
An Empirical Study on Implicit Constraints in Smart Contract
Static Analysis

Tingting Yin
ytt21@mails.tsinghua.edu.cn

Tsinghua University
China

Chao Zhang
chaoz@tsinghua.edu.cn
Tsinghua University

China

Yuandong Ni
nyd17@mails.tsinghua.edu.cn

Tsinghua University
China

Yixiong Wu
wyx18@mails.tsinghua.edu.cn

Tsinghua University
China

Taiyu Wong
wdy19@mails.tsinghua.edu.cn

Tsinghua University
China

Xiapu Luo
daniel.xiapu.luo@polyu.edu.hk
The Hong Kong Polytechnic

University
China

Zheming Li
lizm20@mails.tsinghua.edu.cn

Tsinghua University
China

Yu Guo
yu.guo@secbit.io
SECBIT Labs

China

ABSTRACT
Smart contracts are usually financial-related, which makes them
attractive attack targets. Many static analysis tools have been devel-
oped to facilitate the contract audit process, but not all of them take
account of two special features of smart contracts: (1) The external
variables, like time, are constrained by real-world factors; (2) The
internal variables persist between executions. Since these features
import implicit constraints into contracts, they significantly affect
the performance of static tools, such as causing errors in reachabil-
ity analysis and resulting in false positives. In this paper, we conduct
a systematic study on implicit constraints from three aspects. First,
we summarize the implicit constraints in smart contracts. Second,
we evaluate the impact of such constraints on the state-of-the-art
static tools. Third, we propose a lightweight but effective mitigation
method named ConSym to deal with such constraints and integrate
it into OSIRIS. The evaluation result shows that ConSym can filter
out 96% of false positives and reduce false negatives by two-thirds.

KEYWORDS
Smart contract, Static analysis, Implicit constraints, Code audit

ACM Reference Format:
Tingting Yin, Chao Zhang, Yuandong Ni, Yixiong Wu, Taiyu Wong, Xiapu
Luo, Zheming Li, and Yu Guo. 2022. An Empirical Study on Implicit Con-
straints in Smart Contract Static Analysis. In 44nd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP ’22),
May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3510457.3513076

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, P A, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513076

1 THE IMPLICIT CONSTRAINTS
Many tools have been developed to facilitate the contract audit via
static analysis. Butmost of them can notmeet the needs of industrial
development due to the high false-positive (FP) and false-negative
(FN) rates. One of the reasons is they neglect two special features
of smart contracts: (1) The external variables (e.g., time, assets),
participate in contract execution; (2) The values of internal variables
are decided by the transaction sequences. Without considering
these features, static methods usually assume the contract variables
can take arbitrary values. However, these features bring three types
of implicit constraints on the value range of contract variables.
1 𝛿1: Implicit Constraints on External Variables. Smart contracts
take inputs from external sources, i.e., transaction properties and
blockchain states, which have real-world meanings. For instance,
the assets to transfer in transactions (returned by CALLVALUE in-
struction) cannot exceed the total issued ETH in Ethereum, and the
block height (returned by NUMBER instruction) is related to the alive
time of the blockchain, which can not be very large.
2 𝛿2: Implicit Constraints on Individual Internal Variables. Smart
contracts are invoked via transactions. Contract internal storage
variables (e.g., Owner) persist across transactions. The value ranges
of internal variables are decided by the transaction sequences. They
are not arbitrary because the contract code can only assign specific
values to the variables. An example is in Listing 1.
1 function init() { fund = 1000; }

2 function award() { uint256 profit = fund*100; } / / FP (1000∗100 can not overflow)

Listing 1: FP caused by 𝛿2. Reported by VERISMART [8].
3 𝛿3: Implicit Constraints Between Internal Variables. Smart con-
tracts’ internal storage variables have in-between dependencies.
A group of storage variables may always get updated together to
keep certain invariants. As shown in Listing 2, the contract variable
BALANCE is always equal to pending, so the second function call of
a reentrancy attack will never succeed because the first call sends
out all of the contract balance.

We tested the state-of-the-art static tools on the currently largest
real contract dataset [6]. And then manually checked the result

31

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)
20

22
 IE

EE
/A

CM
 4

4t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 S
of

tw
ar

e
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e
(IC

SE
-S

EI
P)

 |
 9

78
-1

-6
65

4-
95

90
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
SE

-S
EI

P5
53

03
.2

02
2.

97
93

96
3

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, P A, USA Tingting Yin, Chao Zhang, Yuandong Ni, Yixiong Wu, Taiyu Wong, Xiapu Luo, Zheming Li, and Yu Guo

1 function () payable { pending += msg.value; }

2 function send() {

3 owner.depositEth.value(pending)(); / / i . e . BALANCE−=pending , FP (reentrancy)
4 ...}

Listing 2: FP caused by constraint 𝛿3. Reported by OSIRIS [10]
of arithmetic alarms and reentrancy alarms, which are the vul-
nerability accounts for 95.7% of the contract CVEs [8] and top1
vulnerability in DASP [5] rank. Table 1 shows the false positives
caused by implicit constraints.

Table 1: Implicit constraints result in FPs.
Tool Alarms FPs 𝛿1 𝛿2 𝛿3 (𝛿1 + 𝛿2 + 𝛿3) / FPs

OSIRIS 476 366 204 23 96 88.3%
VERISMART 100* 78 41 17 9 85.9%
Mythril [1] 213 125 26 1 2 23.2%

* Randomly sampled 100 from 2763 alarms for manual verification.

2 EMPIRICAL EVALUATION
Are the state-of-the-art static vulnerability detectors aware of the
implicit constraints? We construct a comparison dataset via bug
injection to answer this question. In the control dataset D1, we
inject vulnerable code snippets into real contracts (base contracts).
All of the vulnerable snippets in D1 are in reachable branches. In
the experimental dataset D2, we inject the same vulnerable snippets
into the same contracts as D1 but guard each vulnerable snippet
with an infeasible condition statement which is opposite to the
implicit constraints. Thus, all of the vulnerable snippets in D2 are
unreachable.

The more vulnerabilities reported in D2 (𝑛_𝑑2) means the tool
missed more implicit constraints. This also indicates the tools have
worse abilities in analyzing code accessibility and have more false
positives in practice. Taking the vulnerabilities the tools reported in
D1 (𝑛_𝑑1) as the baseline, we can calculate the percentage (P) of the
implicit constraints the tools can handle (𝑃 = (𝑛_𝑑1−𝑛_𝑑2)/𝑛_𝑑1).

We insert 7 typical types of vulnerabilities into base contracts
with SolidiFI [4] and select three types of contracts as the base
contracts: 1) the model contracts which are widely adopted (e.g.
ERC20), 2) top contracts [2] which have a large market cap, 3)
example contracts from official tutorials. As a result, 973 bugs are
injected. More details can be found in the open-sourced repository1.

The evaluation result is shown in Table 2. Six out of seven state-
of-the-art detectors get similar results in D1 and D2, which means
they are not aware of the implicit constraints. Mythril can deal with
all three types of constraints by analyzing transaction sequences
but suffering from high false-negative rates due to timeout.

3 MITIGATION
We propose a lightweight mitigation method called ConSym for
symbolic execution based detectors to deal with implicit constraints
and reduce the false positives. It can be easily applied to most of
the symbolic execution based tools.

For constraint 𝛿1, ConSym adds constraints to the return value of
related instructions (e.g., TIMESTAMP, CALLVALUE) according to their
real-world meanings. For example, ConSym limits assets-related
variables smaller than 150 million ETH, which is more than the
current ETH total supply.

For 𝛿2 and 𝛿3, it is not practical to search all of the constraints
actively in smart contracts because the search space is very large.
Instead, ConSym concretizes such constraints via concolic execution.
Firstly, ConSym invokes the contract constructor and functions
1https://github.com/consym/Contract-Constraint-Benchmark

Table 2: Static detectors are insensitive to implicit constraints
Verifier Pattern Scanner

VERISMART SECURIFY [11] smartcheck [9] slither [3]
𝛿1
𝛿2
𝛿3

dataset 𝑛_𝑑1 𝑛_𝑑2 𝑛_𝑑1 𝑛_𝑑2 𝑛_𝑑1 𝑛_𝑑2 𝑛_𝑑1 𝑛_𝑑2
reported 139 131 140 126 233 233 430 372

Symbolic Execution
Oyente [7] OSIRIS Mythril ConSym-OSIRIS*

𝛿1
𝛿2
𝛿3

dataset 𝑛_𝑑1 𝑛_𝑑2 𝑛_𝑑1 𝑛_𝑑2 𝑛_𝑑1 𝑛_𝑑2 𝑛_𝑑1 𝑛_𝑑2
reported 235 209 144 121 51 6 149 8

* OSIRIS with our mitigation ConSym.
* P ∈ [0, 20%] P ∈ (20%, 40%] P ∈ (40%, 60%] P ∈ (60%, 80%] P ∈ (80%, 100%]

with concrete inputs to initialize the internal variables. In this way,
the variables will be assigned with concrete values that satisfy im-
plicit constraints. Then, as shown in Figure 1, ConSym can perform
symbolic execution with concreted implicit constraints.

require(x >= value);
y -= value; // overflow FP

require(10 >= value);
20 -= value; // no FP

contract with a implicit constraint:
totalSupply ≥ balances[i]

balances[i] = x
totalSupply = y

balances[i] = 10
totalSupply = 20

x ≥ value ⇏ y ≥ value
symbolic values cause FP

10 ≥ value ⇒ 20 ≥ value
concrete values case no FP

require(balances[i] >= value);
totalSupply -= value;

initial states in analysis:

Figure 1: Using concrete initialization values to reduce FPs.
We apply ConSym to the open-sourced solution OSIRIS to eval-

uate it. Table 2 shows that ConSym can deal with all three types of
implicit constraints. We further conduct experiments on the real
contract dataset [6] to evaluate the performance of the ConSym in
terms of false positives and false negatives. The result is shown in
Table 3. ConSym reduces the false positives of OSIRIS significantly
while not increasing the false negatives.
Table 3: ConSym has much fewer FPs and FNs than OSIRIS.

Tool Type False Positive Positive False Negative

ConSym over/underflow 6 133 18
reentrancy 1 13 0

OSIRIS over/underflow 158 97 54
reentrancy 4 13 0

REFERENCES
[1] ConsenSys. 2018. mythril: Security analysis tool for EVM bytecode.

https://github.com/ConsenSys/mythril.
[2] Etherscan. 2021. Etherscan ERC20 top tokens. Retrieved October 15, 2021 from

https://etherscan.io/tokens
[3] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis

framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB).

[4] Asem Ghaleb and Karthik Pattabiraman. 2020. How effective are smart contract
analysis tools? evaluating smart contract static analysis tools using bug injection.
In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 415–427.

[5] NCC Group. 2021. DASP-TOP 10. Retrieved January 12, 2021 from https://dasp.co/
[6] Kalra. 2017. ZEUS evaluation. Retrieved May 9, 2017 from https://docs.google.

com/spreadsheets/d/12_g-pKsCtp3lUmT2AXngsqkBGSEoE6xNH51e-of_Za8
[7] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. 254–269.

[8] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. 2020. VeriSmart:
A Highly Precise Safety Verifier for Ethereum Smart Contracts. In 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 417–434.

[9] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,
Evgeny Marchenko, and Yaroslav Alexandrov. 2018. Smartcheck: Static analysis
of ethereum smart contracts. In 2018 IEEE/ACM 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 9–16.

[10] Christof Ferreira Torres, Julian Schütte, et al. 2018. OSIRIS: Hunting for integer
bugs in ethereum smart contracts. In Proceedings of the 34th Annual Computer
Security Applications Conference. ACM, 664–676.

[11] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart
contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 67–82.

32

