact number of

labels for the smells.

Similar to [18], we created a heatmap representation of the values

presented in Table 2, as in Figure 2. We constructed the heatmap

according to the Smell Ratio parameter. This number is calculated for

each project and smell by the ratio of the total number of bug reports

identified with the smell (the values in the True column) to the total

number of bug reports that are eligible for the particular smell

analysis (the values in False and True columns). The calculation of

the Smell Ratio ignores the values in the NA column because those

values aggregate the number of bug reports that are not eligible

for the related smell analysis. The Missing Severity smell occurs

in every bug report of all the projects, as the severity field is not

used at all. Some smells, in particular, No Comment Bugs, No Link

to Bug-Fixing Commit, Non-Assignee Resolver of Bug, appear more

frequently than the rest.

4.2 Developers’ Views on the Smell Definition
and Detection Methodology (RQ2)

4.2.1 About Smell Definition. We asked participants to answer in

a binary reply whether the smell definition indicates a suboptimal

practice. We show the answers for each project in Table 3 and

aggregate the answers in Figure 3. For 7 out of 12 smells, 62.5 to

91.7 percent of the participants recognized that the smells outline a

deviation from a best practice. The remaining smells, Unassigned

Bugs, Missing Severity, Non-Assignee Resolver of Bug, Reassignment of

Bug Assignee, and No Comment Bugs are rather subject to discussion

whether they are actually undesirable. The participants rejected the

definition of the No Comment Bugs’s smell in almost 60% of cases.

4.2.2 About Detection Methodology. The survey participants in-

spected the bug reports that were labeled with each of the smells.

The responses consisted of either YES, NO, or OTHER choices. To

develop a statistical interpretation, we classified the contents inside

the OTHER answers into either YES, NO, or when we could not find

explicit wording to N/A. By omitting the responses with the N/A

category, we aggregated the YES and NO answers for each smell.

Table 4 shows the ratio of agreement of the developers. We placed

hyphens for the smells that do not occur in the projects. Since there

was only one participant from Project-A, there is a 100% agreement

score for this project.

Based on the samples shown in the survey, the participants’

views vary according to the projects they are working in. The

participants of Project-B approved the detection methodology of

Reassignment of Bug Assignee, Non-Assignee Resolver Bug, Bugs As-

signed to a Team, Unassigned Bugs, No Link to Bug-Fixing Commit,

Missing Severity, and Missing Priority smells with YES ratio varying

from 68.2 up to 87.5 percent. In contrast, Project-C participants did

Table 3: Project-specific percentages of developers’ view on

the smell definition and its scope

Smell Name
Project-A Project-B Project-C Project-D

Yes No Yes No Yes No Yes No

Bugs Assigned to a Team 100.0% 0.0% 37.5% 62.5% 75.0% 25.0% 72.7% 27.3%

Ignored Bugs 100.0% 0.0% 75.0% 25.0% 75.0% 25.0% 72.7% 27.3%

Missing Environment 0.0% 100.0% 50.0% 50.0% 50.0% 50.0% 81.8% 18.2%

Missing Priority 0.0% 100.0% 87.5% 12.5% 75.0% 25.0% 72.7% 27.3%

Missing Severity 0.0% 100.0% 50.0% 50.0% 75.0% 25.0% 54.5% 45.5%

No Comment Bugs 100.0% 0.0% 25.0% 75.0% 25.0% 75.0% 54.5% 45.5%

No Link to Commit 100.0% 0.0% 75.0% 25.0% 100.0% 0.0% 90.9% 9.1%

Not Referenced Duplicates 100.0% 0.0% 87.5% 12.5% 100.0% 0.0% 90.9% 9.1%

Reassignment of Bug 0.0% 100.0% 37.5% 62.5% 25.0% 75.0% 63.6% 36.4%

Closed-Reopen Ping Pong 100.0% 0.0% 75.0% 25.0% 75.0% 25.0% 54.5% 45.5%

Non-Assignee Resolver 100.0% 0.0% 62.5% 37.5% 50.0% 50.0% 45.5% 54.5%

Unassigned Bugs 100.0% 0.0% 50.0% 50.0% 100.0% 0.0% 45.5% 54.5%

Figure 3: Cumulative representation of developers’ view on

the smell definition and its scope.

not find the detection of Non-Assignee Resolver of Bug smell accu-

rate but agreed on the detection of Not Referenced Duplicates with

a 100.0% ratio. The participants of Project-D found the detection of

Not Referenced Duplicates inaccurate, unlike Project-C participants.

These different thoughts on the detection of the same smell hint at

the project-specific handling of the smells.

4.2.3 Highlights of Feedback. The smell evaluation pages in the sur-

vey consisted of two free text fields to receive developers’ feedback

related to the practices outlined by the smells and their detection.

We observed that the participants presented their ideas sometimes

separately and sometimes in a single comment. To provide a com-

plete view, we combined the highlights related to the smell content

and its detection methodology. The considerations related to the

content were either about not finding the smell description as a de-

viation from the best practice, or doubts related to the applicability

of the smell in practice. We present our findings for the applicable

smells.

Unassigned Bugs - Some participants noted that this smell is quite

natural in their workflow because the initial handlers of bug reports

are support engineers. They explained that support engineers may

resolve bugs that do not require a change in the product, and they do

not assign themselves to the bugs. So, such occurrences are actually

not considered as smells in their workflow. Another concern is

about mass bug fixes. Participants note that sometimes mass bug

82

Bug Tracking Process Smells In Practice ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 4: Agreement on the smell detection method

Smell Name
Project-A Project-B Project-C Project-D

Yes No Yes No Yes No Yes No

Bugs Assigned to a Team - - 86.4% 13.6% - - - -

Closed-Reopen Ping Pong 100.0% 0.0% 50.0% 50.0% 75.0% 25.0% 78.8% 21.2%

Ignored Bugs - - - - - - - -

Missing Environment 100.0% 0.0% 70.0% 30.0% 72.7% 27.3% 48.5% 51.5%

Missing Priority - - 77.3% 22.7% - - - -

Missing Severity 100.0% 0.0% 77.8% 22.2% 66.7% 33.3% 57.6% 42.4%

No Comment Bugs 100.0% 0.0% 66.7% 33.3% 54.5% 45.5% 84.8% 25.2%

No Link to Commit 100.0% 0.0% 83.3% 16.7% 100.0% 0.0% 78.8% 21.2%

Not Referenced Duplicates 100.0% 0.0% 11.1% 88.9% 100.0% 0.0% 45.5% 54.5%

Reassignment of Bug 100.0% 0.0% 87.5% 12.5% 88.9% 11.1% 78.8% 21.2%

Non-Assignee Resolver 100.0% 0.0% 87.0% 13.0% 36.4% 63.6% 63.6% 36.4%

Unassigned Bugs 100.0% 0.0% 68.2% 31.8% 100.0% 0.0% 71.4% 28.6%

fixes or refactoring may resolve the bugs practically. They indicated

that there is no added value in setting an assignee in such cases.

Bugs Assigned to a Team - Participants noted that assigning teams

to bugs has a practical use. It is an intermediate step to determine

which set of people (team) in the project should be pinged. They

argued that the assignment of a team does not necessarily mean

losing responsibility. Teams assign individuals related to the bug

afterward.

Missing Priority and Missing Severity - We present the points

related to these smells together. Priority and severity of a bug

are distinct but relatable concepts. The responses revealed that

the participants may use these terms interchangeably or provide

joint insights to both. Some participants suggested to remove the

priority field. They explained that the priority field can be abused

by individuals who think their bugs are always of a high priority.

Another point is about filling priority during sprint meetings. Some

participants mentioned that picking bugs in Sprint meetings and

prioritizing a small subset is a common practice. So, bug reports

with empty priority fields do not necessarily mean they will never

be filled.

Another comment warned about assigning a default value to the

priority. It is noted that bug reports containing a priority field with

a default value are indeed not prioritized. Moreover, the participant

indicated that the detection consists of false negatives due to default

priority values. The participant suggested that using default values

could be a smell on its own.

Some participants were arguing that Missing Severity smell is

irrelevant to their project because they do not use that field, and it

is a decision of their team. A considerable number of participants

noted that they use the priority field for both priority and severity.

Some participants explained that they tried using severity, but it did

not help to improve the process. It was also suggested that filling

priority or severity fields should not be mandatory as a project

setting since it may frustrate developers.

Missing Environment Information - Some participants made the

distinction between customers and internal colleagues related to

this smell. They noted that customers might file new bug reports,

and they cannot be forced to fill in environment information. They

argued it would be an annoying experience otherwise. On the other

hand, in the case of a colleague filing a bug report, they indicated

it is a better practice to fill environment information fields.

We received feedback related to the detection methodology of

this smell as well. One comment suggested the smell is relevant but

we should consider restricting the detection to the resolved bug

reports. The idea behind it is that the environment information of a

resolved bug report is known because someone should have worked

on it. Simultaneously, one participant mentioned that if a bug is

marked as incomplete, it is nonsense to check the environment

fields since there is no sufficient information on the bug. Another

comment suggested that our detection consisted of false positives

because some of the environment information was present in the

bug report’s comment section.

Reassignment of Bug Assignee - Some participants indicated that

reassignments happen due to the nature of bug management. One

reason is based on the need for inspection of a bug by several

developers due to the bug’s complexity. Another cause is an adapted

workflow — after a design of the solution is realized, the bug is

transferred to a developer who will implement the design. One

other reason is related to the workflow again. Some teams employ

dispatching that bug report is first assigned to the related team’s

leader and passed to the target developer afterward. One participant

made the distinction between bug analysis and fixing. The point

was that reassignments during bug analysis are acceptable, but

they are problematic amid bug fixing activity. Another participant

underlined a tricky point about developers leaving the company. In

such a situation, the bugs must be handed over to their successors.

No Link to Bug-Fixing Commit - Participants suggested that if a

bug report has a link to another bug, such as fixed by, then it should

not be identified as a smell. The main work is already conducted in

the linked bug. Besides, some participants indicated that links to

commits are sometimes mentioned in the bug report’s comments

section.

Not Referenced Duplicates - Participants indicated that the sam-

ples in the survey had duplicate links, but they were visible only to

their team.

No Comment Bugs - A significant number of participants argued

that if a bug report does not contain any comments, the bug is filed

nicely. It is an indication of a high-quality bug report instead of a

smell in the bug tracking process. Also, they claimed that expecting

developers to leave comments to bug reports might be frustrating.

Related to the detection methodology, some participants sug-

gested restricting the detection to the bugs in the states that require

an explicit explanation for being in that state. They exemplified

that the developer who realizes the bug state transition to obsolete

or declined should comment on the reasoning.

Non-Assignee Resolver of Bug - Participants underlined that not

every terminal state should be used in the detection of this smell.

Even though someone else is the assignee of a bug report, they con-

sidered it all right when another developer (e.g., support engineer)

resolves the bug as duplicate, obsolete, or any state that does not

require a change in the codebase.

Closed-Reopen Ping Pong - Some participants considered that

reopening is an inherent activity in the BT process, making it un-

avoidable. Another view is that the ping pongs could be an alert

sign not for the BT process but the bug fixing process and project

codebase. One participant noted that they reopened the bug report

for the problems occurring in different environments. In this case,

reopening is their BT process management practice.

Related to the detection methodology, one participant mentioned

the number of reopenings. The participant found it fine to have a

83

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Tuna et al.

Figure 4: Developers’ severity perception for each smell.

Figure 5: Usefulness rating of a potential tool with auto-

matic smell detection feature.

single reopen. However, considered the excessive numbers a smell.

Also, a significant number of participants suggested determining a

time threshold between the state transition activities to be more

conservative and prevent false-positive detections. Some partici-

pants suggested excluding the bug reports with resolution states

that potentially indicate missing information related to the bug,

such as incomplete.

Ignored Bugs - Participants’ feedback about this smell was about

the detection methodology. Some participants indicated that their

project consists of some bugs that float in YouTrack. Even though

such bugs exist, they criticized that our detection methodology

raises false-negative results by only checking if an activity exists

or not. They noted that the actions of support engineers mislead

the detection methodology.

4.3 Developers’ Severity Perception of Smells
(RQ3)

The survey consisted of a Likert-scale question related to the per-

ceived severity of each smell. The participants evaluated the sever-

ity by selecting one of no impact (0), minor (1), moderate (2), major

(3), or critical (4) levels. Figure 4 presents the severity ratings for

each smell. 62.5 and 58.3 percent of the participants identified the

severity of No Link to Bug-Fixing Commit and Ignored Bugs smells

either major or critical, respectively. On the other hand, 62.6 to 75.0

percent of the participants considered Reassignment of Bug Assignee,

No Comment Bugs, Non-Assignee Resolver of Bug, and Unassigned

Bugs smells the least severe by rating them as either no impact or

minor. Another observation is that the median severity for 33.3 per-

cent of the smells is moderate and for 50.0 percent of the smells is

minor. So majority (10 out of 12) of the smells have median severity

of either minor or moderate.

4.4 Usefulness of Smell Detection Tool (RQ4)

We asked participants to evaluate the usefulness of a hypothetical

tool providing an automatic detection service of the smells. The

evaluation was based on a Likert scale with five levels that are very

harmful (-2), slightly harmful (-1), neither harmful nor useful (0),

slightly useful (1), or very useful (2). Figure 5 shows the percent-

ages for each of the smells. We identify the most useful detection

would be on No Link to Bug-Fixing Commit, and Ignored Bugs smells.

Besides, the automatic detection of half of the smells is found to

have slightly useful median value. On the other hand, 33.3 to 41.7

percent of the participants rated the detection of Reassignment of

Bug Assignee, Non-Assignee Resolver of Bug and No Comment Bugs

smells either slightly or very harmful.

We included a question in the survey asking about the suitable

platform for a potential tool that provides an automatic smell de-

tection feature. The question had three options. To account for

a functionality that is included in BTS, we provided within BT

platform option. A detection tool as a separate software in any

environment is included in out of BT platform option. Lastly, other

is provided for any ideas that we could not think of. The majority of

the participants, 80.0 percent, found within BT platform suitable for

such a tool. One participant indicated their own opinion in other

option as the "embedded in business communication tools such as

Slack".

Lastly, in the survey, we asked about the possible benefits of a

tool detecting the BT process smells. We provided two options and

received one distinct answer from the participants. Participants

think that the potential benefit is two-fold. The first one is to "gain

insights about the BT process quality of the project". The second one is

to assess bottlenecks in the BT process. Also, one participant indicated

that some BT process smells indicate smells in other processes such

as software development.

5 DISCUSSION

5.1 Improving Detection Methodology

We received feedback from the survey participants to potentially

increase the smell detection accuracy. We discuss the comments

related to the states of bug reports in Section 5.2. In this part, we are

more interested in conceptual improvements that could be made to

the smell detection methodologies. We curated the following points

that could potentially improve the detection accuracy.

The smell detection for the linked bug reports should be based

on the parent bug rather than the child one. In particular, checking

the bug reports with link types duplicate of for Missing Priority,

Missing Severity, andMissing Environment Information could lead to

false positives. Developers may ignore filling the fields of the child

bug or not mind some activities as the bug has a parent. Moreover,

if a bug contains fixed by link, it seems unnecessary and incorrect

84

Bug Tracking Process Smells In Practice ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

to check if the bug contains No Link to Bug-Fixing Commit because

the problem is solved by the work conducted in the parent bug.

The detection of Closed-Reopen Ping Pong smell is subject to

improvement as well. Incorporating the time threshold between

consecutive state changes between resolved and unresolved states

would decrease the false positive detections. Developers may unin-

tentionally realize a state transition and revert it. Moreover, instead

of a single ping pong, involving a maximum number of ping pongs

in the analysis could lead to better detections. We note that deter-

mining the time threshold and a maximum number of ping pongs

are subject to analysis and not easy to determine.

When developers leave a company, their bug reports are handed

over to other developers. Detection methodology for Reassignment

of Bug Assignee should be able to ignore those cases. A possible

solution is integrating replacement lists into the detection algorithm

and ignoring the related occurrences during the detection.

We think that participants misinterpreted the Ignored Bugs smell.

The main point of this smell is to spot if developers conduct any

activity on a bug in the first six months of its submission. The

participants possibly perceived the smell coverage differently. They

might have thought that the smell checks if a bug was forgotten

after the last conducted activity and left unresolved. This perception

probably hints at a new smell that we can call Sleeping Bugs.

5.2 Tailoring Smell Context and Detection
Methodology

Participants acknowledged that some smells are actual deviations

from the best practice. However, they indicated including or ex-

cluding some states in the detection methodology. Before running

the smell analysis, we checked all of the available states in each of

the projects. Besides, we created a map of all the state transitions

in bug reports to see how developers use bug states in practice. We

realized that the detection of smells according to the Jira conven-

tions as presented in [18] is not applicable for YouTrack due to the

merged use of state and resolution of a bug report. We came up

with different clusters of states for accurate detection. We did not

indicate our state clusters to the participants in the survey content

since it would make the survey content-intensive.

According to the received feedback and statistical results, we

concluded that differentiation of the state types was the correct

approach for analysis in YouTrack. One should thoroughly under-

stand every project and its particular paradigm before running a

smell detection. Moreover, we deduce that in-person exploration of

a project with its actual users is more beneficial and required. It is

necessary to have a solid understanding of the use of bug states and

bug report fields. The essence of smell detection is not to dictate ev-

ery BT process to be in line according to a particular frame. Instead,

it is to increase the process quality and traceability of any taken

action in parallel with the principles. Thus, one should analyze the

BT process with its authentic executors and tailor the detection

methodologies accordingly.

5.3 Smell Detection Tool

We presented the participants’ view on a tool for automatic smell

detection in Section 4.4. We see a potential benefit of developing

such a tool based on the survey data. We determined two essential

features that tools detecting the BT process smells should possess.

The first one is supporting to tailor the smell detectionmethodology.

If this feature is missing, practices or habits specific to companies or

teams would be ignored by the tool. Ignoring the context-specific

information could cause generating false negative and false posi-

tive results. The second essential feature is providing a visual and

statistical interpretation of the smell data. One benefit of this fea-

ture is that developers could gain insight into their BT process (see

Section 4.4). Another use of visual or statistical interpretation is to

reveal bottlenecks or suboptimal practices in the BT process.

6 THREATS TO VALIDITY

Internal validity reflects the potential threats related to the design

and the results.

Bug States: Projects settings can be customized in YouTrack.

The customization applies to the bug states as well. We observed

different sets of states in the projects. We classified their seman-

tic meanings into four groups to make accurate smell detections.

During the classification, we checked the bug life cycles of the

projects, analyzed the state transition diagrams happening in prac-

tice, and contacted team leads whenever required. Even though

we conducted the classification activity with the utmost caution

to mitigate this threat, there could still be differences between our

perception of the states and their meaning from the developers’

point of view in practice.

Team Practices: Several teams develop a single project, and each

team may follow different rules while tracking bugs. Teams use

the same project in the BTS. Different policies within the same

project may cause false-positive smells. Some practices (e.g., not

using priority or severity fields, assigning a team to bug reports)

cannot be considered smells for some specific teams as those are the

team’s rules. However, using a single project in the BTS prevents

developing team-specific detection methodologies. It is not clear to

find out which teams work on which bug reports.

Survey: Misinterpreting the questions in the surveys is possible

due to grammatical or semantic errors. We conducted a pilot survey

to correct and clarify such cases. The participants might consider

the repetitive nature of Phase 2 of the survey exhausting and got

bored over the iterations. This is a potential threat for us to receive

inaccurate answers. Moreover, the participants may hesitate to state

their opinions for a process that they are individually involved in.

As a mitigation strategy, we anonymized the survey participation

and left providing emails for further contact optional.

External validity reflects the threats on the general applica-

bility of the results. We analyzed four projects to get a broader

view of the prevalence of the smells in an industrial setting. We

acknowledge that the analysis of four projects may not be enough

and more investigation is required. Besides, the results may vary

among different companies. However, we believe the results will

be beneficial for both academia and industry.

7 CONCLUSION

Our empirical analysis revealed that the smells have visible oc-

currences in the inspected projects. We suggest that practitioners

should evaluate the conformance of a BT process with the best prac-

tices according to the particular dynamics of the inspected process.

85

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Tuna et al.

These dynamics include team-specific rules, company-wide conven-

tions, and the used BTS. There is a consensus among developers that

smells describe suboptimal processes, as our survey results suggest.

However, some smells turned out to be controversial, such as No

Comments Bugs and Reassignment of Bug Assignee. We concluded

that there is room for improvement in the smell detection method-

ologies and stated our suggestions. Developers’ perception of smell

severity varies among smell types, and the survey revealed that

the most severely perceived smell is No Link to Bug-Fixing Com-

mit. We speculate that a BT process smell detection tool, possibly

embedded in the BTS, would contribute to teams’ and companies’

understanding and evaluation of their BT processes.

Our future work agenda comprises investigating particular de-

tails about the smells, such as potential root causes, and interpreting

differences in smell occurrences among projects. We also plan to

conduct follow-up interviews with practitioners to investigate de-

viations from best practices.

8 ACKNOWLEDGEMENTS

This study was partially supported by The Scientific and Technolog-

ical Research Council of Turkey (TUBITAK) 1505 program (Project

Number:5200078). The authors thank Katerina Koshchenko for her

comments on this work.

REFERENCES
[1] Anahita Alipour, Abram Hindle, and Eleni Stroulia. 2013. A contextual approach

towards more accurate duplicate bug report detection. In 2013 10th Working
Conference on Mining Software Repositories (MSR). 183–192. https://doi.org/10.
1109/MSR.2013.6624026

[2] Nuri Almarimi, Ali Ouni, and MohamedWiemMkaouer. 2020. Learning to detect
community smells in open source software projects. Knowledge-Based Systems
204 (2020), 106201.

[3] Raymond P. L. Buse and Thomas Zimmermann. 2012. Information Needs for Soft-
ware Development Analytics. In Proceedings of the 34th International Conference
on Software Engineering (Zurich, Switzerland) (ICSE ’12). IEEE Press, 987–996.

[4] Jeffrey C. Carver, Oscar Dieste, Nicholas A. Kraft, David Lo, and Thomas Zim-
mermann. 2016. How Practitioners Perceive the Relevance of ESEM Research. In
Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. 10 pages. https://doi.org/10.1145/2961111.2962597

[5] Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena Ferrucci. 2019.
Not all bugs are the same: Understanding, characterizing, and classifying bug
types. Journal of Systems and Software 152 (2019), 165–181. https://doi.org/10.
1016/j.jss.2019.03.002

[6] Emre Doğan and Eray Tüzün. 2021. Towards a taxonomy of code review smells.
Information and Software Technology (2021), 106737. https://doi.org/10.1016/j.
infsof.2021.106737

[7] Santiago Dueñas, Valerio Cosentino, Gregorio Robles, and Jesus M Gonzalez-
Barahona. 2018. Perceval: software project data at your will. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings.
ACM, 1–4.

[8] Pascal Gadient, Mohammad Ghafari, Patrick Frischknecht, and Oscar Nierstrasz.
2019. Security code smells in Android ICC. Empirical software engineering 24, 5
(2019), 3046–3076.

[9] Vahid Garousi, Markus Borg, and Markku Oivo. 2020. Practical relevance of
software engineering research: synthesizing the community’s voice. Empirical
Software Engineering 25, 3 (Mar 2020), 1687–1754. https://doi.org/10.1007/s10664-
020-09803-0

[10] Marion Gottschalk, Mirco Josefiok, Jan Jelschen, and Andreas Winter. 2012.
Removing energy code smells with reengineering services. INFORMATIK 2012
(2012).

[11] Mrio Hozano, Alessandro Garcia, Baldoino Fonseca, and Evandro Costa. 2018.
Are You Smelling It? Investigating How Similar Developers Detect Code Smells.
Inf. Softw. Technol. 93, C (Jan. 2018), 130–146. https://doi.org/10.1016/j.infsof.
2017.09.002

[12] Md Shariful Islam, Abdelwahab Hamou-Lhadj, Korosh Koochekian Sabor, Mo-
hammad Hamdaqa, and Haipeng Cai. 2021. EnHMM: On the Use of Ensemble
HMMs and Stack Traces to Predict the Reassignment of Bug Report Fields. In 2021

IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). 411–421. https://doi.org/10.1109/SANER50967.2021.00045

[13] Ahmed Lamkanfi, Serge Demeyer, Emanuel Giger, and Bart Goethals. 2010. Pre-
dicting the severity of a reported bug. In 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010). 1–10. https://doi.org/10.1109/MSR.2010.
5463284

[14] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou, and
E. James Whitehead Jr. 2013. Does Bug Prediction Support Human Developers?
Findings from a Google Case Study. In Proceedings of the 2013 International
Conference on Software Engineering. 372–381.

[15] Dongyu Liu, Micah J. Smith, and Kalyan Veeramachaneni. 2020. Understanding
User-Bot Interactions for Small-Scale Automation in Open-Source Development.
In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–8. https://doi.org/10.1145/3334480.3382998

[16] David Lo, Nachiappan Nagappan, and Thomas Zimmermann. 2015. How Practi-
tioners Perceive the Relevance of Software Engineering Research. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. 415–425.
https://doi.org/10.1145/2786805.2786809

[17] Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao. 2015. Hotspot patterns: The
formal definition and automatic detection of architecture smells. In 2015 12th
Working IEEE/IFIP Conference on Software Architecture. IEEE, 51–60.

[18] Khushbakht Ali Qamar, Emre Sülün, and Eray Tüzün. 2021. Towards a Taxonomy
of Bug Tracking Process Smells: A Quantitative Analysis. In 2021 47th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). 138–147.
https://doi.org/10.1109/SEAA53835.2021.00026

[19] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern Code Review: A Case Study at Google. In 2018 IEEE/ACM
40th International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP). 181–190.

[20] Tushar Sharma and Diomidis Spinellis. 2018. A survey on software smells. Journal
of Systems and Software 138 (2018), 158–173.

[21] Mozhan Soltani, Felienne Hermans, and Thomas Bäck. 2020. The significance of
bug report elements. Empirical Software Engineering 25, 6 (2020), 5255–5294.

[22] Anton Strand, Markus Gunnarson, Ricardo Britto, and Muhmmad Usman. 2020.
Using a Context-Aware Approach to Recommend Code Reviewers: Findings
from an Industrial Case Study. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Practice. 1–10. https:
//doi.org/10.1145/3377813.3381365

[23] Gábor Szoke, Csaba Nagy, Lajos Jeno Fülöp, Rudolf Ferenc, and Tibor Gyimóthy.
2015. FaultBuster: An automatic code smell refactoring toolset. 2015 IEEE
15th International Working Conference on Source Code Analysis and Manipulation
(SCAM) (2015), 253–258.

[24] Ahmed Tamrawi, Tung Thanh Nguyen, Jafar M. Al-Kofahi, and Tien N. Nguyen.
2011. Fuzzy Set and Cache-Based Approach for Bug Triaging. In Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering. 365–375. https://doi.org/10.1145/2025113.2025163

[25] Ulisses Telemaco, Toacy Oliveira, Paulo Alencar, and Don Cowan. 2020. A
Catalogue of Agile Smells for Agility Assessment. IEEE Access 8 (2020), 79239–
79259.

[26] Yuan Tian, David Lo, and Chengnian Sun. 2013. DRONE: Predicting Priority of
Reported Bugs by Multi-factor Analysis. In 2013 IEEE International Conference on
Software Maintenance. 200–209. https://doi.org/10.1109/ICSM.2013.31

[27] Qasim Umer, Hui Liu, and Inam Illahi. 2020. CNN-Based Automatic Prioritization
of Bug Reports. IEEE Transactions on Reliability 69, 4 (2020), 1341–1354. https:
//doi.org/10.1109/TR.2019.2959624

[28] Eva Van Emden and LeonMoonen. 2002. Java quality assurance by detecting code
smells. In Ninth Working Conference on Reverse Engineering, 2002. Proceedings.
IEEE, 97–106.

[29] Stephane Vaucher, Foutse Khomh, Naouel Moha, and Yann-Gaël Guéhéneuc.
2009. Tracking design smells: Lessons from a study of god classes. In 2009 16th
Working Conference on Reverse Engineering. IEEE, 145–154.

[30] Mairieli Wessel, Igor Steinmacher, Igor Wiese, and Marco A. Gerosa. 2019. Should
I Stale or Should I Close? An Analysis of a Bot That Closes Abandoned Issues and
Pull Requests. In 2019 IEEE/ACM 1st International Workshop on Bots in Software
Engineering (BotSE). 38–42. https://doi.org/10.1109/BotSE.2019.00018

[31] Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou, Zhongxuan Luo, and
Xindong Wu. 2015. Towards Effective Bug Triage with Software Data Reduction
Techniques. IEEE Transactions on Knowledge and Data Engineering 27, 1 (2015),
264–280. https://doi.org/10.1109/TKDE.2014.2324590

[32] Meng Yan, Xin Xia, Yuanrui Fan, David Lo, Ahmed E. Hassan, and Xindong
Zhang. 2020. Effort-Aware Just-in-Time Defect Identification in Practice: A Case
Study at Alibaba. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1308–1319. https://doi.org/10.1145/3368089.3417048

[33] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schroter, and Cathrin Weiss. 2010. What Makes a Good Bug Report? IEEE
Transactions on Software Engineering 36, 5 (2010), 618–643. https://doi.org/10.
1109/TSE.2010.63

86

