
Mining Idioms in the Wild

Aishwarya Sivaraman∗

UCLA

USA

Rui Abreu, Andrew Scott,
Tobi Akomolede, Satish Chandra

Meta Platforms, Inc.

USA

ABSTRACT

Existing code repositories contain numerous instances of code pat-

terns that are idiomatic ways of accomplishing a particular program-

ming task. Sometimes, the programming language in use supports

specific operators or APIs that can express the same idiomatic im-

perative code much more succinctly. However, those code patterns

linger in repositories because the developers may be unaware of the

new APIs or have not gotten around to them. Detection of idiomatic

code can also point to the need for new APIs.

We share our experiences in mining imperative idiomatic pat-

terns from the Hack repo at Facebook. We found that existing

techniques either cannot identify meaningful patterns from syntax

trees or require test-suite-based dynamic analysis to incorporate

semantic properties to mine useful patterns. The key insight of the

approach proposed in this paper — Jezero — is that semantic idioms

from a large codebase can be learned from canonicalized dataflow

trees. We propose a scalable, lightweight static analysis-based ap-

proach to construct such a tree that is well suited to mine semantic

idioms using nonparametric Bayesian methods.

Our experiments with Jezero on Hack code show a clear advan-

tage of adding canonicalized dataflow information to ASTs: Jezero

was significantly more effective in finding new refactoring oppor-

tunities from unannotated legacy code than a baseline that did not

have the dataflow augmentation.

1 INTRODUCTION

An idiom is a syntactic fragment that frequently recurs across soft-

ware projects. Idiomatic code is usually the most natural way to

express a certain computation, which explains its frequent recur-

rence in code. An idiomatic imperative code fragment often has a

single semantic purpose that, in principle, can be replaced with API

calls or functional operators.

To illustrate the motivation for this work, consider the imper-

ative code examples in the Hack programming language1 in Fig-

ure 1, (a), (c) and (e). These examples—adapted from the codebase

at Facebook—loop over a vector and accumulate some value in the

loop body. To capture this idiom, Hack supports a more functional

∗Work performed as an intern at Meta Platforms, Inc., Menlo Park.
1Hack is a programming language for the HipHop Virtual Machine, created by Face-
book as a dialect of PHP: https://hacklang.org/.

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9226-6/22/05.
https://doi.org/10.1145/3510457.3513046

Vec\map_with_key API, and we do find instances where a devel-
oper refactored code to replace a loop with a map call; for instance,

see (b), (d), and (f). This kind of refactoring is not unique to Hack;

examples in other programming languages abound, such as using

LINQ APIs in C# [1] or Python’s list comprehensions.

Why do imperative idioms continue to linger in code? This can

be attributed to: (1) developers being unaware of the API that can

replace the imperative code, or (2) a new API construct being intro-

duced and imperative locations not being updated consistently to

use this construct, or (3) an API that would simplify this idiomatic

pattern has not been included in the language yet. Identifying such

imperative idiomatic patterns and replacing it with corresponding

API calls or operators can help in maintainability and comprehen-

sibility of the codebase. Moreover, within Facebook, an approach

that identifies likely idiomatic code location would serve as an

educational tool for developers in an IDE or when submitting a

pull request. Besides, identification of common idioms may provide

data-driven guidance to language developers for new language

constructs (this purpose is outside this paper’s scope).

1.1 Finding missed refactoring opportunities

Suppose we want a tool that looks at past instances of refactorings

to learn imperative idiomatic patterns to identify additional oppor-

tunities of similar refactorings either in existing or new code. For

example, the code in Figure 1a, 1c, and 1e was replaced, respectively,

with the code in Figure 1b, 1d, and 1f, where each of the examples

was rewritten using the map API. We want the tool to learn a gen-

eral pattern from Figure 1a, 1c, and 1e which when exists in the

code, begs for refactoring. A more powerful tool would also suggest

the refactored code that is drop-in replacement for the existing

code, but the design of semantically correct code transformation is

a separate hard problem, outside the scope of this work.

At first blush, this may look like a pattern matching or clone

detection problem, where a code fragment that is a candidate for

refactoring might be a clone of code that was refactored in the past

to introduce an API call. Another candidate approach might aim

to extract generalizable code transformations from a small set of

specific examples of transformations [3, 8, 17, 23].

However, identifying the pattern for Vec\map_with_key API—
let alone the transformation—from the examples in Figure 1 is

non-trivial for the following reasons:

(1) Code that maps values to an accumulator may have different

types. For example, in Figure 1a we have string accumula-

tion whereas in Figure 1c we have a vector accumulation.

Therefore, any tool that can identify this pattern would need

to identify the semantic pattern that each of the example in

Figure 1 is accumulating to a collection variable.

187

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

http://creativecommons.org/licenses/by-nd/4.0/

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Aishwarya Sivaraman and Rui Abreu, Andrew Scott,

Tobi Akomolede, Satish Chandra

1 $output = '';

2 foreach ($outputs as $key => $value) {

3 $output .= self:: getOutput(

4 $key , $value ,

5 $task , $pair ,); }

(a) Example 1 — Imperative Version

1 $output .= Str\join(

2 Vec\map_with_key(

3 $outputs ,

4 ($key , $value) ==> {

5 return self:: getOutput(

6 $key , $value ,

7 $task , $pair ,); },), '' ,);

(b) Example 1 — API Version
1 $call_stack_nodes = vec [];

2 foreach ($identifier_to_id as $identifier => $id) {

3 $call_stack_nodes [] = shape(

4 'id' => $id ,

5 'vertex ' => $nodes[$id]

6 'tally ' => $identifier_to_count[$identifier],

7 'fraction ' =>

8 $this ->fraction($identifier_to_count[$identifier],

9 $total_count),); }

(c) Example 2 — Imperative Version

1 $call_stack_nodes = Vec\map_with_key(

2 $identifier_to_id ,

3 ($identifier , $id) ==> shape(

4 'id' => $id ,

5 'vertex ' => $nodes[$id],

6 'tally ' => $identifier_to_count[$identifier]

7 'fraction ' =>

8 $this ->fraction($identifier_to_count[$identifier],

9 $total_count),););

(d) Example 2 — API Version
1 $versions = vec [];

2 foreach ($ids as $key => $value) {

3 $versions [] = tuple($value , $names[$key]); }

(e) Example 3 — Imperative Version

1 $versions = Vec\map_with_key(

2 $ids ,

3 ($key , $value) ==> tuple($value , $names[$key]););

(f) Example 3 — API Version

Figure 1: Examples of idiomatic imperative code and its corresponding version rewritten with map API.

(2) Code may be interleaved with other code, as in Figure 1c.

In this example, although the accumulation is to a vector

variable, they have additional code that operates on functions

and variables other than the key and value. Additionally, code

in Figure 1a interleaves iteration and string concatenation.

Therefore, a naive syntactic-pattern-based approach would fail to

identify common patterns that matches all examples in Figure 1. A

different potential solution is to define a domain-specific language

and let developers handcraft custom rules to identify semantic pat-

terns. This requires significant manual effort, and less experienced

programmers might not know how to generalize these patterns.

We turn to the statistical pattern mining work by Allamanis and

Sutton [2], which has shown the possibility of finding patterns in

abstract syntax trees (ASTs) that correspond to idioms based on their

frequency of occurrence. They use probabilistic tree substitution

grammars (pTSG), a non-parametric Bayesian machine learning

technique to find idioms (we give an overview of this technique in

Section 3.2). While this is an exciting idea, in practice this does not

work very well out of the box, as Allamanis et al. report in their

follow-up work [1] (and as we found as well, see Section 4.) Because

purely syntactic idioms are oblivious to semantics, they capture

only shallow patterns that are not useful for our end purpose.

In subsequent work, Allamanis et al. [1] propose to use ASTs aug-

mented with variable mutability and function purity information

(see overview in Section 2.) They found that this worked well for

identifying idiomatic loops across 11 projects with 5,548 methods.

Unfortunately, we found practical issues with the enhancement in

[1]: (1) the technique in [1] requires annotations (which requires

additional developer effort) or dynamic analysis (which requires

test cases to exercise specific portions of code) to infer those, nei-

ther of which were an option for us; (2) it can only match patterns

with exact lexical order of appearance of variables, and (3) it cannot

detect patterns interleaved with other code. Based on our pencil and

paper simulation with known mutability and purity information,

their approach fails to learn a pattern that matches the examples in

Figure 1 (see Section 2 for further discussion).

We propose Jezero, an approach that works around the practi-

cal complexities of the work of Allamanis et al. [1]. Our approach

adds semantic information to ASTs in a different way: approximate

dataflow information represented as an extension of the AST. Jezero

automatically learns semantic patterns from a large codebase over

tree structures–dataflow augmented ASTs–that are generated lever-

aging a cheap, syntactic dataflow analysis. Our key insight is that

semantic patterns can be captured as canonical dataflow trees. This

observation is inspired by the seminal Programmer’s Apprentice pa-

per [22] idea that high-level concepts can be identified as dataflow

patterns. In fact, recent works in the area of code search [19], code

clone detection [28], and refactoring [15] also use this insight and

use dataflow analysis to identify semantically similar code.

For instance, a desirable dataflow pattern that summarizes

the examples in Figure 1 is: foreach contains a datawrite to

a collection variable with dataread from first and second

primitive variables and the first collection variable in the order
of their definition. To learn such a pattern, we collect approximate

dataflow information from their abstract syntax trees and construct

a dataset of canonicalized trees as described in Section 3.1. We then

mine for dataflow patterns using a non-parametric Bayesian ML

technique (see Section 3.2) [2], to which, our representation looks

just like any other tree. Figure 5 shows the tree pattern that Jezero

mined and that matches all three examples of Figure 1.2

2Due to the statistical process, the patterns mined sometimes may not cover all relevant
aspects of the desirable pattern.

188

Mining Idioms in the Wild ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

(a) Example 1 (b) Example 2 (c) Example 3

Figure 2: Coiled ASTs for the imperative code in Figure 1: the basis for computing semantic idioms in Allamanis et al. [1]. The

variables map to references illustrated in circles. (The numbering is unique per example, not shared.)

1.2 Contributions

This paper makes the following contributions:

• We present a new canonicalized tree representation based on

inexpensive dataflow to mine semantic idioms. The approach

takes as input a code corpus, generates a tree for eachmethod

augmented with dataflow information, and similar to [2],

uses Bayesian learning methods to mine idiomatic patterns.

Our tree representation overcomes the practical problems in

adopting the closest previous work [1].

• We present Jezero a tool that implements both idiom learning

and identification of refactoring opportunities that works at

the scale of Facebook code base.

• We evaluate Jezero on the task of mining idioms for loopy

map/filter code. The mining is done over 1347 (refactoring)

instances per API taken from Facebook’s Hack codebase.

On an evaluation set, we found Jezero’s F1 score to be 0.57,

significantly better than a baseline technique with 0.08.
• We evaluated Jezero for identifying new, hitherto unknown

opportunities for refactoring code to introduce APIs. Using

the top-ranked idioms, we found 807 matches against the

Facebook code base containing 13770 Hack methods; the

average precision of finding real opportunities was 0.60. The
baseline, without dataflow, matched a mere 23 locations.

• We also conducted an initial informal user study with 20

developers who confirmed the usefulness of Jezero to suggest

potential new refactoring locations.

To our knowledge, Jezero is unique in its ability to find refac-

toring opportunities from legacy code, based on purely un-

supervised learning, and without requiring annotations or

dynamic analysis. Moreover, we expect the ideas in Jezero to

carry over to other languages such as Python, which over time

have provided more succinct ways to express idiomatic code.

Intended Use. Jezero looks at past instances of refactorings and

then identifies additional opportunities for similar refactorings in

existing or new code; it does not propose transformations by itself.

We intend Jezero to be used as a tool to point out missed idiomatic

usage when submitting newly-authored code, or when undertaking

mass code cleanup exercises. We show, empirically, that finding

promising opportunities for refactoring is indeed feasible.

2 BACKGROUND ON MINING IDIOMS

Allamanis and Sutton [2] have addressed the problem of idiom

mining as an unsupervised learning problem and proposed a prob-

abilistic tree substitution grammar (pTSG) inference to mine id-

iomatic patterns. In this work, they mine syntactic idioms from

ASTs; however, in their following work [1] they show that syntactic

idioms tend to capture shallow, uninterpretable patterns and fail

to capture widely used idioms. Data sparsity and extreme code

variability are cited as the reasons for shallow idioms. Therefore, to

mine interesting idioms and to avoid sparsity, the authors introduce

semantic idioms. Semantic idioms improve upon syntactic idioms

through a coiling process [1]. Coiling is a graph transformation that

augments standard ASTs with semantic information to yield coiled

ASTs (CASTs). These CASTs are then mined using probabilistic

tree substitution grammars (pTSG), a machine learning technique

for finding salient (and not just frequent) patterns [5]. They infer

semantic properties such as variable mutability and function purity

using a testing-based analysis. For the libraries that do not have test

suites, the authors manually annotate with the required properties.

The lower path in Fig 3 shows the overall process.

Using the semantic information, the coiling rewrite phase aug-

ments the nodes with variable mutability and distinguishes collec-

tions from other variables. The pruning phase retains only subtrees

rooted at loop headers and abstracts expressions and control-free

statement sequences to regions to reduce sparsity. Specifically, they

abstract loop expressions into a single EXPR node, labeled with

variable references. They use REGION nodes to encode purity of
variables; the purity node types include read (R), write (W), and

read-write (RW), and these nodes further differentiate between

primitive (prefixed by U) and collection (prefixed by C) variables.

Note that region nodes in this work only consider variable mutabil-

ity, i.e., whether variables, being it collection or primitive, are read

from or written to. While this representation effectively captures a

class of semantic idioms, it is not sufficient to capture refactoring

idioms that require additional flow information between variables.

Figure 2 shows the CASTs for the examples in Figure 1.

Despite the effectiveness of the proposed methods, they suffer

from limitations that prohibit direct application for identifying

code patterns as in Figure 1 — which do occur in realistic and large

codebases. Specifically,

(1) To construct REGION nodes, prior work relied on manual

annotations or testing-based dynamic analysis. Both these

efforts are expensive and might not be available for all code-

bases. Certainly, this is not available in legacy codebases.

189

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Aishwarya Sivaraman and Rui Abreu, Andrew Scott,

Tobi Akomolede, Satish Chandra

(2) The augmented trees contain variable references which are

numbered based on their lexicographical ordering. Hence,

two loops with the same semantic concept but with a differ-

ent number of variable references will have different patterns.

Looking at Figure 2, at this level of abstraction, it is not clear

that these trees are about the same idiom.

(3) Further, due to the lexicographical ordering, loops with the

same concept but with additional interleaved code state-

ments will most likely have different patterns.

Following these limitations, despite the code in Figure 1 being ar-

guably about very similar constructs, Allamanis et al.’s approach [1]

would fail to consider the examples as being part of the same idiom.

The desired idioms, shown in Figure 2, albeit similar, are sufficiently

distinct (e.g., ordering of variables) to be considered the same.

While this is the state-of-the-art in idiom mining, the fact that

it requires dynamic analysis makes it impractical to be used in

our codebase. As such, in Section 4, we will instead compare our

approach with the AST-based tree representation for idiom mining

proposed by Allamanis et al. [2].

3 PROPOSED APPROACH: JEZERO

In this work, we propose a new canonicalized dataflow tree rep-

resentation that overcomes the limitations of prior work listed in

Section 2. The upper path of Figure 3 provides an overview of our

tool Jezero; as is clear, the difference with [1] is that we eschew coil-

ing, and instead work with dataflow augmented trees. Section 3.1

describes the construction of dataflow augmented trees, which is

our new technical contribution, and Section 3.2 gives an overview

of the unsupervised idiom learning and sampling approach, which

is the same as in previous work [2]. Note that [2] goes directly from

code ASTs to pTSG, without any tree augmentation.

Figure 3: Overview of the steps in mining-based approaches.

(This paper only uses DAT, not CAST.)

Using Jezero involves the following steps: (1) provide a corpus

that may contain instances of the idiomatic pattern to be uncovered;

(2) let Jezero mine the patterns and come up with a most suitable

one(s) using its ranking heuristics; and (3) use Jezero to point out

new code locations where similar refactoring can be carried out.

3.1 Dataflow Augmented Trees

The key insight of Jezero is that high-level concepts can be identified

as dataflow patterns. Furthermore, these patterns can be captured

and represented as canonical trees using an inexpensive dataflow

analysis procedure. The problem with representing dataflow infor-

mation in detail is that there is not enough commonality across

specific dataflow graphs for a useful semantic pattern to emerge

using a statistical process of mining patterns. This challenge is often

referred to as the sparsity problem [2].

Jezero combats the sparsity problem with an abstraction that

relies on dataflow information structured in a canonicalized way to

capture high-level semantic concepts. To construct a dataflow aug-

mented tree; first, we extract approximate type information from

the AST. Next, we propose a lightweight algorithm that uses the

extracted types and information present in the AST to derive flow

information as dataflow tables. To mine useful idiomatic patterns,

we propose a new tree representation that is amenable to the unsu-

pervised mining algorithm. This canonicalized tree is constructed

using information from the dataflow tables. Additionally, we make

the following assumptions: (1) mining trees at method level is suffi-

cient to capture refactoring idioms, (2) it is sufficient to keep the

control flow structure and collapse control-free sequence code to a

region (an approximation that is often used in static analyses [24]),

and (3) the side effects, if any, of function calls are inconsequential

to the dataflow information that we intend to capture.

Static Extraction of Type Information. To encode semantic

information, we need to capture the data type of each variable.

However, precise type information of the variables is often not

necessary and can be counterproductive. For example, the type of

variable output in Figure 1a is string whereas the type of vari-
able call_stack_nodes in Figure 1c is vector. Therefore, having
precise type information would lead to different patterns. Whereas,

if the role of those variables in both cases is to act as a collection,

we want to only ascribe a collection type to both.
We overcome the need for an expensive analysis algorithm by

proposing an approximate type analysis based on information avail-

able in the ASTs. In our approach, variables are assigned as either

collection, object or primitive type. Each variable is assigned
primitive as the default type and, based on hints from the syntax

tree, the type may be modified to collection or object. For ex-
ample, if a variable contains a subscript operator, it is assigned a

collection type. Similarly, if a variable contains the arrow opera-

tor (or equivalent operators in other programming languages) it is

assigned an object type. At the end of this procedure, we have a
type table that assigns types for each variable in the method.

As an example, Table 1 summarizes the types for the code ex-

ample in Figure 1c. Note that these types are particularly useful

for identifying map/filter APIs, and can be tweaked when looking

for other API-related patterns. For instance, string types would be

necessary when searching for patterns using string APIs.

Variable Type

call_stack_nodes collection
identifier_to_id collection
identifier primitive
id primitive
nodes collection
identifier_to_count collection
this object
total_count primitive

Table 1: Inferred types for the variables in Figure 1c.

190

Mining Idioms in the Wild ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Static Extraction of Dataflow Information. We use dataflow

tables to capture data writes and data reads that happen in a code

block. To construct these tables, we propose a lightweight analysis

that derives dataflow information based on the AST and the type

table collected in the previous step. We mention at the very outset

that this dataflow representation is not intended to be sound, as

needed in compiler optimizations. This choice lets us get away

with specific choices that are effective for the purpose at hand. The

analysis computes dataflow table 𝜎 at each control-flow point like

if, foreach, etc. 𝜎 encodes the data reads that a variable depends
on. Formally, 𝜎 ∈ Ref → 2Ref , where Ref is a tuple containing a

canonicalized identifier (id) and a variable being referenced.

Identifier for a data write is generated using the variable type

and the order of appearance of the write in the current control-

flow block. In case of Figure 1c, the unique identifier for variable

𝑐𝑎𝑙𝑙_𝑠𝑡𝑎𝑐𝑘_𝑛𝑜𝑑𝑒𝑠 would be 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑤𝑟𝑖𝑡𝑒_0 since it is the first
collection variable being written to, although it is the second collec-

tion variable in the order of appearance. R represents a set of read

references. Identifier for a data read is generated using the variable

type and the order of appearance in the control-flow block. For the

example, in Figure 1c, read reference for the variable 𝑖𝑑 would be
(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒_1, 𝑖𝑑). Examples of flow operations, 𝑓 �·�, include:

𝑓 �𝑥 := 𝑦 𝑜𝑝 𝑧� = [Ref 𝑥 → {R𝑦 ∪ R𝑧 }]𝜎

𝑓 �𝑥 := 𝑓 𝑐 (𝑦, 𝑧, 𝑘)� = [Ref 𝑥 → {R𝑦 ∪ R𝑧 ∪ R𝑘 }]𝜎

𝑓 �foreach(𝑥 𝑎𝑠 𝑦 =⇒ 𝑧){}� = [Ref 𝑦 → R𝑥 ; Ref 𝑧 → R𝑥]𝜎

The first flow function calculates 𝜎 when there is an assignment of

an expression to a variable. We compute a unique reference Ref 𝑥
and compute read references for each variable in the expression. We

then take a union of these references to update the dataflow table;

Ref 𝑥 now maps to these set of read references. The second flow

function is for assignment of the return values of a function call to

a variable. We compute an unique identifier and read references

similar to the previous flow function. The third flow function is for a

foreach statement with an empty body. Since we have data writes
to two variables (𝑦 and 𝑧) we create two unique references Ref 𝑦
and Ref 𝑧 . We further compute the read references for each of these

variables and update 𝜎 . For a given data write, we identify all read
dependencies using a fix-point computation. Table 2 illustrates the

state of 𝜎 in two iterations of the fix-point computation in Figure 1c.
A key aspect of this representation of dataflow tables — essential

to overcome the limitations of the approaches detailed in Section 2

— is the fact that we propose a new canonicalized label (id) for

each dataflow operation. Each label is obtained by concatenating

the data type of the variable with a number. This canonicalized

label helps overcome the lexical ordering issues of previous ap-

proaches. In particular, we propose that each type of data write has

its own numbering. For example, primitive writes have their own

numbering which is incremented whenever there is a data write to

a primitive variable. This canonicalization allows for interleaved

data writes to different types of variables. While the data writes

have special numbering, the data read references are computed

based on their order of appearance. Hence, the same variable can

have a different data read and write reference. Nested control-flow

blocks require construction of 𝜎 to take into account the direction
of information flow. There are two choices regarding this flow (1)

Data Write Data Read

(primitive_write_0, identifier) (collection_0, identifier_to_id)

(primitive_write_1, id) (collection_0,identifier_to_id)

(collection_write_0,
call_stack_nodes)

(primitive_0, identifier), (primitive_1, id), (collec-
tion_2,nodes), (collection_3, identifier_to_count),
(object_0, this), (primitive_2, total_count)

(a) First Iteration

Data Write Data Read

(primitive_write_0, identifier) (collection_0, identifier_to_id)

(primitive_write_1, id) (collection_0,identifier_to_id)

(collection_write_0,
call_stack_nodes)

(collection_0, identifier_to_id) (prim-
itive_0, identifier), (primitive_1, id),
(collection_2,nodes), (collection_3, iden-
tifier_to_count), (object_0, this), (primitive_2,
total_count)

(b) Second Iteration.

Table 2: Figure 1c’s Intermediate Dataflow tables (𝜎).

top-down, where 𝜎 is carried from the outer to the inner code block

(2) bottom-up, where 𝜎 is carried from the inner to the outer code

block. The choice of information flow influences the type of idioms

we mine. Top-down flow allows to capture idioms that require con-

text information. For instance, consider Listing 1 where a collection

variable results in the inner loop is populated with the result of
function calls on the items in the values collection.

1 foreach ($identifiers as $key => $values) {

2 $exp = self:: computeExp($key);

3 $results = self:: computeFirstSecond($key);

4 foreach ($values as $item) {

5 $results []= self:: computeResult($item , $exp);

6 }

7 }

Listing 1: Nested control-flow block example.

We cannot directly assign the result of Vec\map_with_key to

results, rather we have to Vec\concat with the items already in
results. While the top-down information flow can lead to richer

idioms, it suffers from two problems: (1) tree sparsity, since no two

code blocks share the almost similar context information (2) the

learning algorithm proposed by [1] learns context free grammars;

however, if we want to use context information, a mining approach

that can learn context sensitive grammars is needed.

On the other hand, bottom-up information flow allows us to

identify local patterns which avoids the sparsity problem and is

amenable to the learning algorithm. Hence, in Jezero’s 𝜎 construc-
tion, information flow is bottom-up, i.e., from inner to outer code

block. Here, for each control flow node, we recursively compute

dataflow table for inner block and update the outer block using𝜓 -

a merge operator. The operator takes as input two dataflow tables

and returns a merged dataflow table, formally,𝜓 : 𝜎𝑜 → 𝜎𝑖 → 𝜎𝑚 ,
where 𝜎𝑜 and 𝜎𝑖 represent the outer and inner-block respectively;

191

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Aishwarya Sivaraman and Rui Abreu, Andrew Scott,

Tobi Akomolede, Satish Chandra

and 𝜎𝑚 is the merged table. The update rules for𝜓 are:

(𝑥, 𝑟) ∈ 𝜎𝑜 ∧ (𝑥, _) ∉ 𝜎𝑖 =⇒ [𝑥 → 𝑟]𝜎𝑚

(𝑥, _) ∉ 𝜎𝑜 ∧ (𝑥, _) ∈ 𝜎𝑖 =⇒ 𝜎𝑚

(𝑥, 𝑟1) ∈ 𝜎𝑜 ∧ (𝑥, 𝑟2) ∈ 𝜎𝑖 =⇒ [𝑥 →

fix (𝑟1 ∪ {(𝑖𝑑𝑜 , 𝑣) | (𝑖𝑑, 𝑣) ∈ 𝑟2 ∧ 𝑣 ∈ 𝜎𝑜 })]𝜎𝑚

Table 3 illustrates the working of the merge operator for the ex-

ample in Listing 1. Jezero starts by computing the information for

each inner control flow block. Table 3b illustrates the the dataflow

table (𝜎𝑖) for the inner foreach loop. Table 3c computes the partial
dataflow table (𝜎𝑜) for the outer block without the nested loop. Now
we carry out merge using the rules of 𝜓 operator. We retain the

first three entries of 𝜎𝑜 as per the first rule of𝜓 . Next, we discard
the first row of 𝜎𝑖 as per the second rule of𝜓 . For write to 𝑟𝑒𝑠𝑢𝑙𝑡𝑠
variable, we need to merge and update the dataflow from the inner

block. We use the third rule of𝜓 to collect all read references whose

variables are declared in the outer context and update the identifier

to reflect their position in the outer code block (see Table 3c).

Despite the fact that this bottom-up-only dataflow computation

is incomplete, and that traditional context-sensitive analysis may

provide sound semantic information, wemake this choice purposely

as it works well for finding idioms.

Tree Representation. The patternmining algorithmwe use (see

Section 3.2) learns tree fragments given a context free grammar.

Therefore, having as a starting point the dataflow information

captured as tables, we need a suitable tree representation that is

amenable to (tree) patternmining. In this work, we replace a control-

free sequence of statements with trees that capture dataflow infor-

mation. This tree contains information about the data writes and

data reads that happen in a code block. To ensure that these trees

are compatible with the underlying learning technique, we propose

the following canonicalized tree representation.

To differentiate between distinct data writes, our proposed tree

representation always contains a set of (distinct) child nodes that

represent data writes to collection, primitive, or object type.
This design choice helps in overcoming the limitation with different

number of write statements, since the learning algorithm will learn

to retain only the common data write pattern (i.e., the common

subtree). Additionally, to account for the dataflow in the loop header,

we add primitive write dataflow nodes which shows the flow from

the collection being iterated over to the loop header variables. Jezero

models dataflow tables as trees using the following grammar:

〈region〉 |= 〈𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒_𝑤𝑟𝑖𝑡𝑒〉
〈𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑤𝑟𝑖𝑡𝑒〉〈𝑜𝑏 𝑗𝑒𝑐𝑡_𝑤𝑟𝑖𝑡𝑒〉

〈𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒_𝑤𝑟𝑖𝑡𝑒〉 |= (〈𝑤𝑟𝑖𝑡𝑒_𝑟𝑒𝑔𝑖𝑜𝑛〉〈𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒_𝑤𝑟𝑖𝑡𝑒〉)∗

〈𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑤𝑟𝑖𝑡𝑒〉 |= (〈𝑤𝑟𝑖𝑡𝑒_𝑟𝑒𝑔𝑖𝑜𝑛〉〈𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑤𝑟𝑖𝑡𝑒〉)∗

〈𝑜𝑏 𝑗𝑒𝑐𝑡_𝑤𝑟𝑖𝑡𝑒〉 |= (〈𝑤𝑟𝑖𝑡𝑒_𝑟𝑒𝑔𝑖𝑜𝑛〉〈𝑜𝑏 𝑗𝑒𝑐𝑡_𝑤𝑟𝑖𝑡𝑒〉)∗

〈𝑤𝑟𝑖𝑡𝑒_𝑟𝑒𝑔𝑖𝑜𝑛〉 |= (〈id〉〈𝑟𝑒𝑎𝑑_𝑟𝑒𝑔𝑖𝑜𝑛〉〈𝑤𝑟𝑖𝑡𝑒_𝑟𝑒𝑔𝑖𝑜𝑛〉)∗

〈𝑟𝑒𝑎𝑑_𝑟𝑒𝑔𝑖𝑜𝑛〉 |= 〈id〉〈𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑛𝑎𝑚𝑒〉

Figure 4 illustrates the region node for the code example in

Figure 1c. For this example, we have data writes to two prim-

itive variables in the loop header from the collection variable

identifier_to_id which is captured in the primitive_write

subtree. In the body of the loop, there is a write to a collec-

tion variable call_stack_nodes. This dataflow is represented

as a child node in the collection_write subtree. Since this is

the first collection write in the loop body it is referenced with

collection_write_0 and the data reads from identifier, id,
nodes, and identifier_to_count are represented as a right bal-
anced subtree. The fix-point operation identifies that the vari-

able write to call_stack_nodes also depends on data read from
identifier_to_id since identifier and id data write depends
on it. The canonicalization can be seen in the data read reference

for call_stack_nodes, which is collection_1 whereas the data
write reference for the same variable is collection_write_0. Con-
struction of similar canonicalized trees for other code snippets in

Figure 1 helps identify the common pattern mentioned in Section 1.

The pattern identified from these trees is that foreach region con-
tains a collection_write to a collection_0 variable with data
read from primitive_0, primitive_1 and collection_0.

Our representation captures information flow in addition to vari-

able mutability, whereas CASTs [1] captures only variable mutabil-

ity. Canonicalized labels map the first data write in Figure 1a, 1c, 1e

to the same variable reference whereas CASTs maps them to differ-

ent references (see Figure 2). Jezero’s tree representation arranges

the dataflow information such that a top-down mining algorithm

(Section 3.2) can efficiently extract frequent subtrees (i.e., frequent

flow patterns) from large sets of trees.

3.2 Mining Idioms

Allamanis and Sutton [2] propose probabilistic tree substitution

grammars to learn code idioms. A tree substitution grammar (TSG)

is an extension to a context-free grammar (CFG), in which pro-

ductions expand into tree fragments. Formally, a TSG is a tuple

𝐺 = (Σ, 𝑁 , 𝑆, 𝑅), where Σ is a set of terminal symbols, 𝑁 is a set of

nonterminal symbols, 𝑆 ∈ 𝑁 is the root of the nonterminal symbol

and 𝑅 is a set of productions. In case of TSG, each production 𝑟 ∈ 𝑅
takes the form 𝑋 → 𝑇𝑋 , where 𝑇𝑋 is a tree fragment rooted at

the nonterminal 𝑋 . The way to produce a string from a TSG is to

begin with a tree containing 𝑆 , and recursively expand the trees —
the difference is that some rules can increase the height of the tree

by more than 1. A pTSG augments a TSG with probabilities, in an

analogous way to a probabilistic CFG (pCFG). Each tree fragment in

the pTSG can be thought of as describing a set of context-free rules

that are used in a sequence. Formally, a pTSG is 𝐺 = (Σ, 𝑁 , 𝑆, 𝑅, 𝜎),
which augments a TSG with 𝜎 , a set of distributions 𝑃𝑇𝑆𝐺 (𝑇𝑋 |𝑋),
for all𝑋 ∈ 𝑁 , each of which is a distribution over the set of all rules
𝑋 → 𝑇𝑋 in 𝑅 that have left-hand side 𝑋 .

The goal of our mining problem is to infer a pTSG in which every

tree fragment represents a code idiom. Given a set of trees (𝑇1, ...,𝑇𝑛)
for pTSG learning, the key factor that determines model complexity

is the number of fragment rules associated with each nonterminal.

If the model assigns too few fragments to a non-terminal, it will

not be able to identify useful patterns (underfitting); on the other

hand, if it assigns too many fragments, then it can simply memorize

the corpus (overfitting) [1]. Furthermore, we do not know in ad-

vance how many fragments are associated with each non-terminal.

Non-parametric Bayesian statistics [9, 18] provide a simple, yet

powerful, method to manage this trade-off for cases where the

192

Mining Idioms in the Wild ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Data Write Data Read

(primitive_write_0,

key)

(collection_0, identifiers)

(collection_write_0, val-

ues)

(collection_0,identifiers)

(primitive_write_1,

exp)

(primitive_0,key)

(collection_write_1, re-

sults)

(primitive_0, key)

(a) Dataflow table of outer region before merge (𝜎𝑜)

Data Write Data Read

(primitive_write_0,

item)

(collection_0, values)

(collection_write_0, re-

sults)

(collection_0, values) (primitive_0,

item), (primitive_1, exp)

(b) Dataflow table of inner (foreach) region (𝜎𝑖)

Data Write Data Read

(primitive_write_0,

key)

(collection_0, identifiers)

(collection_write_0, val-

ues)

(collection_0,identifiers)

(primitive_write_1,

exp)

(primitive_0,key)

(collection_write_1, re-

sults)

(primitive_0, key) (primitive_1, exp),

(collection_1, values)

(c) Dataflow table of outer region after merge (𝜎𝑚)

Table 3: Dataflow tables of outer (𝜎𝑜), inner (𝜎𝑖) and merged (𝜎𝑚) regions for the code example in Listing 1

Figure 4: Region tree representing the dataflow operations for the code example in Figure 1c. Due to space limitations, we

show a compact version of the AST instead; e.g., we collapse ids and rules into one node with the rule suffixed with id as label.

number of parameters is unknown. In this work, we use the non-

parametric Bayesian inference methods proposed by Allamanis and

Sutton [2] to mine refactoring idioms. To infer a pTSG 𝐺 using

Bayesian inference, we first compute a probability distribution over

probabilistic grammars, 𝑃 (𝐺). This distribution is bootstrapped

by estimating the maximum likelihood from our training corpus.

While this gives distribution over full trees, we require the dis-

tribution over fragments. This is defined as 𝑃0 (𝑇) =
∏

𝑟 ∈𝑇 𝑃 (𝑟),
where 𝑟 ranges over the set of productions that are used within
𝑇 . The specific prior distribution that we use is Dirichlet process.
The Dirichlet process is specified by a base measure, which is the

fragment distribution 𝑃0, and a concentration parameter 𝛼 ∈ R+

that controls the rich-get-richer effect. Given 𝑃0 and prior distri-
bution, we apply Bayes’ rule to obtain posterior distribution. The

posterior Dirichlet process pTSG is characterized by a finite set of

tree fragments for each non-terminal. To compute this distribution,

we resort to approximate inference based on Markov Chain Monte

Carlo (MCMC) [13]. Specifically, we use Gibbs sampling to sample

the posterior distribution over grammars.

At each sampling iteration, Jezero samples trees from the corpus

and for each node in the tree it decides if it is a root or not based on

posterior probability. Jezero adds trees to the sampling corpus and

adds tree fragments to the sample grammar based on whether the

fragments are root (denoted by 𝑧𝑡 = 1) or not. Next, for each tree

node 𝑇𝑡 , Jezero identifies the parent 𝑇𝑠 whose 𝑧𝑠 = 1. Based on the

current node and its root parent, Jezero samples it to merge them

as a single fragment or to separate them into different fragments.

To do this, Jezero computes the probability of the joint tree (node

𝑇𝑡 and parent 𝑇𝑠), and the split probabilities. Based on a threshold
it either splits into fragments or merges them into one fragment;

𝑃𝑟 (𝑧𝑡 = 0) =
𝑃𝑟𝑝𝑜𝑠𝑡 (𝑇𝑗𝑜𝑖𝑛)

𝑃𝑟𝑝𝑜𝑠𝑡 (𝑇𝑗𝑜𝑖𝑛) + 𝑃𝑟𝑝𝑜𝑠𝑡 (𝑇𝑠) · 𝑃𝑟𝑝𝑜𝑠𝑡 (𝑇𝑡)

𝑃𝑟𝑝𝑜𝑠𝑡 (𝑇) =
𝑐𝑜𝑢𝑛𝑡 (𝑇) + 𝛼 · 𝑃0 (𝑇)

𝑐𝑜𝑢𝑛𝑡 (ℎ(𝑇)) + 𝛼

𝑇𝑗𝑜𝑖𝑛 = 𝑇𝑡∪𝑇𝑠 ,ℎ is the root of the fragment, and count is the number
of times that a tree occurs as a fragment in the corpus, as determined

by the current values of 𝑧𝑡 . Once the sampling is complete, Jezero
orders the grammar based on the production probability and filter

out those rules that have probability is less than 0.5.
In MCMC it is essential that there is good mixing of samples,

hence Jezero visits the the trees in the corpus and their nodes

in different orders to further introduce randomness. We seed the

sampling process by annotating randomly 90% of the nodes with

𝑧𝑡 = 13. Furthermore, it incrementally adds trees to the corpus to

compute the grammar. Jezero repeats this process for 50 iterations

3Other annotation values (namely, 40% and 60%) yield similar results at the cost of 3x
slowdown in execution time.

193

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Aishwarya Sivaraman and Rui Abreu, Andrew Scott,

Tobi Akomolede, Satish Chandra

Figure 5: Example idiom mined by Jezero: Top-1 idiom for

API Vec\map_map_with_key. An example of a code snippet

for this idiom is in Figure 1a.

to identify the posterior distribution over fragments, which are then

returned as idioms. We further experimented with 100 iterations

but no changes in the evaluation scores for the APIs were observed.

Figure 5 shows the top-1 idiom mined by Jezero for the

Vec\map_map_with_key API.Note how this is prefix of the tree

shown in Figure 4: the key advantage of the canonicalized

representation. Despite its shallow nature, in Section 4, we show

that this idiom is very effective in identifying refactoring oppor-

tunities. In particular, according to this idiom, the most common

dataflow pattern is a loop with a write to the first collection variable,

and it depends on the loop iteration variable. The reason for Jezero

to return shallow idioms is attributed to the Gibbs sampling process.

Finding deeper idioms is possible by tuning the Gibbs sampling

hyper-parameters (it remains, however, for future work).

4 EVALUATION

This section details the empirical evaluation of Jezero on the task

of learning imperative idioms for a diverse set of APIs from the

Facebook Hack codebase. These APIs are Vec\map_with_key,

Vec\gen_filter, Dict\filter and Dict\map_with_key. Further, for

each API, we measure the effectiveness of the mined idiom in iden-

tifying known and potential refactoring locations where imperative

code can be replaced with the corresponding API call.

Dataset for Mining. As distinct APIs have different imperative

code patterns, we need to construct a dataset of patterns, per API,

using historical change data to prevent the sparsity problem(see 3.1)

and to learn useful patterns. We call these changes edits and they

contain a before and after version of changed source file(s). We first

scrape edits in a given time interval and API from Facebook’s code

repository and construct a dataset for mining imperative code pat-

terns using before versions of the edits. However, this suffers from

a drawback that edits collected using this approach may contain ex-

cessive noise, i.e., changes that are not relevant to the imperative to

API code changes. Hence, we opted for a relatively inexpensive way

to prune out irrelevant edits. We propose the following three-fold

heuristic filter, as shown in Figure 6: (1) first we compute a “treediff”

of each edit using the GumTree algorithm [7] and remove method

trees that were not modified or did not see an introduction of the

API we are investigating, (2) we then collect code edits whose API

keyword occurrence in after version is higher compared to before,

(3) we further filter edits where the cyclomatic complexity of before

is greater than the after. These heuristics are not meant to end up

with the actual refactorings exclusively, but to increase the chances

of each before-after pair being a valid refactoring. We believe that

the resulting diversity in the dataset helps prevent overfitting.

Figure 6: Phases of the mining dataset construction.

The initial dataset for the four APIs we used contains 21, 147
trees (average per API) rooted at the method level (i.e., number of

methods—average per API—found before the three-fold heuristic).

After the pruning stage, the dataset contains 1, 347 (average per API)
trees rooted at method level (1, 347 trees for Vec\map_with_key;
1, 151 trees for Vec\gen_filter; 2, 198 trees for Dict\filter; 693 trees
for Dict\map_with_key).

Experimental Setup. We evaluate the effectiveness of Jezero

in two settings. First, we measure the accuracy of the proposed

approach on a manually constructed validation set, containing

true refactoring opportunities and non-opportunities. Second, we

measure the performance of Jezero in identifying new refactoring

opportunities in the entire codebase. For each API, we sample id-

ioms for 50 iterations and with a concentration parameter value of

5.0. Further, we have pruned rare (c_min = 2) and small (n_min = 6)

idioms. To surface interesting patterns, we use ranking schemes

from [1, 2] and propose our own ranking scheme based on Jac-

card similarity. F1 scores of Jezero and Haggis were identical across

the different ranking schemes, and so we refrain from detailing

them due to space limitations. The observations are obtained by

running Jezero for 88 hours on an Intel Core Processor i7-6700

CPU@2.39GHz with 57GB RAM. Note that this is the one-time cost

to train the four APIs. For each API, the training takes about the

same amount (∼22hours). Note that prediction time is just a few

milliseconds to identify matching locations.

Effectiveness in identifying known refactoring. To measure

accuracy, for each API, we manually construct a ground truth

dataset (1) using manually confirmed refactoring locations in the

historical change data and (2) manually identified potential refac-

toring locations from a set of files sampled from the current version

of the codebase. These locations from the current codebase are

included to get a wider variety of code samples.

The constructed evaluation dataset for this experiment (Table 4)

contains 431 trees (average per API). This is the average number

of trees randomly sampled from the 1, 347 trees mentioned before,
as well as methods sampled from the current codebase. Of these,

27 (average per API) trees were manually verified to be true refac-

toring locations (see Figure 4). Note that not all 431 trees are true

refactorings. This happens because, other than the true refactoring

194

Mining Idioms in the Wild ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

method, an edits’s before version in our dataset may contain several

methods with loopy code that is similar to the idiom. Hence, a

manual check of the trees revealed that 27 were actual refactorings.

We compare Jezero with Haggis, an AST-based idiom mining

proposed by Allamanis et.al [2]. Haggis does not have the dataflow

augmentation, but is otherwise identical to Jezero. We could not

compare with semantic idiom mining based on coiling [1] because

the latter requires annotations or dynamic analysis. Wemeasure the

effectiveness of the proposed approach in identifying refactoring

locations by comparing precision, recall, and F1 scores. Table 4

shows the accuracy results for four APIs when using top-1 idiom

using the Jaccard similarity ranking scheme. On average Jezero’s

F1 score is significantly better than the baseline on all APIs. This

shows the effectiveness of the proposed static analysis-based tree

representation. The differences between the APIs also reflect how

well the new tree representation can identify diverse patterns.

Eval trees Haggis Jezero

(true/total) F1/precision/recall F1/precision/recall

Vec\map_with_key 36/437 0.14/0.43/0.08 0.71/0.74/0.69

Vec\gen_filter 22/535 0.0/0.0/0.0 0.50/0.39/0.72

Dict\filter 12/324 0.0/0.0/0.0 0.56/0.54/0.58

Dict\map_with_key 39/426 0.19/0.45/0.13 0.51/0.53/0.49

Average 27 / 431 0.08/0.22/0.05 0.57/0.55/0.62

Table 4: Performance of Jezero vs. Haggis.

Effectiveness in identifying new refactoring opportunities.

In this experiment, we measure the performance of Jezero in identi-

fying potential refactoring locations on Facebook’s codebase with

13770 Hack methods, spread over 1501 files. For each API, we iden-

tify matching locations using the top-1 idiom from Jezero and Hag-

gis. Table 5 summarizes the number of matching locations for each

API. Jezero matches 807 locations (202 on average; i.e., 1.5% of the

trees rooted at loop headers), whereas Haggis only matches 23 lo-

cations in all (6 on average); Haggis fails to identify any refactoring

opportunities in the case of Vec\gen_filter and Dict\filter.
Further, to identify the precision of the matched locations, we

manually inspect all locations of Haggis and a random subset of

(100) locations for each API returned by Jezero. Note that since we

#Matching Locations Precision
Jezero / Haggis Jezero / Haggis

Vec\map_with_key 260 / 1 0.91 / 1.00
Vec\gen_filter 247 / 0 0.41 / 0.00
Dict\filter 134 / 0 0.39 / 0.00
Dict\map_with_key 166 / 22 0.68 / 0.91

Average 202 / 6 0.60 / 0.48

Table 5: Top-1 idioms’ matching locations in the wild.

do not have a dataset of locations that should match in the internal

codebase, no measures of recall are reported. On average Jezero has

a precision of 0.60, which is an encouraging number. Arithmetically,
Haggis’s average precision works out to 0.48, but it is not mean-

ingful to compare average precisions: for two of the APIs Haggis

found only 23 refactoring opportunities compared to Jezero which

found 426. Additionally, for two APIs Haggis found zero refactoring

opportunities. In summary, Jezero not only mined patterns in

an unsupervised way, those mined patterns were extremely

productive in locating opportunities in the “wild”.

Initial Feedback fromDevelopers. We conducted an initial fea-

sibility study to understand the usefulness of Jezero at Facebook.

We reached out to 20 Facebook developers — each developer was

shown one refactoring from the codebase authored by him/her —

for ad hoc feedback on the potential refactoring locations (from

Table 5) identified by Jezero. The locations identified by the tool

were accepted by the developers as refactoring opportunities.

5 THREATS TO VALIDITY

Regarding internal validity, the effectiveness of parameters may

depend on the extent and nature of codebase used. To mitigate this

risk we have experimented with a combination of parameters and

ranking schemes. However, we have not systematically explored

every combination of parameters in our experiments. In terms of

external validity, the proposed approach has only been evaluated

using a codebase developed by a single company (albeit a large

codebase). It has also been evaluated on a limited number of APIs,

althoughwe believe it should extend to similar APIs in a natural way.

Also, the approach has been evaluated on the Hack programming

language, andmay only generalize to other programming languages

with prudence. To mitigate this, as future work, we will investigate

the effectiveness of our approach on other languages and codebases.

6 LIMITATIONS AND FUTUREWORK

The dataflow trees we generate are type agnostic. Therefore, dif-

ferent APIs could have similar idiomatic patterns. For example, we

observe that top-3 idioms of Vec\gen_filter, Dict\filter are
identical. To improve the precision of the proposed approach we

can add type information while generating the tree representation,

or use it to disambiguate APIs at prediction time. Moreover, the

current dataflow trees are rather general — e.g., no information

about if-expressions are captured. Adding more information like

variable references in the if condition, will likely help mine better
idioms. The proposed tree canonicalization was influenced by the

idiom mining machinery which identifies contiguous patterns from

trees. Capturing information about variables outside a local code

block makes it a graph mining problem. To overcome this, we can

introduce predicates, such as contains,before,after, and con-
struct a tree based on this grammar. However, this might lead to a

computationally expensive sampling approach.

The dataflow trees generated using a bottom-up approach where

the information flow is in one direction, from the inner to the outer

code block was a design choice we made to capture local patterns.

This is not suitable for patterns that depend on context informa-

tion from the outer region (see Section 3.1). Finally, refactoring

opportunities identified by Jezero may not be good candidates for

actual refactoring, due to the replacement API being less perfor-

mant or readable. Therefore, we do not plan to automatically apply

refactorings detected by Jezero, and instead surface suggestions to

developers during the code review process.

195

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Aishwarya Sivaraman and Rui Abreu, Andrew Scott,

Tobi Akomolede, Satish Chandra

7 RELATEDWORK

Code clone detection [10, 12, 25] techniques are related to idiom

mining, as the goal is to identify similar code blocks. Rattan et

al. [20] identify several clone detection techniques that use syntax

and semantics of a program [4, 11]. Code idiom mining proposed

in this work searches for frequent as opposed to maximally iden-

tical subtrees as with clone detection techniques. Semantic code

search techniques [6, 19, 26] are also related to idiom mining, since

they utilize type [21], data, and control flow [19, 29] information

for identifying clones. Our approach differs in two ways; (1) code

search requires the user to provide a search pattern, whereas Jezero

infers such a pattern (2) search techniques that infer a pattern [26]

leverages active learning while we use nonparametric Bayesian

methods. Another related area is API mining [14, 27, 30]. However,

this problem is different from idiom mining since it tries to mine

sequences or graphs of API method calls, usually ignoring most

features of the language. API protocols can be considered a type of

semantic idiom; therefore, idiom mining is a general technique for

pattern matching and can be specialized to API mining by devising

appropriate tree representations.

Recent years have seen an emerging trend of tools and tech-

niques that synthesize program transformations from examples

of code edits [3, 8, 17, 23]. The synthesized transformation should

satisfy the given examples while producing correct edits on un-

seen inputs. Existing approaches have addressed this in different

ways. Sydit [16] and LASE [17], are only able to generalize variables

names, methods and fields. Moreover, the former only accepts one

example and synthesizes transformations using the most general

generalization, whereas the latter accepts multiple examples and

synthesizes transformations using the most specific generalization.

While these techniques learn transformations from the provided

examples, Jezero’s main focus is on the detection of statistically

significant patterns from a corpus, and then pointing out likely op-

portunities for refactoring. On a different note, many of these tools

can also benefit from the dataflow augmented tree structure that

we introduced that makes the common semantic pattern manifest.

8 CONCLUSIONS

We propose Jezero, a scalable, lightweight technique that is capable

of surfacing semantic idioms from large codebases. Under the hood,

Jezero extends the abstract syntax tree with canonicalized dataflow

trees and leverages a well-suited a nonparametric Bayesian method

to mine the semantic idioms. Our experiments on Facebook’s Hack

code shows Jezero’s clear advantage. It was significantly more effec-

tive than the baseline that did not have the dataflow augmentation

to find refactoring opportunities from unannotated legacy code. On

a randomly drawn sample containing 13770 Hack methods, Jezero

found matches at 1.5% locations, with a precision of 0.60 We expect

the ideas in Jezero to carry over to other languages such as Python,

as it provides ways to express idiomatic code.

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Christian Bird, Premkumar Devanbu, Mark Mar-

ron, and Charles Sutton. 2018. Mining semantic loop idioms. IEEE Transactions
on Software Engineering 44, 7 (2018), 651–668.

[2] Miltiadis Allamanis and Charles Sutton. 2014. Mining idioms from source code.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 472–483.

[3] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to fix bugs automatically. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1–27.

[4] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. 1998. Clone detection using abstract syntax trees. In Proceedings. Interna-
tional Conference on Software Maintenance (Cat. No. 98CB36272). IEEE, 368–377.

[5] Trevor Cohn, Phil Blunsom, and Sharon Goldwater. 2010. Inducing tree-
substitution grammars. The Journal of Machine Learning Research 11 (2010).

[6] Yaniv David and Eran Yahav. 2014. Tracelet-based code search in executables.
Acm Sigplan Notices 49, 6 (2014), 349–360.

[7] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and Accurate Source Code Differencing. In
Proceedings of the International Conference on Automated Software Engineering.

[8] Xiang Gao, Shraddha Barke, Arjun Radhakrishna, Gustavo Soares, Sumit Gulwani,
Alan Leung, Nachiappan Nagappan, and Ashish Tiwari. 2020. Feedback-driven
semi-supervised synthesis of program transformations. Proceedings of the ACM
on Programming Languages 4, OOPSLA (2020), 1–30.

[9] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and
Donald B Rubin. 2013. Bayesian data analysis. CRC press.

[10] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones. In
Proceedings of the 29th International Conference on Software Engineering (ICSE
’07). IEEE Computer Society, Washington, DC, USA, 96–105.

[11] Rainer Koschke, Raimar Falke, and Pierre Frenzel. 2006. Clone detection using
abstract syntax suffix trees. InWorking Conference on Reverse Engineering. IEEE.

[12] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-Miner:
A Tool for Finding Copy-paste and Related Bugs in Operating System Code.. In
OSdi, Vol. 4. 289–302.

[13] Percy Liang, Michael I Jordan, and Dan Klein. 2010. Type-based MCMC. In
Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics. 573–581.

[14] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005. Jungloid
mining: helping to navigate the API jungle. ACM Sigplan Notices 40, 6 (2005).

[15] NaMeng, Lisa Hua,Miryung Kim, and Kathryn SMcKinley. 2015. Does automated
refactoring obviate systematic editing?. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 1. IEEE, 392–402.

[16] Na Meng, Miryung Kim, and Kathryn S McKinley. 2011. Systematic editing:
generating program transformations from an example. ACM SIGPLAN Notices
46, 6 (2011), 329–342.

[17] Na Meng, Miryung Kim, and Kathryn S McKinley. 2013. LASE: locating and
applying systematic edits by learning from examples. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 502–511.

[18] Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.
[19] Varot Premtoon, James Koppel, and Armando Solar-Lezama. 2020. Semantic code

search via equational reasoning.. In PLDI. 1066–1082.
[20] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone

detection: A systematic review. Information and Software Technology 55, 7 (2013).
[21] Steven P Reiss. 2009. Semantics-based code search. In 2009 IEEE 31st International

Conference on Software Engineering. IEEE, 243–253.
[22] Charles Rich and Richard C. Waters. 1988. The programmer’s apprentice: A

research overview. Computer 21, 11 (1988), 10–25.
[23] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit

Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning syntactic
program transformations from examples. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, 404–415.

[24] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. 1988. Global value
numbers and redundant computations. In Proceedings of the 15th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 12–27.

[25] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. 2016. SourcererCC: Scaling code clone detection to big-code. In Software
Engineering (ICSE), 2016 IEEE. IEEE, 1157–1168.

[26] Aishwarya Sivaraman, Tianyi Zhang, Guy Van den Broeck, and Miryung Kim.
2019. Active inductive logic programming for code search. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 292–303.

[27] Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen, Tao Xie, and Dongmei
Zhang. 2013. Mining succinct and high-coverage API usage patterns from source
code. In Conference on Mining Software Repositories (MSR). IEEE, 319–328.

[28] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting code clones
with graph neural network and flow-augmented abstract syntax tree. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 261–271.

[29] Xiaoyin Wang, David Lo, Jiefeng Cheng, Lu Zhang, Hong Mei, and Jeffrey Xu
Yu. 2010. Matching dependence-related queries in the system dependence graph.
In Proceedings of the IEEE/ACM international conference on Automated software
engineering. 457–466.

[30] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Mining and
recommending API usage patterns. In European Conference on Object-Oriented
Programming. Springer, 318–343.

196

