
What’s bothering developers in code review?

Emma Söderberg
emma.soderberg@cs.lth.se

Dept. of Computer Science

Lund University

Sweden

Luke Church
luke@church.name

Lund University, University of

Cambridge

Sweden, United Kingdom

Jürgen Börstler
jurgen.borstler@bth.se

Dept. of Software Engineering

Blekinge Institute of Technology

Sweden

Diederick C. Niehorster
diederick_c.niehorster@humlab.lu.se

Humanities Lab, Dept. of Psychology

Lund University

Sweden

Christofer Rydenfält
christofer.rydenfalt@design.lth.se

Dept. of Design Sciences

Lund University

Sweden

ABSTRACT

The practice of code review is widely adopted in industry and has

been studied to an increasing degree in the research community.

However, the developer experience of code review has received

limited attention. Here, we report on initial results from a mixed-

method exploratory study of the developer experience.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS

software development, code review, user experience

ACM Reference Format:

Emma Söderberg, Luke Church, Jürgen Börstler, Diederick C. Niehorster,

and Christofer Rydenfält. 2022. What’s bothering developers in code re-

view?. In 44nd International Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP ’22), May 21–29, 2022, Pittsburgh, PA, USA.

ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3510457.3513083

1 INTRODUCTION AND RELATEDWORK

The utility, purpose and practices surrounding code review have

been an increasing focus of research activity in recent years [6].

Studies have described the practice of code review (primarily in

open-source projects [8, 9] and at big companies [2, 11]), and pro-

posed new solutions to improve the code review process (e.g., re-

viewer recommendation [3], decomposition of changes [4]).

In describing the practice of code review, some studies have

reported on the perception of developers, for instance, expected

benefits (primarily code improvement [10], defect identification [2],

and knowledge sharing [11]) and challenges (primarily understand-

ing change rationale [2, 9–11] and code comprehension [9, 11, 12]).

However, whilst these studies report on the practitioners’ per-

ception of code review, the broader understanding of how code

This work is licensed under a Creative Commons Attribution International 4.0 
License.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9226-6/22/05.
https://doi.org/10.1145/3510457.3513083

review fits into the socio-technical context of development is un-

derdeveloped. A couple of studies have focused on specific aspects

connected to the developer experience, for instance, perceived fair-

ness in the code review process [8] and reasons for confusion [7].

Confusion in reviews, as well as toxic conversations [1], have also

been reported as anti-patterns in code review [5].

In this work, our starting point is the developer experience of

the code review process, which we see as complementary to pre-

vious work [1, 5, 7, 8]. We seek a better understanding of ‘what

is bothering developers when they are giving and receiving code

reviews?’ and input to design explorations in this space. We report

on initial findings from an exploratory mixed-method study, where

we focus on the use of tools and to what extent these aid developers

in their code review tasks.

2 DATA COLLECTION

We used a mixed-method approach comprising 12 semi-structured

interviews and a follow-up survey. We interviewed experienced

developers at two multi-national businesses in Sweden. A follow-up

survey was conducted to develop a broader understanding of the

themes that emerged from the interviews. Rather than attempting to

be comprehensive, this short paper outlines an initial exploratory

analysis of the qualitative interview data to highlight emerging

themes of interest after an initial reading. A more detailed analysis,

including the results from the survey, is forthcoming.

3 RESULTS AND EMERGING THEMES

A recurring and novel topic that emerged from the interviews is that

code review is an activity that comprises a wide range of different

tasks that depend on the organisational and individual context. A

single change will often be reviewed by different people in different

ways. For example, the change might be reviewed by a peer for

general implementation issues and other quality concerns (e.g.,

“the no. 1 thing which we check for is ‘are they following the coding

convention?’, no. 2 is if for example, if that makes sense what he/she

has written?”, developer). It might then be reviewed by a more

senior developer to determine whether it aligns with the overall

technical and architectural strategy of the design (e.g., “I try not to

go in to too much detail when I code review because I assume that the

code there actually work and that the tests are written and so on, of

course I can see it in the review as well, so I mainly focus on making

341

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

http://creativecommons.org/licenses/by/4.0/


ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Söderberg et al.

sure nothing has been removed and that information that would be

received by the API is still there”, architect).

In much of the existing literature, code review has been analyzed

as a single activity [6]. However, the finding above indicates that

there are differences in behavior between roles, such as between

developers and architects, and levels of experience. Further from

what we see in the interviews, this variation is not reflected within

the tooling used for code review, which is largely the same for all

use cases of the tools, as well as all roles within review. We only

see an allowance for small variations to reflect social practices,

for example, whether to merge a change after a single reviewer

approval or after multiple.

This ‘one size fits all’ approach causes significant problems,

and applies not only to the tooling used for the review, but to the

workflow itself. For example, the reviewers who look at the code

inside the wider context of architecture often need to look at a wide

collection of the files. However, the set that is available within the

review is defined implicitly by the collection of files that have been

modified and can not be changed by the developer submitting the

review.

We see amismatch between the ‘Unit of Analysis’ and the

‘Unit of Attention’, that is, a mismatch between the scope of data

that is presented to the reviewer (Unit of Analysis) and the scope of

the system that the reviewer needs to attend to (Unit of Attention).

Whereas the Unit of Attention varies depending on the type of

change, the nature of the review, and the role of the reviewer, the

Unit of Analysis is always the same, since it is implicitly defined

by the change set. The reviewers have to mitigate this problem by

manually adjusting the Unit of Analysis, e.g., by switching from

the review tools to their IDE to load further code for review (“if it

is a very complex change or a change that I’m not very familiar with,

then I usually check out the commit and then I have a look at it in my

IDE where I have a better syntax highlighting and can follow code

more easily” ). This tool-task misalignment can cause a significant

interruption of the reviewer’s workflow and a distraction from the

task at hand, which might create the risk of them taking a shortcut

and not performing the review at the thoroughness they otherwise

would.

4 DISCUSSION AND FUTUREWORK

The ‘one size fits all’ approach provided by current code review

tooling does not support developers’ and reviewers’ behaviour in

the wild, and causes time-consuming workarounds to realign the

unit of analysis and attention.

There are two potential strategies to address this. One would

be to explicitly support roles within the review tools, so that, for

example, an architectural reviewer might see a different presenta-

tion of the review and source code compared to an early reviewer

concentrating on the detail of the code. Whilst this would address

the problem, it would require extensive user-centered design work

in order to characterise the needed roles and design suitable pre-

sentations for each.

An alternative strategy would be to increase the flexibility of the

tools and allow developers and reviewers to curate the set of content

being reviewed, and allow teams to develop their own practices.

Whilst this would not require the upfront work to characterise the

different roles and practices, it would require more work from the

developers and reviewers to curate the review sets and develop

their own practices.

Both approaches seem viable routes for creating a more adaptive

approach to code review that might address the problems caused

by the existing uniform approach.

ACKNOWLEDGMENTS

This work has been partially supported by ELLIIT - the Swedish

Strategic Research Area in IT and Mobile Communications, the

Swedish Foundation for Strategic Research (grant no. FFL18-0231),

and the Swedish Research Council (grant no. 2019-05658).

REFERENCES
[1] Ikram El Asri, Noureddine Kerzazi, Gias Uddin, Foutse Khomh, and M.A. Janati

Idrissi. 2019. An empirical study of sentiments in code reviews. Information and
Software Technology 114 (2019), 37–54. https://doi.org/10.1016/j.infsof.2019.06.
005

[2] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In Proceedings of the 35th International Conference
on Software Engineering (ICSE). 712–721. https://doi.org/10.1109/ICSE.2013.
6606617

[3] Vipin Balachandran. 2013. Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommendation. In
Proceedings of the 35th International Conference on Software Engineering (ICSE).
931–940. https://doi.org/10.1109/ICSE.2013.6606642

[4] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K. Lahiri. 2015. Helping
Developers Help Themselves: Automatic Decomposition of Code Review Change-
sets. In Proceedings of the 37th International Conference on Software Engineering
(ICSE), Vol. 1. 134–144. https://doi.org/10.1109/ICSE.2015.35

[5] M. Chouchen, A. Ouni, R. G. Kula, D. Wang, P. Thongtanunam, M. W. Mkaouer,
and K. Matsumoto. 2021. Anti-patterns in modern code review: Symptoms
and prevalence. In Proceedings of the 28th IEEE International Conference on Soft-
ware Analysis, Evolution and Reengineering. 531–535. https://doi.org/10.1109/
SANER50967.2021.00060

[6] N. Davila and I. Nunes. 2021. A systematic literature review and taxonomy
of modern code review. Journal of Systems and Software 177 (2021), 110951.
https://doi.org/10.1016/j.jss.2021.110951

[7] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik. 2021. An exploratory study
on confusion in code reviews. Empirical Software Engineering 26, 1 (2021), 1–48.
https://doi.org/10.1007/s10664-020-09909-5

[8] Daniel M. German, Gregorio Robles, Germán Poo-Caamaño, Xin Yang, Hajimu
Iida, and Katsuro Inoue. 2018. "Was My Contribution Fairly Reviewed?": A
Framework to Study the Perception of Fairness in Modern Code Reviews. In
Proceedings of the 40th International Conference on Software Engineering (ICSE)
(ICSE ’18). ACM, New York, NY, USA, 523–534. https://doi.org/10.1145/3180155.
3180217

[9] O. Kononenko, O. Baysal, and M. W. Godfrey. 2016. Code Review Quality: How
Developers See It. In Proceedings of the 38th International Conference on Software
Engineering (ICSE) (ICSE ’16). ACM, New York, NY, USA, 1028–1038. https:
//doi.org/10.1145/2884781.2884840

[10] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and J. Czerwonka. 2018. Code
Reviewing in the Trenches: Challenges and Best Practices. IEEE Software 35, 4
(2018), 34–42. https://doi.org/10.1109/MS.2017.265100500

[11] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli. 2018. Modern
Code Review: a Case Study at Google. In Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
181–190. https://doi.org/10.1145/3183519.3183525

[12] D. Spadini, M. Aniche, M.-A. Storey, M. Bruntink, and A. Bacchelli. 2018. When
Testing Meets Code Review: Why and How Developers Review Tests. In Proceed-
ings of the 40th International Conference on Software Engineering (ICSE). 677–687.
https://doi.org/10.1145/3180155.3180192

342




