
An Industrial Experience Report on Retro-inspection
Lanxin Yang, He Zhang, Fuli Zhang, Xiaodong Zhang, Guoping Rong

State Key Laboratory of Novel Software Technology, Software Institute, Nanjing University
Nanjing, Jiangsu, China

yang931001@outlook.com,hezhang@nju.edu.cn,{mg1932016,mg1932018}@smail.nju.edu.cn,ronggp@nju.edu.cn

ABSTRACT
To reinforce the quality of code delivery, especially to improve
future coding quality, one global Information and Communication
Technology (ICT) enterprise has institutionalized a retrospective
style inspection (namely retro-inspection), which is similar to Fa-
gan inspection but differs in terms of stage, participants, etc. This
paper reports an industrial case study that aims to investigate the
experiences and lessons from this software practice. To this end,
we collected and analyzed various empirical evidence for data tri-
angulation. The results reflect that retro-inspection distinguishes
itself from peer code review by identifying more complicated and
underlying defects, providing more indicative and suggestive com-
ments. Many experienced inspectors indicate defects together with
their rationale behind and offer suggestions for correction and pre-
vention. As a result, retro-inspection can benefit not only quality
assurance (like Fagan inspection), but also internal audit, inter-
division communication, and competence promotion. On the other
side, we identify several lessons of retro-inspection at this stage, e.g.,
developers’ acceptance and organizers’ predicament, for next-step
improvement of this practice. To be specific, some recommendations
are discussed for retro-inspection, e.g., more adequate preparation
and more careful publicity. This study concludes that most of the ex-
pected benefits of retro-inspection can be empirically confirmed in
this enterprise and its value on the progress to continuous maturity
can be recognized organization-wide. The experiences on executing
this altered practice in a large enterprise provide reference value
on code quality assurance to other software organizations.

CCS CONCEPTS
• Software and its engineering→ Software development pro-
cess management.

KEYWORDS
Retro-inspection, quality assurance, code review, inspection, expe-
rience report, case study

ACM Reference Format:
Lanxin Yang, He Zhang, Fuli Zhang, Xiaodong Zhang, Guoping Rong. 2022.
An Industrial Experience Report on Retro-inspection. In 44nd International

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513055

Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3510457.3513055

1 INTRODUCTION
Quality Assurance (QA) is paramount to software development and
therefore has always been highly valued [23]. Code review aims
to detect and identify defects in source code, and it has generally
become indispensable in ensuring software quality [18, 25]. Besides,
code review is beneficial to knowledge transfer, project schedule,
and team awareness [3], etc. Nowadays, code review has been
widely employed in both open source communities and commercial
contexts [1, 6, 26].

Over the past few years, a number of societies and organiza-
tions, e.g., IEEE Computer Society [29], Google [26], Microsoft [7],
Sony [28], Samsung [22], and Xerox [2] have reported on their
standards, guidelines, and practices with code review. However,
despite many benefits and various experiences reported on code
review, it remains a challenging practice of QA [15, 19, 21]. Code
review sometimes fails to find defects [12], and worse yet, it slows
down workflow [16], results in unfairness [20], etc. Compared with
other QA practices, e.g., testing, code review largely relies on or-
ganizational culture and developers’ expertise, experience, and
engagement [4, 6], which therefore has long puzzled enterprises.

One global Information and Communication Technology (ICT)
enterprise has consistently placed the top priority on its product
quality as well as engineering capability. As one of the critical QA
practices, code review has been adopted in its software development
divisions for over three decades. In the early years, code review
in this enterprise was mostly conducted in a collective and struc-
tured style (known as “Fagan inspection” [18]), which took place
after a source code-related artifact reached the pre-defined exit
criteria (e.g., completing specific requirements). Considering such
an approach was very time-consuming and cost-intensive, nowa-
days, the Fagan inspection has been replaced by an asynchronous,
lightweight, tool-based, and source code-oriented manner, known
as “peer code review” or “modern code review” [3]. However, the
outcomes of peer code review are generally not satisfactory as ex-
pected. For instance, some reviewers with limited expertise and
experience accordingly have less competence to detect a decent
number of defects [12]. On the other side, it is likely that there exist
cozy relationships among colleagues within the development team
and division, which may make peer code review ostensible and
biased [20]. Worse yet, although all the code commits merged into
project repositories subject to review and testing, and even work
in life, the residual (undetected) defects may consume significant
time, effort, and cost to fix and maintain.

Incipiently, a few development teams in this enterprise organized
informal postmortems and other types of spontaneous meetings

ar
X

iv
:2

20
4.

10
10

7v
2

 [
cs

.S
E

]
 1

 M
ay

 2
02

2

https://doi.org/10.1145/3510457.3513055
https://doi.org/10.1145/3510457.3513055

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Lanxin Yang, He Zhang, Fuli Zhang, Xiaodong Zhang, Guoping Rong

to react to the above challenges, e.g., address critical problems,
and more importantly, to seek directions for future improvement.
Distinct from Fagan inspection and peer/modern code review, this
retrospective style practice turns out to be open-minded by remov-
ing the pre-defined entry criteria, i.e. no longer event-driven (like
Fagan inspection). In the past few years, the pioneers’ experience to
some extent confirmed its effectiveness in improving software qual-
ity and fostering developer’s quality awareness. The positive effect
encouraged a number of followers, which attracted management’s
attention. After surveys on pilot teams and discussion with QA
and audit divisions, the practice was officially acknowledged, and
then standardized and institutionalized to be an organization-wide
practice. In general, its execution is similar to a Fagan inspection
but with several alterations. In particular, the inspected projects
should have been already reviewed and tested before, and the in-
spectors must include the technical personnel from the division
under inspection. For the sake of distinction and succinctness, the
term “retro-inspection” refers to this altered Fagan inspection in
the rest of this paper unless it is specifically stated otherwise.

The objective of this study is to investigate this enterprise’s ex-
perience and lessons on conducting retro-inspection. To this end,
we employed a triangulation strategy that aggregates the data from
multiple sources for analysis. We first learned retro-inspection from
public documents and informal inquiries, then analyzed archive
documents from the latest seven retro-inspections (2019 – 2021).
Prior to interviewing the experts who ever participated in retro-
inspections, we designed sixteen closed-ended questions in ques-
tionnaires to obtain the state of peer code review, so as to prepare
appropriate questions for experts. Finally, the question lists consist
of fourteen open-ended questions, which are designed to consult
experienced inspectors on retro-inspection.

After long-term collections and analyses of various empirical ev-
idence, we understand that through third-party suggestion or/and
self-submission, the samples into retro-inspections can be particular
projects picked according to the specific interests. A number of do-
main experts are invited into retro-inspections, in which they have
identified quite a few complicated (sometimes even deep-rooted)
and underlying code defects, including but not limited to logic
faults, security vulnerabilities. Besides, they have provided wide-
spread indicative and suggestive comments, such as the rationale
behind the defects, suggestions for correction and prevention. As
a result, retro-inspection not only benefits code quality assurance,
but also works for internal audit, inter-division communication,
and competence promotion. Furthermore, we identify that retro-
inspection at this stage is also associated with limitations and risks,
especially, synergy among multiple participant roles, which result
in lessons such as developers’ disagreement and organizers’ predica-
ment. In the end, we propose some recommendations for improving
retro-inspection, e.g., stricter admission criteria, longer inspection
period, and more careful publicity. As an altered QA practice, retro-
inspection is still in its stage of continuous improvement.

The main contributions of this industrial case study can be high-
lighted as follows.

• This study reports on an empirical investigation on retro-
inspection, as an altered QA practice, in an industrial context
through long-term observation with data triangulation.

• This study elaborates on retro-inspection as an effective
supplement to peer code review, with variations on purposes,
stages, samples, participants, and processes.

• This study identifies the limitations and potential risks as-
sociated with retro-inspection at this stage and discusses
recommendations for improvement, which offer reference
value for other organizations with serious concerns on soft-
ware quality.

2 BACKGROUND AND RELATEDWORK
2.1 State-of-the-practice of code review
Since Michael Fagan put forward inspection at IBM in 1976 [18],
it has been widely accepted and evolved into multiple forms. The
IEEE Computer Society has published its standards for software
reviews and audits [29], which elaborate on (1) management review,
(2) technical review, (3) inspection, (4) walk-through, and (5) audit.
Regardless of the types of reviews, they are all required to review
source code, i.e. code review is the most fundamental.

As defined in Google’s engineering practices documentation, the
code review guidelines1 consist of two parts: (1) How To Do A Code
Review, and (2) The CL Author’s Guide. The former is intended for
code reviewers, which elaborates on review standards and empha-
sis, comment writing, pushback handling, etc. The latter serves
developers whose code changes are going through reviews, which
elaborates on strategies for preparing submissions and handling
review comments. GitLab also offers guidelines2 for performing
code review, which elaborate on GitLab-specific context and con-
cerns, multiple roles’ responsibilities, approval thresholds, and a
number of best practices, etc. Apart from GitLab, there are a variety
of tools available to assist in code review, such as Review Board3
and Gerrit4.

When it comes to the enterprises’ practices and experiences on
code review, an investigation [3] conducted at Microsoft reveals
that in addition to finding defects, code review serves extra benefits
such as knowledge transfer, team awareness improvement, and
supplementation of alternative solutions to issues. A case study [26]
conducted at Google shows that all roles highly appreciate code
review, seeing it as providing multiple benefits and a venue where
one can exchange with others to build, establish, maintain, and
evolve norms that ensure readability, integrity, and consistency of
project repository.

2.2 Limitations and risks of code review
Code review brings a number of benefits, which have been widely
agreed in community [3, 9]. Nowadays, code review has generally
become a must-have in modern software development. However,
despite the benefits of code review, it is subject to various limita-
tions and risks. Fatima et al. [19] identified 28 unique wastes in
code reviews, including poor code quality, duplication of work, time
spent on code understanding, lack of motivation to share knowl-
edge, etc. Egelman et al. [17] pointed out that reviewers’ critical
examinations may have negative influences, e.g., frustration and

1https://google.github.io/eng-practices/review/
2https://docs.gitlab.com/ee/development/code_review.html
3https://www.reviewboard.org/
4https://www.gerritcodereview.com/

An Industrial Experience Report on Retro-inspection ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

stress on colleagues, and ultimately result in their abandonment
from projects. German et al. [20] surveyed developers from Open-
Stack community, finding that a significant portion of respondents
perceive their contributions were unfairly reviewed. They also indi-
cated that there is a lack of consistency and fairness when reviewers
prioritize assignments. Han et al. [21] found that quite a few cod-
ing convention violations were ignored by both code authors and
reviewers in Eclipse community. Their results indicate that humans
are neither effective nor consistent in avoiding convention viola-
tions. Bosu et al. [7] found that the proportion of useful comments
made by code reviewers increases dramatically in their first year
at Microsoft but towards to plateau afterward, which indicates the
degeneration of activeness and engagement.

These limitations lead to the risks that turn code review to be a
waste of time. With the emphasis on code quality, the global ICT
enterprise studied in this paper has conducted a retrospective inter-
division style code review, namely retro-inspection. The experiences
and lessons learned from retro-inspections are reported in this
paper.

3 PRELIMINARY: RETRO-INSPECTION
This section describes retro-inspection protocols, including the
purposes, stages, samples, participants, and processes & activities.

Purposes: Retro-inspection in this enterprise is not limited to
tackling current quality issues with source code, instead it has great
significance in improving future quality and fostering developers’
awareness of quality concerns.

Stages: Figure 1 shows an overview of peer code review and
retro-inspection in the enterprise’s code pipeline. Peer code review
is mandatory within divisions prior to merging code commits into
project repositories, whereas retro-inspection is optional and should
be conducted by external divisions after testing has been completed.

Create Merge Test Deploy

Retro-inspection Retro-inspection

Commit Peer Code Review

Pull-request

Figure 1: Retro-inspection in code pipeline

Samples: The samples of retro-inspection consist of a wide
range of projects, including (but are not limited to) (1) problem-
prone projects, (2) newly-deployed projects, (3) projects that sup-
port core business functions, (4) outsourced projects, and (5) projects
never inspected before. Besides, (6) well-performed projects are also
allowed to be picked according to specific interests. Managements
make the choice of inspection samples based on (1) third-party
recommendations (e.g., security and QA divisions), and/or (2) self-
submission by inspected divisions.

Participants:Multiple roles participate in retro-inspections, and
each role is responsible for specific tasks. The executives are the
leaders and decision-makers. The organizers are responsible for
inspection protocols, personnel coordination, process monitoring,
and reporting. The chief inspectors who are both coding and inspec-
tion experts are in charge of personnel coordination and process
monitoring. Additionally, 2 – 4 coding experts are assigned to one

group to conduct inspection. Note that each inspector should pos-
sess rich experience in peer code review but does not necessarily
require prior experience on retro-inspection. Finally, the inspected
divisions’ related roles, such as code authors, are responsible for
defect correction and quality improvement.

Processes & activities: Figure 2 shows an overview of the pro-
cesses & activities of retro-inspection. In the planning phase, execu-
tives determine objectives and the inspected divisions, and organiz-
ers specify inspection protocols, and participants. In the preparation
phase, organizers access inspected divisions and samples, assign
inspectors, and host kick-off meetings. In the execution phase, or-
ganizers and the inspected divisions take charge of walk-throughs;
inspectors collaborate to examine samples in either an asynchro-
nous or synchronous manner, and communicate with code authors
if needed; code authors continuously improve and monitor code
changes until all the identified defects are fixed and confirmed with
inspectors. There are few differences between retro-inspection and
peer code review in the execution phase. In the reporting phase, or-
ganizers conclude results and findings, and report to managements,
chief inspectors, and the inspected divisions. Finally, all participant
roles share experiences and lessons in the postmortem phase. For
instance, whether or not the code defects found in retro-inspections
can be detected and identified by static analysis tools? (If yes, peer
code review and testing should be improved; if not, static analysis
tools should be strengthened.)

Planning Phase
• protocols
• participants, etc.

Preparation Phase
• repository accessing
• inspector assignment
• kick-off meeting, etc.

Postmortem Phase
• experience
• lessons

Execution Phase
• walk-through
• code review
• follow-up, etc.

Reporting Phase
• audit reporting
• review reporting

Retro-inspection

Figure 2: Processes & activities of retro-inspection
As a variation of Fagan inspection, retro-inspection in this enter-

prise is conducted by personnel out of the division under inspection,
and the samples should have been reviewed and tested in advance.
Retro-inspection is similar to software audit [29] but to source code,
it has no pre-defined criteria for other types of software output-
s/products as well as software processes. Also, retro-inspection
shares a very close relationship with peer code review, but the
differences are also observable. More comprehensive comparisons
of common types of inspections and audit are presented in Table 1.

4 RESEARCH METHOD
Following the research design guidelines [11], we conducted a case
study aiming to report on retro-inspection in an industrial context.
Figure 3 shows an overview of the research method and process.

4.1 Research questions
The four research questions (RQs) that were proposed to guide this
industrial case study are as follows.

• RQ1:What are the benefits of retro-inspections?
• RQ2:What comments are given in retro-inspections?

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Lanxin Yang, He Zhang, Fuli Zhang, Xiaodong Zhang, Guoping Rong

Table 1: Comparison of common types of software inspections and audit
Software audit Classical inspection (Fagan style) Modern inspection (modern code review) Retro-inspection (enterprise’s)

Objective internal audit project scheduling, quality assurance quality assurance internal audit, quality assurance
Target software processes1, outputs software outputs2 source code source code
Venue outside inside inside outside
Stage any stages any stages pre-merge post-test
Scope partial partial global partial
Frequency yearly weekly/monthly daily quarterly
Communication meeting meeting comment comment, meeting
Role auditor, audited organization inspector, inspected organization reviewer, reviewed organization inspector, inspected organization

1 Examples of software process-related documentations include, but are not limited to (1) standards, (2) regulations, (3) guidelines, (4) plans, and (5) procedures.
2 Examples of software outputs/products include, but are not limited to (1) requirements specifications, (2) design descriptions, (3) test documentations, and (4) source code.

Research
Questions

Archive
Analysis

Questionnaire
Survey

Panel
Interview

Brochures Guidelines Repositories Databases

Analysis & Synthesis Results & Findings
Questionnaires

8 Divisions

156 Questionnaires

Question List

20 Inspectors

the State of Peer
Code Review

Experience &
Lessons &
Recommendations

Research
Protocol

Support

Support

Figure 3: An overview of research method and process
• RQ3:What defects are identified in retro-inspections?
• RQ4:What lessons are learned from retro-inspections?

As the enterprise-specific software practice, retro-inspections
require well-defined protocols (cf. Section 3). We propose RQ1 to
explore the benefits of retro-inspections, from both management’s
expectations and developer’s perceptions. RQ2 and RQ3 aim to
investigate the outputs (in terms of comments and defects) that
contribute value for retro-inspections. Finally, RQ4 is promoted to
aggregate lessons from retro-inspections, so as to support its future
improvements.

4.2 Data collection
Retro-inspection in this enterprise is closely related to peer code re-
view and other software practices, such as development and testing.
Understanding retro-inspection requires long-period participation
and observation. Since July 2020, one author had worked as a full-
time intern in this enterprise, and the other two authors visited it
periodically for observation.

Due to access restrictions, unfortunately, we can only access
limited repositories, databases, and participants involved in retro-
inspections. Data triangulation is a research strategy that develops
a comprehensive understanding of phenomena by using multiple
data sources [30]. By using triangulation, we can make the most
of each single data source’s advantages meanwhile overcoming
shortcomings to some extent.

4.2.1 Archive analysis. The preliminary understanding of retro-
inspection comes from reading (1) brochures, (2) guidelines, fol-
lowed by retrieving information from (3) repositories and databases.
The first two help to understand inspection protocols, such as par-
ticipants, processes & activities. The last helps to analyze inputs and
outputs of retro-inspection, such as samples’ fields and inspectors’
outputs.

Review comments convey rich information [7] for archive anal-
ysis. We manually analyzed the latest seven retro-inspections’ com-
ments (2019 – 2021, in 3292 total). From them, we identified and

summarized comment styles and code defects. (cf. Section 4.3 for
analysis methods and processes.)

4.2.2 Questionnaire survey. Retro-inspection is not only an inspec-
tion of source code but also peer code review since all the samples
should have already been reviewed as a regular basis. To make
up for the limited understanding of peer code review, and to de-
velop appropriate questions for panel interviews, we conducted an
online survey of developers who have participated in peer code
reviews. The questionnaire consists of sixteen closed-ended ques-
tions. Among them, the first three are general questions that help
to distinguish interviewees’ roles, understand their perception of
review benefits, and communication tools. Then two questions
(i.e. feedback period and comment styles) are designed for code
authors only, the rest of the questions (e.g., review workload, re-
view habits, time spent, etc.) for code reviewers only. The complete
questionnaire is available in the online appendix5.

We identified the most productive code authors (in terms of their
commit records) and reviewers (in terms of their review outputs) in
the enterprise, and choose their intersection as the target population
for the questionnaire survey. In the fourth quarter of 2020, 200
questionnaires were distributed to them using an internal system.
The requested response time was given for three days. In the end,
156 valid questionnaires were returned from eight divisions with
an overall response rate of 78%.

4.2.3 Panel interview. To achieve deep insights into retro-inspection,
we conducted panel interviews [14] with experts who have ever
participated in it before. We designed fourteen basic open-ended
questions. Among them, the first six questions help to understand
experts’ demographics and their experiences (e.g., participation
times, roles, workload assignment). Subsequent three questions
(e.g., inspection emphasis and comment styles) are designed for
accessing experts’ habits. The remainders are proposed to aggre-
gate suggestions for improvement (e.g., differences from peer code

5http://softeng.nju.edu.cn/tech-reports/TR-22-002-CodeReview-EN.pdf

An Industrial Experience Report on Retro-inspection ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

review, benefits, shortcomings, and suggestions). We adjusted ques-
tions’ order and supplemented questions according to interviewees’
responses. The basic questions for panel interviews are available in
the online appendix, accessible with the questionnaire.

All the interviews were recorded with the interviewees’ permis-
sion. Three authors took part in panel interviews. Two of them
asked questions in turn, the other was in charge of recording. In to-
tal, we interviewed twenty inspectors. Twelve of them are security
experts, the others are business and functional experts. Note that
each role can freely comment on any type of code defect.

Lead, 8, 40%

Medium, 6,
30%

Chief, 3,
15%

Senior, 3,
15%

<3 times,
8, 40%

3-5 times,
7, 35%

6-10 times,
3, 15%

>10 times,
2, 10%

Figure 4: Demographics of the interviewed inspectors (Left:
position; Right: participation times)

Figure 4 shows the demographics of the interviewed inspectors.
The inspector’s position ranges from Medium-level Engineer (𝑀𝐸)
to Chief Engineer (𝐶𝐸), indicating their working experience in the
enterprise and their qualification in a specific area, in particular on
peer code review. As shown in the figure, over half (12/20) of the
inspectors has participated in retro-inspections for at least 3 times.
In the rest of this paper, each participating inspector is denoted by
his/her position and inspection experience. For instances, 𝐿𝐸 [7] de-
notes a Lead Engineer with 7 times experience on retro-inspection.
Besides, in our study with this enterprise, we frequently communi-
cated with two management staff who took the role of organizers
(indicated by 𝑂1 and 𝑂2) in retro-inspections.

4.3 Data analysis
Both quantitative and qualitative data collected in this study went
through the following methods for analysis to generate findings.

Descriptive analysis. a.k.a. descriptive statistics, is a quantitative
analysis method that uses statistical methods to describe and sum-
marize data [13]. The archive documents consist of a large amount
of data from both peer code review and retro-inspection, and our
questionnaires consist of several closed-ended questions. By an-
alyzing the up-to-date state of review processes and results with
descriptive analysis methods, we can develop a preliminary under-
standing of peer code review, and further design specific questions
for understanding retro-inspection.

Thematic analysis. is used as a qualitative analysis method to
identify common themes within data [8]. It mainly helps to under-
stand major comment styles (RQ2) and code defects (RQ3). Coding
is the process of labeling and organizing qualitative data to identify
and distinguish themes and the relationship between them [27], and
was therefore utilized in thematic analysis. Although the inspection
comments have been labeled with defect types and severity levels,
they are incomplete and follow inconsistent taxonomies (mainly for
defect types). Therefore, we re-labeled comments from the latest

seven retro-inspections. We first learned the enterprise’s specifica-
tions, inquired developers to understand common defects. Next we
checked the existing labels from a small amount (300) of comments
to identify major (and recurring) labels. Then two authors inde-
pendently assigned labels to each comment. Finally three authors
collaborated to review and reassign labels until reach a consensus.
For example, given the inspection comment – “Please move this to
/secureconfigs/secureconfigs.properties file with permission as read-
only for this user and 0 for other groups”, its defect type is labeled as
“Sec” (security vulnerability), and its severity level as “Maj” (major),
and its comment style as “Sug” (serving suggestions).

Narrative inquiry or narrative analysis. is used to qualitatively
inquire and analyze the stories people engaged [10]. This method
helps to understand how interviewees represent themselves and
their experiences in retro-inspections. In order to acquire inspec-
tor’s understanding of retro-inspection, the interviewees were en-
couraged to share their most unforgettable experiences, views of
benefits, shortcomings as well as suggestions for inspection process
improvement. All interviews were recorded and then transcribed.
Three authors collectively performed coding for each interview in
case of misunderstanding.

5 FINDINGS AND LESSONS
This section elaborates on the results and findings that contribute
to answering the research questions.

5.1 Benefits of retro-inspections (RQ1)
Four main benefits of retro-inspections are identified from inquires.

Benefit 1: Quality assurance. As its primary objective, code
review is expected to ensure code quality [3]. However, peer code
review is often conducted in rush due to the schedule pressure and
the reviewer’s limited expertise. Although all the code commits
merged into project repositories have been reviewed, tested, and
even work in production, there may exist missing defects. Worse
yet, some of them are at great risk. Retro-inspection aims to further
detect and identify them, as well as seek opportunities for preven-
tion or alteration, which is highlighted in its motto – “Look Back to
Look Forward: The Way of Success”. The inspection organizer (𝑂1)
introduced that “Distinct from peer code review that is under heavy
business pressure, and is limited to pre-defined criteria/checklists,
retro-inspection has few limitations”. Moreover, various software
professionals, such as architects, testing specialists, and security
experts have collaborated in retro-inspections, bringing plenty of
their own experiences, which makes the evident improvement on
code quality. (cf. Section 5.3 for quantitative analysis.)

Benefit 2: Internal audit. Internal audit is an independent in-
spection, supervision, and evaluation activity that provides an un-
biased view of the audited population [5]. It helps to identify and
prevent risks, make decisions, strengthen management, etc. Retro-
inspection is an unannounced inter-divisional examination that
supports the enterprise’s internal audit. Code quality, as one of
the major measures to evaluate development quality, therefore, be-
comes the emphasis of retro-inspection. Besides, since all projects

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Lanxin Yang, He Zhang, Fuli Zhang, Xiaodong Zhang, Guoping Rong

to be examined in retro-inspections should have already been re-
viewed and tested before, retro-inspection also contributes to evalu-
ating the quality of the other QA practices (e.g., review and testing).

Benefit 3: Inter-division communication. Quite a few new
divisions have been set up in this enterprise in recent years. Most
of them have their own business and the responsibility gaps be-
tween divisions gradually become evident. However, they often
request or provide services on/to others. Inter-division commu-
nication, especially on understanding business backgrounds and
service functions, has become necessary. Retro-inspection serves as
a great opportunity for inter-division communication and collabo-
ration, in which inspectors can not only discuss the projects under
inspection, but also the business and services they have worked
with. An executive indicated that he considers experts whom he
worked with in retro-inspections as candidates for new projects.

Benefit 4: Competence promotion. By conducting long-term
and large-scale retro-inspections, a large number of cases, either
poorly- or well-implemented, have been identified, aggregated, and
archived. From them, QA divisions extracted commonly occurring
defects and then schedule periodic capability examinations, training
courses, and expert consulting for developers accordingly. Also, the
inspectors who participated in retro-inspections are invited to be tu-
tors, examiners (𝑂1). Moreover, retro-inspection can also benefit the
inspectors themselves. Inspectors are mostly domain experts who
possess both expertise as well as experience, and retro-inspections
are conducted in a group- or (at least) pair-review manner, which
makes peer communication dominant in retro-inspections. There-
after, retro-inspections provide a unique opportunity to cultivate
professionals. Four inspectors (𝐿𝐸 [7] ,𝑀𝐸 [10+] ,𝑀𝐸 [10+] ,𝑀𝐸 [5]) in-
dicated that they volunteered to participate in retro-inspections to
advance their expertise. Other inspectors (𝐶𝐸 [1] , 𝐿𝐸 [1] , 𝐿𝐸 [3]) indi-
cated that everyone within their division is required to alternately
take part in retro-inspections.

Finding: In addition to its major function – code quality
assurance (especially for future quality), retro-inspection can
contribute to side benefits such as internal audit, inter-division
communication, and additionally, plays a role in cultivating
developers and reviewers.

5.2 Comments in retro-inspections (RQ2)
As several software experts who get used to peer code review are
invited to a retro-inspection, we are interested in their specific
considerations in retro-inspections, which may help explain and
transfer the success of retro-inspection. This subsection reports the
styles of inspection comments from the content analysis.

Comment 1: Clarifying defect. Detecting and identifying de-
fects is the most primary task of code review. All the interviewed
inspectors indicated that they clarified defects in retro-inspection
comments. For anything unclear, they would contact code authors
or initiate a discussion within the inspection group. A few intervie-
wees (5.13%) who participated in questionnaire surveys indicated
that they sometimes raised queries in peer code reviews. Hence,
comments in retro-inspections serve for easy understanding, while
comments in peer code reviews can work for team communication.

Comment 2: Elaborating rationale. Brief assessments are com-
mon in peer code reviews, such as “incorrect logic”, “unnecessary”.
Beyond indicating defects, code authors, especially the newcomers,
also need to know the rationale behind for correction and further
improvement. Note that the ‘rationale’ in this context implies “why
does it fail to function”, rather “where make it break”, or “why offer
such suggestions”. In retro-inspections, inspectors elaborate the ra-
tionale for avoiding misunderstanding and disagreements. All the
interviewed inspectors confirmed that they were willing to elabo-
rate the rationale in retro-inspections. On the contrary, only 43.59%
of the interviewees offer the rationale in peer code reviews. The in-
terviewees indicated that in the context of peer code reviews, where
they share a similar background with code authors, comments con-
tain only concise explanation for minor defects, while major defects
can be further discussed via voice calls and face-to-face meetings.

Comment 3: Offering suggestion. Apart from indicating de-
fects, the ultimate objectives of code review are correction, pre-
vention, and improvement. Listing 1 shows a case of poor-quality
Java code identified in retro-inspections. The defect description
indicates that lines 6 – 12 misuse synchronized when printing log
messages. In addition to indicating the defect, the improvement is
also suggested –“No need of synchronization if no DATA-RACE; use
DOUBLE-CHECK if lock necessary”. 80.00% of the interviewed in-
spectors confirmed that they had served suggestions in comments.
When it comes to peer code reviews, only 28.85% of interviewees
offered suggestions in comments. Instead, 83.33% of interviewees
used to sharing suggestions by casual communications.

Listing 1: A case of low-quality code
1 public static GsLog getDebugLog(String moduleName) {
2 if (null == moduleName || moduleName.trim().length() == 0) {
3 return null;
4 }
5 GsLog gsLog = null;
6 synchronized (LOCK_LOG) {
7 gsLog = (GsLog) logMap.get(moduleName);
8 if (null == gsLog) {
9 gsLog = new GsLogImpl(moduleName);
10 logMap.put(moduleName, gsLog);
11 }
12 }
13 return gsLog;
14 }

Comment 4: Appreciating good-job. There is another type of
comment that works for developers’ cultivation. When coming
across excellent designs or implementations in the inspected sam-
ples, inspectors express appreciations. Taking Listing 2 as a case, the
strengths of this Java code snippet include (1) accelerating access
by locally caching the users and groups’ relationship rather than
remotely accessing IAM service through HTTP RESTful interface
every time; (2) improving flexibility by setting cache expiration
time to reload updated data; (3) avoiding out of memory by set-
ting the maximum number of caches. Six inspectors (𝐿𝐸 [7] , 𝐿𝐸 [1] ,
𝐿𝐸 [1] , 𝑀𝐸 [5] , 𝑀𝐸 [4] , 𝑀𝐸 [3]) indicated that they had shared the
masterpieces within their divisions. Having understood its benefits,
in recent years, the managements motivate each inspector to re-
port at least one poor case and one good case in a retro-inspection.
By contrast, good exemplars found in peer code reviews are more
commonly acknowledged in casual communications.

Listing 2: A case of high-quality code

An Industrial Experience Report on Retro-inspection ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 private LoadingCache<String, Set<String>> userGroupSet =

CacheBuilder.newBuilder()↩→
2 .maximumSize(MAX_CACHE_SIZE)
3 .expireAfterWrite(DURATION_10, TimeUnit.MINUTES)
4 .build(new CacheLoader<String, Set<String>>() {
5 @Override
6 public Set<String> load(String userId) throws Exception {
7 HashMap<String, HashSet<String>> userGroupsMap =

IAMScopeQuery.getUserGroupsFromIam(userId, config);↩→
8 return userGroupsMap.get(userId);
9 }
10 });

Finding: Comments in retro-inspections clarify code de-
fects, elaborate rationale behind, and offer suggestions to assist
correction and improvement; as well as appreciate well-done
work. Despite some of them also appear in peer code reviews,
they become more common outcomes of the comments from
retro-inspections.

5.3 Defects found in retro-inspections (RQ3)
According to the inspection protocols, all the samples for inspec-
tion should have been reviewed and tested before. However, having
checked the inspection reports, we found quite a few defects es-
caping from prior QA practices. This subsection summarizes these
defect types and their severity distribution to further investigate
the outputs from retro-inspections.

5.3.1 Defect types. Four main types of defects are as follows.

Defect 1: Logic faults (Log). The experts who participated in
retro-inspections with high levels of coding skills may have a
greater chance of detecting and identifying those hard-to-find logic
faults remaining in the inspected samples. In the past seven retro-
inspections, inspectors had found a total of 193 logic faults, mainly
including business logic faults and functional logic faults. Most of
them resulted from poor designs, incorrect or low-efficiency im-
plementations, which should be corrected right away to prevent
systems from malfunctioning.

In the panel interviews, one senior engineer (𝑆𝐸 [2]) mentioned
that “to identify defects in code reviews is all well motivated, however,
some defects should be examined by machines rather than figured out
by human brains. The most critical task in code reviews, especially in
retro-inspections, is to identify logic faults”. However, another lead
engineer (𝐿𝐸 [3]) argued that “it is hard to detect and identify business
logic faults in retro-inspections since we have little understanding of
the project background”. Although identifying logic faults in retro-
inspections is strongly recommended, the associated challenge may
result in disagreements (cf. Section 5.4).

Defect 2: Security vulnerabilities (Sec). Security inspection is
one of the primary tasks of retro-inspection since it is challenging
but critical to software quality. One organizer (𝑂1) indicated that
“Both developers and reviewers have weak abilities in identifying and
preventing security vulnerabilities and therefore largely rely on scan-
ning tools. However, the ‘False Negatives’ and ‘False Positives’ are
commonly occurrences”. Therefore, besides the business and func-
tional experts, each inspection group should include at least one
security expert. In the past seven retro-inspections, inspectors had
identified a total of 386 security vulnerabilities which are mainly
concerned with (1) improper input validation, (2) numeric errors,

(3) improper implementation of API contract, (4) permissions, priv-
ileges, and access controls, (5) information exposure, etc.

Defect 3: Coding standard violations (Sta). Compliance with
coding standards/specifications is essential in any large enterprise,
which is beneficial to both software maintainability and team com-
munication. In the past seven retro-inspections, inspectors iden-
tified a total of 958 defects related to coding standards, mainly
including (1) design specifications, (2) coding styles, (3) variables
and types, (4) exception handling, (5) log printing, (6) multi-thread
concurrent. Beyond division-specific coding standards, it is even
more important to conform higher level enterprise-wide standards.
Unfortunately, the majority of these violations are marked as ‘OP-
TIONAL’ in peer code reviews, which implies a low priority with
less chance to be finally fixed.

Defect 4: Coding experience violations (Exp). There are a num-
ber of commonly accepted practices for high-quality, high-efficiency
coding, which share significant amount of commonalities with the
coding standards/specifications but largely rely on developers’ skill,
preference, and experience. The violations to these experiences may
result in (1) useless code, (2) duplicate code, (3) longmethods/classes,
(4) parameter judgment omissions, (5) pointer judgment omissions,
etc. Many defects are code smells or idiomatic-against-usages that
cover a wide range of cases. Developers, especially newcomers, may
fail to address these defects. Therefore, coding experience violations
become the most common defects identified in retro-inspections.
In the past seven retro-inspections, inspectors identified a total of
1755 defects related to coding experience, up to 53.31% in all the
detected defects. In the near future, these common defects will be
covered in the enterprise’s coding standards/specifications.

5.3.2 Defect severity. In addition to specifying defect types, inspec-
tors also need to indicate their severity in retro-inspections.

• Major. The code implementations fail to fit requirements or
use cases. Worse yet, they may result in function failures,
security vulnerabilities and etc.

• Moderate. They are similar to major defects but do not
have a significant impact on the functionality and security,
or there are better alternatives.

• Minor. The issues cause inconvenience of understanding,
use, etc., but do not affect functionality and security.

Table 2 summarizes the defects identified in the past seven retro-
inspections. From a total of 2493.7K Lines Of Code (KLOC), inspec-
tors identified 527 major defects, 1683 moderate, and 1082 minor
ones, which may reflect their skills. The dominance of major/mod-
erate defects may imply the low quality of the inspected samples as
well as the developers’ low quality awareness. It was concluded in
the end of panel interviews that “It is important to consider why they
(defects) remain; how to correct them; and most importantly, how to
avoid them. They have significant value of retro-inspection”.

Finding: Multiple software experts collectively examine
the sampled project in retro-inspections, identifying a wide
range of code defects, such as (1) logic faults, (2) security
vulnerabilities, as well as violations of (3) coding standards
and (4) coding experience. Quite a few of them are serious and

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Lanxin Yang, He Zhang, Fuli Zhang, Xiaodong Zhang, Guoping Rong

Table 2: Distribution of the identified defects (2019 – 2021)

kLOC Defect Severity
Log Sec Sta Exp Maj Mod Min

2019 Q1 95.02 5 24 81 58 6 77 85
2019 Q2 221.36 15 41 177 273 66 226 214
2019 Q3 550 67 30 142 437 141 384 151
2019 Q4 353 14 9 38 103 6 72 86
2020 H1* 425.90 31 70 145 211 78 232 147
2020 H2 368 48 100 125 234 64 271 172
2021 H1 480.42 13 112 250 439 166 421 227
Total 2493.70 193 386 958 1755 527 1683 1082
* Due to the COVID-19 pandemic, the quarterly retro-inspection has been rearranged
to be twice a year.

should be highly concerned, which confirms the unique value
of retro-inspection.

5.4 Lessons from retro-inspections (RQ4)
Although the retro-inspection protocols are well defined, their exe-
cution remains a challenge to the enterprise. This subsection focuses
on the lessons learned from retro-inspections.

Lesson 1: Developer’s acceptance. In most cases, inspectors
specify defects and reach an agreement with code authors. For
major and moderate defects, however, it is not always an easy job.
Whenever code authors do not agree on the defects or their severity,
they may undergo a long period and even fierce debate, especially
if the defects are closely related to the logic implementations. In
the absence of a deep understanding of business or functional logic,
inspector’s comments may not be effective. On the other side, some
code is hard to change immediately, and therefore the code authors
may have different view on their severity. Moreover, the inspected
organization bear tremendous pressures of the evaluation, so as
to incline to struggle against inspector’s comments. As a result,
inspectors turn to be moderate (𝐿𝐸 [3] , 𝐿𝐸 [3] ,𝑀𝐸 [4]), i.e. some of
them pay less attention to serious quality attributes, but emphasize
style-oriented flaws, which makes retro-inspection diverging from
its origin.

Lesson 2: Inspector’s engagement. In a retro-inspection, the
participating inspectors’ engagements and outputs may signifi-
cantly differ from each other. Take the latest retro-inspection (2021-
H1) as an example, the most productive inspector identified as many
as 112 defects (14major + 78moderate + 20minor). On the contrary,
the least productive inspector failed to identify any defect because
of the suddenly increased workload in his division. While each
retro-inspection lasts for approximately two weeks, the outputs are
not satisfactory. Several inspectors (𝐶𝐸 [1] , 𝐿𝐸 [1] , 𝐿𝐸 [3]) explained
that they were assigned to the retro-inspection. Yet, their routine
workload remain a substantial amount, leading to very few spare
moments on inspection. Consequently, it is difficult to guarantee
both the quality and the productivity of retro-inspection.

Defect Index (DI), which originally measures software qual-
ity [24] (as shown in Formula 1), is used in this enterprise to mea-
sure inspectors’ outputs (and their engagement to some extent) in
retro-inspections.

𝐷𝐼 = 3 · 𝑁𝑚𝑎𝑗 + 1 · 𝑁𝑚𝑜𝑑 + 0.1 · 𝑁𝑚𝑖𝑛 (1)

Where, 𝑁𝑚𝑎𝑗 denotes the number of major defects, 𝑁𝑚𝑜𝑑 for
moderate defects, 𝑁𝑚𝑖𝑛 for minor defects. Inspectors’ outputs are
subject to the scale and field of their assignments (samples). Fig-
ure 5 shows an overview of the inspectors’ outputs since 2019. Each
retro-inspection involved the same number of inspectors (20). In
this boxplot, the green line represents average outputs, the hollow
circles indicate ‘outliers’, i.e. inspectors whose outputs (DI/kLOC)
are significantly lower or higher than the others in single retro-
inspection. We can first observe internal differences from many
outliers, then observe external differences from green lines. Inspec-
tors’ average DI/kLOC in 2019-Q4 is as low as 0.28, but in 2019-Q2
is as high as 2.01, which can be attributed to one inspector’s per-
formance at surprisingly 19.94 DI/kLOC. In a nutshell, inspectors’
outputs and engagements vary significantly in retro-inspections.

2019-Q1 2019-Q2 2019-Q3 2019-Q4 2020-H1 2020-H2 2021-H1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

DI
/k

LO
C

Figure 5: Distribution of inspectors’ performance

Lesson 3: Organizers’ predicament. The organizers have to
confront the predicament of coordination in retro-inspections. An
organizer (𝑂2) shared his experience, which is typical in retro-
inspections. An inspector (𝑆𝐸 [1]) sent his reports to the inspected
division before the deadline but did not receive any response, then
he assumed his work was complete. About ten days later, the in-
spected division contacted the organizer for a number of disagree-
ments, the organizer then forwarded them to the inspector (𝑆𝐸 [1]),
when they bothwere under a heavyworkload. Besides, it is common
for inspectors to fail to submit reports on time, which postponed the
reporting meeting. Moreover, for the retro-inspection without chief
inspectors (arbiters), the organizer, often from management, is not
able to deal with technical issues. As a temporary inter-divisional
activity, multiple participants do not know each other well in retro-
inspections. The organizers are responsible for scheduling meetings
only, with no authority on decision-making. As a result, disagree-
ments in retro-inspections may last for a long time, in which all
participants’ work would be influenced to some extent.

Lessons:Despite of its many benefits, retro-inspection also
suffers developer’s acceptance, inspector’s engagement, and
organizer’s predicament. Therefore, it has not worked com-
pletely as expected and needs improvements.

6 DISCUSSION
This section discusses the possible dilemmas of retro-inspection
and offers some recommendations for its future improvement.

An Industrial Experience Report on Retro-inspection ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

6.1 Current dilemmas of retro-inspection
Unlike testing, code review ismore reliant on both code author’s and
reviewer’s skill, experience, and engagement. Peer code reviews are
conducted within divisions where code authors and reviewers are
acquaintedwith each other. On the contrary, retro-inspection serves
internal audit and has involved multiple roles: (1) management, e.g.,
executives and organizers, (2) inspectors, (3) stakeholders from
the inspected organizations, e.g., project leaders and code authors.
Some inspectors indicated that in peer code reviews they paid
more attention to critical defects, e.g., design rationality. While in
retro-inspections, they tended to focus more on general issues or
even coding styles in case of potential disagreements and debates.
As a temporary inter-divisional practice, the inspected samples
and the participants of retro-inspection are sometimes decided in
an ad hoc manner, thus multiple roles might not be well-prepared.
Besides, retro-inspectionmay run in rush under the pressure of time
limit and outcome evaluation. As a result, retro-inspection might be
inefficient sometimes, even became awaste of time. In general, retro-
inspection is expected to promote common advance rather than
criticism, where the consistency and compromise always outweigh
the divergence on experience, preference, and interest among the
participants.

6.2 Recommendations for improvement
To improve the quality of retro-inspection, we propose the following
recommendations.

Recommendation 1: Stricter admission criteria. It is com-
monly agreed that retro-inspection brings many benefits for vari-
ous software projects in the enterprise. Although it is required that
all the inspected projects should have been reviewed and tested in
advance, some did not strictly obey the admission criteria in the
past. Moreover, some code files with incomplete functions or miss-
ing documents slipped into retro-inspections, which may waste
all participants’ time and effort. One inspector (𝐶𝐸 [1]) mentioned
that he had received prototyping projects, i.e. the source code of
merely interfaces without any implementations, for review. On
the contrary, five inspectors (𝐿𝐸 [7] , 𝐿𝐸 [1] , 𝑆𝐸 [1] ,𝑀𝐸 [10+] ,𝑀𝐸 [5])
indicated that they ever received large scale projects with over
50-80KLOC, which seemed to be a mission impossible for them. It
is suggested to carefully choose sample for inspection with stricter
admission criteria.

Recommendation 2:More adequate preparation. The inspec-
tors’ participation in retro-inspections is often decided at the last
minute, so are the inspected divisions and samples. Although all
the invited inspectors are domain experts and get used to peer code
review, they may be new to retro-inspection. There is a need for
specific training courses (𝑀𝐸 [10+] ,𝑀𝐸 [3]) to introduce the inspec-
tion process, standard, emphasis and so on, instead of merely a
brief kick-off meeting. With a lack of documents (𝐶𝐸 [2] ,𝑀𝐸 [10+] ,
𝑀𝐸 [3]) associated with the inspected project, the inspectors are
not able to understand the background (𝐿𝐸 [1] , 𝐿𝐸 [1]) as well as the
samples (𝐿𝐸 [4]) for inspection. The more information inspectors
have about the inspected division and samples, the easier to iden-
tify defects and to make suggestions. Hence, once the sample to be

inspected is picked, it is important to make adequate preparations
for both the inspectors and the inspected division.

Recommendation 3: Longer inspection period. Within the
limited period of retro-inspection (approx. two weeks), inspector’s
intensive workload on inspecting samples may be in conflict with
his/her routine workload from the division. In such a situation, in-
spectors always give priority to completing their routine work first.
Therefore, the inspection is ostensibly conducted or even incom-
pletely. Taking the second retro-inspection in 2020 as an example,
one inspector accepted the invitation, but he did nothing on inspec-
tion until a couple of days before the deadline since he was engaged
at the time in an urgent task from his division. As a result, he sub-
mitted no report, and worse yet, there was no alternative inspector
for him. One inspector (𝐿𝐸 [1]) mentioned that he could inspect
only 1/5 of the assignment with 50KLOC. Other inspectors (𝐿𝐸 [1] ,
𝑆𝐸 [1] , 𝑀𝐸 [5]) also indicated that they did not examine all their
assignments. Hence, it is recommended to extend the inspection
period for another couple of weeks.

Recommendation 4: More careful publicity. Publicity is pre-
ferred for the inspectors who participated in retro-inspections and
the high-performing divisions under inspection. In contrast, the
low-performing divisions feel uncomfortable with the inspection
results. Also the inspectors from the same division may regard each
other as competitors in retro-inspections. In this case, peer pressure
comes from both within and out of the division (𝐿𝐸 [1] , 𝑆𝐸 [2]). A
number of inspectors (𝐶𝐸 [3] , 𝐿𝐸 [1] , 𝐿𝐸 [1] , 𝑆𝐸 [2] ,𝑀𝐸 [5]) suggested
that it would be better to disclose source code in public instead of
projects, divisions, or inspectors. The ultimate objectives of retro-
inspection are to promote software quality, strengthen developer’s
quality awareness, and seek opportunities for inter-division collab-
orations rather than criticism. Otherwise, the inspection may suffer
from a number of negative effects, e.g., disagreements and debates.

7 THREATS TO VALIDITY
This section describes the threats to validity of this study as follows.

Internal validity. The major threat to internal validity come
from the data sources. We are only permitted to access limited
data sources due to the enterprise’s restrictions. To mitigate this
threat, this study involves archive analysis, questionnaire survey,
and panel interview for data triangulation. Each type of subject
(projects, participants) was carefully selected to ensure they are rep-
resentative and well-prepared, and the interviewees were pleased
to provide insightful comments and recommendations. Another
possible threat to internal validity lies in coding when analyzing
inspection comments. To this end, we learned the enterprise’s spec-
ifications, checked the existing labels, inquired developers, and
made pilot coding to ensure validity to a large extent. Two authors
independently performed coding for each comment, and then three
authors collectively checked and fixed all disagreements in consen-
sus meetings. Finally, all the results, findings, and recommendations
have been checked and confirmed by the enterprise.

Construct validity. Themajor threat to construct validity come
from measuring inspectors’ outputs. The inspected samples, divi-
sions, and inspectors vary across retro-inspections. Also, the code

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Lanxin Yang, He Zhang, Fuli Zhang, Xiaodong Zhang, Guoping Rong

submissions are in the form of modules (more than 2KLOC), thus
the assignment for each inspector might be uneven. In order to
minimize this threat, we use ‘DI/kLOC’, a common metric in testing,
to eliminate the influence of the variety.

External validity. As this is a case study reporting on retro-
inspection, an enterprise-specific software practice in the industrial
context, the experience, lessons, and recommendations may not
be applicable out of this enterprise. Other software organizations
seeking to conduct retro-inspection or implement other types of
QA practices can refer to this enterprise’s experience and recom-
mendations, and adapt the practice according to their business and
other requirements in the specific context.

8 CONCLUSION AND FUTUREWORK
This study reports an empirical investigation of retro-inspection,
an altered QA practice, by collecting and analyzing various evi-
dence from a long-period participant observation in one global ICT
enterprise. Secured by data triangulation, four major benefits of
retro-inspection that outperforms peer code review are identified
and empirically confirmed, including identifying complicated and
underlying defects, offering more suggestive comments. In addi-
tion to recognizing the value of this practice, a few limitations of
retro-inspection at this stage are also identified in its preparation
and execution according to some participant roles’ negative percep-
tions. We also discuss the recommendations for the improvements
of this practice. The experiences on executing retro-inspection in
the industrial context can provide the realistic reference value on
code quality assurance to other software organizations.

In the future, we are going to continuously observe and report
the long-term effects of retro-inspection in more organizations, as
well as to research and develop intelligent techniques to advance
the support on evaluating and improving code review.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Founda-
tion of China (No.62072227), the National Key Research and De-
velopment Program of China (No.2019YFE0105500) jointly with
the Research Council of Norway (No.309494), the Key Research
and Development Program of Jiangsu Province (No.BE2021002-2),
and the Intergovernmental Bilateral Innovation Project of Jiangsu
Province (No.BZ2020017).

REFERENCES
[1] Adam Alami, Marisa Leavitt Cohn, and Andrzej Wąsowski. 2019. Why does code

review work for open source software communities?. In Proceedings of the 41st
International Conference on Software Engineering. IEEE, 1073–1083.

[2] Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer, Ali Ouni,
and Marouane Kessentini. 2021. Refactoring practices in the context of modern
code review: An industrial case study at Xerox. In Proceedings of the 43rd Interna-
tional Conference on Software Engineering: Software Engineering in Practice. ACM,
348–357.

[3] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In Proceedings of the 35th International Conference
on Software Engineering. IEEE, 712–721.

[4] Tobias Baum, Olga Liskin, Kai Niklas, and Kurt Schneider. 2016. Factors influ-
encing code review processes in industry. In Proceedings of the 24th International
Symposium on Foundations of Software Engineering. ACM, 85–96.

[5] Joel Behrend and Marc Eulerich. 2019. The evolution of internal audit research:
A bibliometric analysis of published documents (1926–2016). Accounting History
Review 29, 1 (2019), 103–139.

[6] Amiangshu Bosu, Jeffrey C Carver, Christian Bird, Jonathan Orbeck, and Christo-
pher Chockley. 2016. Process aspects and social dynamics of contemporary
code review: Insights from open source development and industrial practice at
Microsoft. IEEE Transactions on Software Engineering 43, 1 (2016), 56–75.

[7] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Characteristics of
useful code reviews: An empirical study at Microsoft. In Proceedings of the 12th
Working Conference on Mining Software Repositories. IEEE, 146–156.

[8] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[9] Maria Caulo, Bin Lin, Gabriele Bavota, Giuseppe Scanniello, and Michele Lanza.
2020. Knowledge transfer in modern code review. In Proceedings of the 28th
International Conference on Program Comprehension. ACM, 230–240.

[10] F Michael Connelly and D Jean Clandinin. 1990. Stories of experience and
narrative inquiry. Educational researcher 19, 5 (1990), 2–14.

[11] John W Creswell and J David Creswell. 2017. Research design: Qualitative, quan-
titative, and mixed methods approaches. SAGE.

[12] Jacek Czerwonka, Michaela Greiler, and Jack Tilford. 2015. Code reviews do
not find bugs. How the current code review best practice slows us down. In
Proceedings of the 37th International Conference on Software Engineering: Software
Engineering in Practice. IEEE, 27–28.

[13] Francisco Gomes de Oliveira Neto, Richard Torkar, Robert Feldt, Lucas Gren,
Carlo A Furia, and Ziwei Huang. 2019. Evolution of statistical analysis in empirical
software engineering research: Current state and steps forward. Journal of
Systems and Software 156 (2019), 246–267.

[14] Marlene Dixon, Sheng Wang, Jennifer Calvin, Brian Dineen, and Edward Tomlin-
son. 2002. The panel interview: A review of empirical research and guidelines
for practice. Public Personnel Management 31, 3 (2002), 397–428.

[15] Emre Doğan and Eray Tüzün. 2022. Towards a taxonomy of code review smells.
Information and Software Technology 142 (2022), 106737.

[16] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2019.
Confusion in code reviews: Reasons, impacts, and coping strategies. In Proceed-
ings of the 26th International Conference on Software Analysis, Evolution and
Reengineering. IEEE, 49–60.

[17] Carolyn D Egelman, Emerson Murphy-Hill, Elizabeth Kammer, Margaret Morrow
Hodges, Collin Green, Ciera Jaspan, and James Lin. 2020. Predicting developers’
negative feelings about code review. In Proceedings of the 42nd International
Conference on Software Engineering. ACM, 174–185.

[18] Michael E Fagan. 1976. Design and code inspections to reduce errors in program
development. IBM Systems Journal 15, 3 (1976), 182–211.

[19] Nargis Fatima, Sumaira Nazir, and Suriayati Chuprat. 2020. Software engineering
wastes-A perspective of modern code review. In Proceedings of the 3rd Interna-
tional Conference on Software Engineering and Information Management. ACM,
93–99.

[20] Daniel M German, Gregorio Robles, Germán Poo-Caamaño, Xin Yang, Hajimu
Iida, and Katsuro Inoue. 2018. “Was my contribution fairly reviewed?” A frame-
work to study the perception of fairness in modern code reviews. In Proceedings
of the 40th International Conference on Software Engineering. ACM, 523–534.

[21] DongGyun Han, Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus Paixao, and
Giovanni Rosa. 2020. Does code review really remove coding convention viola-
tions?. In Proceedings of the 20th International Working Conference on Source Code
Analysis and Manipulation. IEEE, 43–53.

[22] Masum Hasan, Anindya Iqbal, Mohammad Rafid Ul Islam, AJM Rahman, and
Amiangshu Bosu. 2021. Using a balanced scorecard to identify opportunities to
improve code review effectiveness: An industrial experience report. Empirical
Software Engineering 26, 6 (2021), 129.

[23] Claude Y Laporte and Alain April. 2018. Software quality assurance. John Wiley
& Sons.

[24] Tim Menzies and Andrian Marcus. 2008. Automated severity assessment of
software defect reports. In Proceedings of the 24th International Conference on
Software Maintenance. IEEE, 346–355.

[25] Peter C Rigby and Christian Bird. 2013. Convergent contemporary software peer
review practices. In Proceedings of the Joint Meeting of the 14th European Software
Engineering Conference and the 21st ACM SIGSOFT Symposium on the Foundations
of Software Engineering. ACM, 202–212.

[26] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern code review: A case study at Google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice. ACM, 181–190.

[27] Johnny Saldaña. 2021. The coding manual for qualitative researchers. SAGE.
[28] Junji Shimagaki, Yasutaka Kamei, Shane McIntosh, Ahmed E Hassan, and Naoy-

asu Ubayashi. 2016. A study of the quality-impacting practices of modern code
review at Sony Mobile. In Proceedings of the 38th International Conference on
Software Engineering Companion. ACM, 212–221.

[29] IEEE Computer Society. 2008. IEEE standard for software reviews and audits.
IEEE Std 1028-2008 (2008), 1–53.

[30] Veronica A Thurmond. 2001. The point of triangulation. Journal of nursing
scholarship 33, 3 (2001), 253–258.

	Abstract
	1 Introduction
	2 Background and related work
	2.1 State-of-the-practice of code review
	2.2 Limitations and risks of code review

	3 Preliminary: retro-inspection
	4 Research method
	4.1 Research questions
	4.2 Data collection
	4.3 Data analysis

	5 Findings and lessons
	5.1 Benefits of retro-inspections (RQ1)
	5.2 Comments in retro-inspections (RQ2)
	5.3 Defects found in retro-inspections (RQ3)
	5.4 Lessons from retro-inspections (RQ4)

	6 Discussion
	6.1 Current dilemmas of retro-inspection
	6.2 Recommendations for improvement

	7 Threats to validity
	8 Conclusion and future work
	References

