
On the Effectiveness of Machine Learning
Experiment Management Tools

Samuel Idowu1, Osman Osman1, Daniel Strüber1,2, Thorsten Berger1,3
1Chalmers |Gothenburg University, Sweden, 2Radboud University, Netherlands, 3Ruhr University Bochum, Germany

Abstract
Machine learning experiment management tools support developers

and data scientists on planning, tracking, and retrieving machine-

learning experiments and assets when building intelligent software

systems. Among others, they allow tracing back system behavior to

experiment runs, for instance, when model performance drifts. Un-

fortunately, despite a surge of these tools, they are not well integrated

with traditional software engineering tooling, and no hard empirical

data exists on their effectiveness and value for users. We present a

short research agenda and early results towards unified and effective

software engineering and experiment management software.

CCS Concepts
• Software and its engineering; • Computing methodologies→
Machine learning;

Keywords
machine learning, experiment management tools, SE4AI

ACM Reference Format:
Samuel Idowu, Osman Osman, Daniel Strüber, Thorsten Berger. 2022. On the

Effectiveness of Machine Learning Experiment Management Tools. In 44nd
International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM,

New York, NY, USA, 2 pages. https://doi.org/10.1145/3510457.3513084

1 Introduction
Managing development assets is crucial during software engineer-

ing. For machine-learning (ML) projects, effectively managing ML

assets is similarly important. ML assets include resource artifacts

(e.g., datasets and models), software artifacts (e.g., source files),

computational notebooks, hyperparameters, as well as experiment

and execution results and metadata (e.g., performance metrics [4, 5]).

Unfortunately, traditional software engineering tooling—most im-

portantly, version-control systems (VCS)—is not suited to manage

ML assets, given the diversity of ML asset types and the exploratory

nature of ML experiments, requiring many and hard to predetermine

runs (trials) [1, 3, 7]. Since traditional VCS were not designed for

ML use-cases, they lack adequate support for exploring the history

of ML projects, including queries such as ’which hyperparameters

were used in an experiment run where precision was >0.7?’

This work is licensed under a Creative Commons Attribution International 4.0
License.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9226-6/22/05.
https://doi.org/10.1145/3510457.3513084

Track variables or metadata from scripts
 tool.log(param1)
Track files
 tool.log(example/file)
Track model performance
 tool.log(metric1)

Experiment
Run 1

Experiment
Run 2

Track variables or metadata from scripts
 tool.log(param2)
Track files
 tool.log(example/file2)
Track model performance
 tool.log(metric2)

Run 1

Run 2

Run ...

Runs Params Metrics Model

Dashboard

Tracking
Tracking

Querying &
Retrieving

Figure 1: Illustration of experiment management tools

A recent surge of ML experiment management tools [5], such as
Neptune.ai, MLflow, and DVC, promises enhanced reproducibility,

replicability, and collaboration for ML experiments. We identified 17

tools used in practice, plus many research prototypes [4, 5], which

facilitate provenance of ML assets and processes by tracking and al-

lowing to explore them. They follow different paradigms, including

the intrusive paradigm [9], where users instrument source code to

track assets, or the command-line interface (CLI) paradigm, where

tracking is controlled by different commands run by developers,

similar to Git. Exploring (i.e., querying and retrieving assets) from

experiments relies on GUI (dashboard-like) or CLI paradigms. Fig-

ure 1 illustrates the paradigms intrusive and GUI.

Unfortunately, when engineering intelligent, ML-based systems,

these tools are not integrated with traditional software engineering

tooling. In addition, no evaluations of these tools’ effectiveness for

users exist—existing works have only compared tool features so

far [2, 6, 10]. Our long-term goal is building novel tools supporting

the management of software and ML assets in a uniform way. To this

end, this paper advocates for empirical assessments of experiment

management tools and proposes a research agenda and describes

our early empirical results from a controlled experiment. We hope

to inspire follow-up work by researchers on assessing, and by tool

builders on improving these tools to increase their value for ML and

software engineers.

2 Research Goal
The long-term goal is to build the next generation of unified and ef-

fective ML experiment management tools integrated with traditional

software engineering tooling, such as: IDEs, VCS, VCS hosting

platforms (e.g., GitHub), and project management tools. ML ex-

periment management tools have recently gained popularity among

the data science tool landscape, supporting the specific (exploratory

and iterative) workflows for engineering (e.g., training, evaluating)

ML-based components. These tools have first-hand support for the

diverse asset types involved. They also serve as alternatives to VCS

and hosting platforms for data scientists and ML developers.

Tool Effectiveness. A core research challenge is to determine the

effect of tool features and paradigms on users, requiring empirical

tool evaluations. Such studies should determine strengths and weak-

nesses of current tools. Actionable results should provide the basis

207

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

http://creativecommons.org/licenses/by/4.0/

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Idowu, Strüber, Berger

to build new or improved experiment management tools suited for

user workflows and the diverse asset types.

Unified and Integrated Tools. Another core challenge is integrating
and unifying experiment management supports into the traditional

software-engineering tooling. To this end, identifying commonalities

and differences between the two tool landscapes amond different

dimensions, including process, organization, technology, and archi-

tecture, is needed. The commonalities can be unified into common

tools, while differences remain separate or become add-ons. Re-

sults from tool effectiveness studies can further steer the integration,

especially which features and paradigms to support and how.

3 Research Agenda and Early Results
Assess Usability and Effectiveness. To elicit hard empirical data

on ML experiment management tools, we propose controlled exper-

iments, addressing questions such as: How do these tools affect user
performance? How do users perceive them? How do the different
realizations (paradigms) of tool features affect users? Tool candi-

dates can be sampled from our tool surveys where we identified

their features [4, 5], which also allows sampling over tool paradigms.

Experiments should have control groups without experiment manage-

ment tools. Experiments focusing on usability and learnability are

also important, incorporating participants with different background

and expertise (e.g., experienced vs. non-experienced, practitioner vs.

researcher, software engineer vs. data scientist).

Experiments can target specific ML experiment concerns. We

identified tracking, querying, and retrieving as basic concerns oper-
ations to all respective tools [5]. Consequently, experiments should

exercise these tool operations in the tasks. Participants should be

guided through ML tasks that mimic real ML experiments, which in-

volve multiple experiment runs that evolve incrementalls, where par-

ticipants modify ML assets resulting in new versions; using a specific

tool or not. For example, participants are guided through common

ML classification tasks, including feature engineering, feature selec-

tion, parameter tuning, and model evaluation [1]. Later in the exper-

iment, participants should be required to use the tools’ operations to

(or manually) track, explore, and retrieve experiment runs and assets.

Independent variables are: (i) user performance and efficiency, and

(ii) user perception. The former we propose to measure with the met-

rics completion rate and error rate of tasks, as well as response time
to answer factual questions. These can be elicited with a question-

naire incorporated into the experiment guide. The questions must be

designed around common management queries of the experiment as-

sets. For example, participants can be asked to retrieve the algorithm

and hyperparameters from a run that resulted in the best-performing

model. The independent variable user perception, an essential factor

for tool adoption, elicits subjective user opinions on tools and their

individual features. Metrics should measure participant ratings on the

ease of completing the tasks with each tool, or the level of support of-

fered for tracking, querying, and retrieving ML assets. Results can in-

dicate the essential tool features. In addition, qualitative, open-ended

questions complete the picture. Responses might report specific tools

or features that are difficult to use, indicating poor usability.

We conducted an experiment where student developers experi-

enced with ML, but without experience with experiment manage-

ment tools, performed tasks using a GUI-based, a CLI-based, or

no tool. Our early results show that the tools offer valuable sup-

port in systematically tracking, retrieving, and querying ML assets.

They also aid users’ performance, reflected in higher completion and

lower error rates. Participants preferred GUI-based tooling for post-

experiment analysis, while CLI-based tooling was considered easier

to learn. Our results indicate that the tools offer valuable support,

and that different paradigms can influence the tools’ effectiveness.

Compare with Software Engineering Tooling. Studies should de-
termine commonalities and differences between ML experiment

management and traditional development tooling, addressing for

instance: What are common features? What are common work-
flows? We advocate feature-based surveys, relying on a domain

analysis technique, often conducted for similar comparisons, includ-

ing special kinds of VCS [8]. As an early result, our prior work [4, 5]

presents the commonalities and differences of existing ML experi-

ment management tools used in practice. However, studies need to

focus on the problem space (required activities and workflows of

users) and the design space, architecture, and offered operations.

Design and Prototype Unified Tools. Relying on the results of the

prior steps, we propose creating meta-models representing the tools’

conceptual structures (assets, relationships, and versioning) unifying

the studied tools. Ideally, the meta-models are supersets, customiz-

able towards specialized tooling based on prospective users and

usage context in the future. For example, add-ons can provide dataset-

specific views or features, not required in other tool instances.

Evaluate Unified Tools. Resulting prototype can to be evaluated

with user studies, including experiments, simulations, action research

or surveys. Effectiveness and usability are important claims to eval-

uate, but also scalability and learnability. Unified tools should not

compromise compared to the stand-along experiment management

tools before. The evaluations can reuse the methods from step 1, but

should combine data science and software engineering activities, to

evaluate effectiveness of the unification. Users’ qualitative percep-

tions on the new tools can also be elicited through surveys, but we

believe action research to be especially fruitful here to understand

user interactions and benefits.

References
[1] Anders Arpteg, Björn Brinne, Luka Crnkovic-Friis, and Jan Bosch. 2018. Software

engineering challenges of deep learning. In SEAA.
[2] Rudolf Ferenc, Tamás Viszkok, Tamás Aladics, Judit Jász, and Péter Hegedűs.

2020. Deep-water framework: The Swiss army knife of humans working with
machine learning models. SoftwareX (2020).

[3] C Hill, R Bellamy, T Erickson, and M Burnett. 2016. Trials and tribulations of
developers of intelligent systems: A field study. In VL/HCC.

[4] Samuel Idowu, Daniel Strüber, and Thorsten Berger. [n.d.]. Asset Management in
Machine Learning: State-of-research and State-of-practice. Under revision.

[5] Samuel Idowu, Daniel Strüber, and Thorsten Berger. 2021. Asset Management in
Machine Learning: A Survey. In ICSE-SEIP.

[6] Richard Isdahl and Odd Erik Gundersen. 2019. Out-of-the-Box Reproducibility:
A Survey of Machine Learning Platforms. In eScience.

[7] Fumihiro Kumeno. 2020. Sofware engineering challenges for machine learning
applications: A literature review. Intelligent Decision Technologies 13, 4 (2020),
463–476.

[8] Lukas Linsbauer, Felix Schwaegerl, Thorsten Berger, and Paul Gruenbacher. 2021.
Concepts of Variation Control Systems. Journal of Systems and Software 171
(2021).

[9] Alexandru A Ormenisan, Mahmoud Ismail, Seif Haridi, and Jim Dowling. 2020.
Implicit Provenance for Machine Learning Artifacts. MLSys’20 (2020), 3.

[10] Thomas Weißgerber and Michael Granitzer. 2019. Mapping platforms into a new
open science model for machine learning. Information Technology 61, 4 (2019),
197–208.

208

