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Abstract—Beyond implementation correctness of a distributed
system, it is equally important to understand exactly what users
should expect to see from that system. Even if the system itself
works as designed, insufficient understanding of its user-visible
semantics can cause bugs in its dependencies. By focusing a
formal specification effort on precisely defining the expected user-
facing behaviors of the Azure Cosmos DB service at Microsoft,
we were able to write a formal specification of the database that
was significantly smaller and conceptually simpler than any other
specification of Cosmos DB, while representing a wider range
of valid user-observable behaviors than existing more detailed
specifications. Many of the additional behaviors we documented
were previously poorly understood outside of the Cosmos DB
development team, even informally, leading to data consistency
errors in Microsoft products that depend on it. Using this model,
we were able to raise two key issues in Cosmos DB’s public-facing
documentation, which have since been addressed. We were also
able to offer a fundamental solution to a previous high-impact
outage within another Azure service that depends on Cosmos
DB.

Index Terms—cloud computing, formal methods, model check-
ing, documentation

I. INTRODUCTION

Consistency guarantees for distributed databases are noto-
riously hard to understand. Not only can distributed systems
inherently behave in unexpected and counter-intuitive ways
due to internal concurrency and failures, but they can also
lull their users into a false sense of functional correctness:
most of the time, users of a distributed database will witness
a much simpler and more consistent set of behaviors than
what is actually possible. Only timeouts, fail-overs, or other
rare events will expose the true set of behaviors a user
might witness [1]. Testing for these scenarios is difficult at
best: reproducing them reliably requires controlling complex
concurrency factors, latency variations, and network behaviors.
Even just producing usable documentation for developers
is fundamentally challenging [2], [3], [4], and explaining
these subtle consistency issues via documentation comes as
an additional burden to distributed system developers and
technical writers alike. Formal methods have long been applied
to the design of distributed systems, including in industry [5],
[6], [7], [8], but these are years-long high-effort projects
that focus on implementation correctness, not explaining the
system to users. Rather than focus on this difficult task, we
address a simpler and more fundamental question: ignoring

the implementation, what kind of behavior should a client be
able to witness while interacting with a service?

We use TLA+ to answer this simpler question for Cosmos
DB, a planet-scale key-value store. In practice, Cosmos DB
offers a rich interface featuring multiple query APIs, and
has complex operational behaviors involving georeplication
and partitioning of data. As our focus is on data consistency
from a client perspective, we model only the core read and
write operations underlying the system’s semantics relating
to their 5 configurable consistency levels. We show that this
minimal client-focused specification of a large-scale service
offers important design- and documentation-level insights,
while keeping buy-in cost low.

We document the 2 person-month development process
of our specification, which consists of iterative prototyping
using the public documentation [9], feedback from author 2,
a Cosmos DB developer, and the specification and model
checking of a collection of formal properties based on our
understanding. Aside from the specification itself, we discuss
a pair of key issues it helped us discover within Cosmos DB’s
documentation, and how both have since been addressed. We
also use our specification to explain the previously-unclear
root cause of a 28-day high-priority outage within Microsoft
Azure.

We describe the following results: (1) a concise (390
LOC) client-focused specification of Cosmos DB, a large-
scale distributed system; (2) a pair of key documentation bugs
we found by developing our specification — statements in
Cosmos DB’s public documentation [9] that have now been
corrected; and (3) using our specification, a novel and concise
mechanized explanation of a high-severity Cosmos DB-related
outage within Azure that took 28 days to identify and mitigate.

Beyond our work so far, we expect our model to be
useful in future design work as Cosmos DB’s implementation
evolves, aided by its ability to precisely and abstractly state a
client’s expectations of system behavior. Services depending
on Cosmos DB may also benefit from incorporating our work
into TLA+ specifications of their own processes, in which case
our work may be used to prevent future outages similar to the
one we describe in this paper.

II. BACKGROUND

Our work uses the TLA+ specification language [10], which
can be used to describe state machines using set-theoretic
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constructs and temporal logic. Models written in TLA+ have
no direct correspondence to implementations, with users fo-
cusing instead on analyzing design decisions and verifying
model-level correctness properties. This philosophy allows
specification writers to leave out irrelevant details and focus
on expressing a specification’s core semantics as simply as
possible.

In addition to plain TLA+, model developers can also write
models in PlusCal [11], a high-level imperative language that
is more like contemporary programming languages.

It is possible to check model properties using the explicit-
state model checker TLC [12], [13], the symbolic model
checker Apalache [14], and the manual proof assistant
TLAPS [15]. In this work, we relied on the TLC model
checker to analyze our specification.

As well as model checking temporal properties, it is also
possible to express and check refinements [16] in TLA+. A
refinement proves that one specification implements another
– meaning that one specification exhibits every behavior that
another specification exhibits, given an appropriate translation
between the two specifications’ state spaces. We use this tech-
nique to show that our new specification produces a superset
of the behaviors produced by existing TLA+ specifications of
Cosmos DB.

III. A SIMPLE MODEL OF COSMOS DB

To fully illustrate our claim to simplicity, this section
describes our full formalization of Cosmos DB’s semantics
in a few pages, including most of the core TLA+ defini-
tions in-text. Our modeling process was based on iterative
discussion with author 2, a principal engineer working on the
Cosmos DB implementation. We followed existing user-facing
documentation, asked for feedback, learned more about the
realities of Cosmos DB’s design, and incorporated that new
knowledge into our specification. We repeated this feedback
loop until we found no more corrections, when our model
began to predict counter-intuitive but possible behaviors of
the real system. See Subsection IV-D for in-depth analysis of
such behaviors. See https://github.com/tlaplus/azure-cosmos-
tla/tree/master/simple-model for the full TLA+definitions.

A. Consistency Levels

Cosmos DB offers 5 consistency levels that affect read
and write behavior. A system administrator must configure
all writes to follow a single consistency level per Cosmos DB
deployment. Read operations may either match the configured
write consistency level or weaken it according to the hierarchy
defined in Figure 1. We discuss high-level prose descriptions
of these consistency levels, which we complement with precise
TLA+ descriptions later on.

Strong consistency. Reads and writes are linearizable [17],
as long as the operation does not fail. See Section IV-D for
possible behaviors given failures.

Bounded staleness. Writes older than a given time bound
are durable and consistently readable, whereas writes younger
than the given bound are not. The time bound is defined two

Bounded Staleness

Session

Consistent Prefix

Eventual

Strong

Fig. 1. Hierarchy of consistency levels in Cosmos DB, with strongest at the
top and weakest guarantees at the bottom.

ways: a bound in wall-clock time, and a maximum bound on
the number of eventually-consistent writes allowed at once.
If the bounds are in danger of being exceeded, additional
writes will be refused for replication to catch up. For modeling
simplicity, we ignore the wall-clock temporal aspect of this
mode’s semantics, and consider only operation count.

Session consistency. Reads and writes are tagged with
session tokens. Operations with the same session token are
linearizable relative to one another, but no guarantees are
provided across different session tokens. Session consistency
writes are not guaranteed durable, and tokens may be invali-
dated by data loss.

Consistent prefix. Reads are monotonic: a client may only
read newer values than it has already read. Section IV-A
describes why we find this is ultimately equivalent to eventual
consistency.

Eventual consistency. This level offers no ordering guaran-
tees, but does provide a notion of eventual convergence over
an arbitrary period of time.

B. Data Definitions

Our model of Cosmos DB is defined to have 4 state
variables, and allows them to evolve over time via some simple
actions. Each variable relates to a specific aspect of the system
being modeled.

log. The log is a sequence of writes, represented as key-
value pairs. For example, [key 7→ k1, value 7→ v1] pairs
key k1 with value v1. The sequence lists all writes that are
stored anywhere in Cosmos DB’s implementation, irrespective
of replication or durability.

readIndex. The readIndex marks either a position in
the log or 0. For any element of the log, if its index
is less than or equal to readIndex, then it is replicated
universally across the current Cosmos DB deployment. Rep-
resenting eventually-complete propagation of writes, the log
prefix defined by readIndex behaves identically to a single
key-value store.

commitIndex. The “commit index” marks a position in
the log or 0. For any element of the log, if its in-
dex is less than or equal to commitIndex, then it is
replicated at a global majority of replicas, and is therefore
durable due to consensus. It follows from this definition that
readIndex ≤ commitIndex must always hold.

epoch. The epoch is a monotonically increasing counter
of fail-overs. If epoch remains constant, fail-overs behavior
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such as data loss may not be observed. If it increases, some
data loss may be observed at the point of increase.

The specification has six constants: Keys and Values,
which are the sets of keys and values respectively. These
sets can be redefined based on the use case — they can
be generalized to infinite sets like “all strings”, or restricted
to a small finite set of constant values in order to simplify
model checking. NoValue is a constant indicating the ab-
sence of a value. VersionBound and StalenessBound
are natural numbers that affect when writes are allowed.
WriteConsistencyLevel represents the currently con-
figured consistency level for write operations, one of the 5
consistency levels.

We chose to base our specification on a sequential log
because Cosmos DB, like any consensus-based system, de-
termines a total order in which clients should consider their
requests to have occurred. This is why many parts of our
specification, including several state variables, identify writes
by log index.

Building on these definitions, we can express our first two
fundamental actions.

IncreaseReadIndexAndOrCommitIndex
∆
=

∧ commitIndex ′ ∈ commitIndex . . Len(log)
∧ readIndex ′ ∈ readIndex . . commitIndex ′

∧ UNCHANGED 〈log , epoch〉

IncreaseReadIndexAndOrCommitIndex models the
concept of data replication, that is, readIndex
and/or commitIndex advancing. readIndex and
commitIndex may non-deterministically gain new
values between readIndex and commitIndex′, and
commitIndex and Len(log), respectively. Neither log
nor epoch may change. This ensures that both values may
only grow, that they never point beyond end of the log, and
that readIndex ≤ commitIndex remains true.

TruncateLog
∆
=

∃ i ∈ (commitIndex + 1) . . Len(log) :
∧ log ′ = SubSeq(log , 1, i − 1)
∧ epoch ′ = epoch + 1
∧ UNCHANGED 〈readIndex , commitIndex 〉

TruncateLog models the concept of data loss: if there exists
any index i such that commitIndex < i , then log may be
truncated non-deterministically such that its new length is i −
1. In-progress operations may watch for changes in epoch’s
value to detect and respond to failures, meaning epoch acts
as a failure detector.

Because these actions may happen non-deterministically,
any combination of replication and fail-over may occur at any
time, interleaved with other actions. A short sequence of such
actions can represent a complex series of implementation-level
possibilities.

C. Write Operations

In Cosmos DB, write operations are not atomic. They
may sometimes appear atomic under certain configurations1,
but their underlying structure needs to be broken down into
multiple steps.

As a consequence of writes’ multi-step nature, we need
to record the state of in-progress writes. For portability, we
don’t require any particular state retention mechanism, as the
specifics might vary depending on how our core specification
is used. Instead, we break up the two conceptual stages of
a Cosmos DB write into re-usable parts that we describe
individually.

WritesAccepted
∆
=

∧ Len(logv)− readIndex < VersionBound
∧ ((WriteConsistencyLevel = BoundedStaleness)⇒

Len(logv)− commitIndex < StalenessBound)

1) Beginning a Write Operation: WritesAccepted deter-
mines whether a write may be attempted at all. It con-
strains writes based on two factors: VersionBoundand
StalenessBound. VersionBound is a global limit on
how many partially-replicated writes may exist in a Cosmos
DB instance at any one time. StalenessBound is a global
limit on how many non-durable writes may exist in a Cosmos
DB instance at any one time, used to enforce bounded staleness
consistency.

WriteInit(key , value)
∆
=

log ′ = Append(log , [key 7→ key , value 7→ value])

WriteInit defines the initial stage of any permitted write
operation, appending a new key-value pair to the log. This
means that at least one replica now holds the new key-value
pair. The lack of distinction between incomplete and complete
writes is intentional here: Cosmos DB replicas unconditionally
begin serving writes as soon as they accept them. The Cosmos
DB client libraries are the ones that enforce Cosmos DB’s
read semantics, and they may perform multiple read requests
against multiple replicas until they get a consistent answer that
can be returned to an end-user. Cosmos DB replicas require
no additional logic restricting which writes should be visible
to which read requests.

WriteInitToken
∆
=

[epoch 7→ epoch, checkpoint 7→ Len(log) + 1]

WriteInitToken defines a unique identifier, or token, with
which we can keep track of a write’s progress. This token
is structurally identical to a session token, the data used to
identify a client’s session at session consistency. Note that in
practice, these tokens represent the flow of a request from

1For instance, a client performing only strongly consistent reads and
strongly consistent writes will never witness an in-progress write. Weaker
consistency levels do not provide any such guarantees, however. See Section
IV-D for specific examples.



client to server and back. We use this abstraction to concisely
summarize an otherwise complex mix of network semantics
and client-server interaction.

We have model-checked a uniqueness property for all ses-
sion tokens given up to 6 writes and any one failure event.

2) Completing a Write Operation: Once it has begun, a
write operation may complete at any time that it is allowed
to. An in-progress write may also non-deterministically fail at
any time, due to timeouts, spurious network failures, and so
forth.

WriteCanSucceed(token)
∆
=

∧ SessionTokenIsValid(token)
∧ (WriteConsistencyLevel = StrongConsistency ⇒

token.epoch = epoch)

Given a token identifying an in-progress write, WriteCan-
Succeed defines when the write is allowed to succeed. There
are 3 conditions for success.

First, a write may succeed if its token is valid, that is,
SessionTokenIsValid(token) is true. This will be the case if
token.checkpoint ≤ Len(log), and token.epoch =
epoch.

Second, writes must still be in the log. If data loss occurred
and the written data is gone, success cannot be claimed. This
condition also accounts for replacement, where log entries are
lost then written again with the same index. Since data loss
always increments epoch, rejecting writes from a different
epoch cleanly disallows writes interrupted by data loss
events.

Lastly, if WriteConsistencyLevel is set to
StrongConsistency, then token.checkpoint
must be less than or equal to commitIndex. By the
semantics of commitIndex, this requirement means that
“all successful strongly consistent writes must be durable”.

D. Read Operations

We define read semantics for Cosmos DB as stateless, read-
only operators that describe the set of allowed read results for
any given read request. We define the read operation for each
consistency level separately, but we use a common underlying
definition called GeneralRead to avoid duplication.

GeneralRead takes 3 parameters: key, whose value is
being read; index, a log index indicating the reader’s “point
of view” in the log; and allowDirty, which determines
whether the read operation should have exactly one result, or
non-deterministically many. All members of the resulting set
will be pairs of logIndex and value, which are resulting
value and its log index, respectively. logIndex allows read
results to be totally ordered, which is useful for both verifying
correctness properties, and for correctly describing session
tokens.
index defines a prefix of the log, selecting all indices

i ≤ index. Within this prefix, GeneralRead will always
include the latest mapping from key to some value. If there
is no such mapping, GeneralRead returns the marker value

GeneralRead(key , index , allowDirty)
∆
=

LET maxCandidateIndices
∆
= {i ∈ DOMAIN log :

∧ log [i ].key = key
∧ i ≤ index}

allIndices
∆
= {i ∈ DOMAIN log :

∧ allowDirty
∧ log [i ].key = key
∧ i > index}

IN {[logIndex 7→ i , value 7→ log [i ].value]
: i ∈ allIndices ∪ (

IF maxCandidateIndices 6= {}
THEN {Max (maxCandidateIndices)}
ELSE {})} ∪

(IF maxCandidateIndices = {}
THEN {NotFoundReadResult}
ELSE {})

NotFoundReadResult. Additionally, if allowDirty is true,
then GeneralRead will also include values bound to key in log
entries with index i > index. This models non-deterministic
reads: it allows reading writes that are not durable, still in
progress, or simply arbitrarily more recent than index.

Note that each of the following read operations are only
valid for compatible values of WriteConsistencyLevel.
Figure 1 illustrates the intended hierarchy of consistency
levels.

StrongConsistencyRead(key)
∆
=

GeneralRead(key , commitIndex , FALSE)

1) Strongly Consistent Reads: Strongly consistent reads
for any given key follow commitIndex, and return one
single consistent value in all cases. Aligning these reads with
commitIndex means that only durable writes may be read.

BoundedStalenessRead(key)
∆
=

GeneralRead(key , commitIndex , TRUE)

2) Bounded Staleness Reads: Bounded staleness reads
also follow commitIndex. Unlike strongly consistent reads,
bounded staleness reads may see arbitrary information be-
yond commitIndex. The span of log entries between
commitIndex and Len(log) represents the non-durable
reads allowed, which may be arbitrarily witnessed in addition
to durable data before commitIndex.

SessionConsistencyRead(token, key)
∆
=

IF ∨ epoch = token.epoch
∨ token = NoSessionToken

THEN LET sessionIndex
∆
= Max ({token.checkpoint ,

readIndex})
IN GeneralRead(key , sessionIndex , TRUE)

ELSE {})

3) Session Consistent Reads: Session consistent reads op-
erate using a session token which defines a position in the log



to read from: a checkpoint, and the epoch from which
the token originates.

The first check made during a session consistency read
is whether the session token is from the current epoch. If
the epochs differ, and the session token isn’t the placeholder
value NoSessionToken, then no reads are permitted. Session
consistency offers no durability guarantees: if data loss occurs,
it becomes impossible to guarantee that writes referenced by
a session token remain intact. Not all session tokens will be
invalidated on every data loss event in practice, but we have
yet to find a need for modeling the invalidation of only some
session tokens.

After checking the epoch, the checkpoint is combined
with readIndex. Since the readIndex indicates the log
prefix that has been replicated to every single replica in the
current Cosmos DB deployment, it would be unsound to have
a sessionIndex smaller than readIndex.

We set allowDirty to TRUE, meaning that a session
consistent read may arbitrarily read log entries beyond its
session token. This possibility represents clients’ ability to
non-deterministically witness the effects of other concurrent
sessions.

Note that the “empty” value, NoSessionToken, corresponds
to [epoch 7→ 0,checkpoint 7→ 0]. Its epoch of 0 makes
it incomparable to other session tokens, and its checkpoint of
0 places no constraint on the outcome of a session consistency
read.

UpdateTokenFromRead(origToken, read)
∆
= [

epoch 7→ epoch,
checkpoint 7→ Max ({origToken.checkpoint ,

read .logIndex})
]

Once a read is performed with a given token, a client must
update its session token. This is done with UpdateTokenFrom-
Read, which combines the log index from a read result with
the checkpoint of an existing session token. This combination
monotonically increases a client’s session token, ensuring that
each client may only witness increasingly recent information.

EventualConsistencyRead(key)
∆
=

GeneralRead(key , readIndex , TRUE)

4) Consistent Prefix and Eventual Consistency Reads:
Consistent prefix and eventual consistency being known equiv-
alent, as discussed in Section IV-A, they have identical defini-
tions. Their behavior is minimally constrained, requiring only
that values overwritten at or before readIndex cannot be
read.

E. Validation

To validate that our specification exhibits behaviors of which
Cosmos DB’s implementation is capable, and in order to
ensure that we cover as wide a variety of these behaviors as
possible, we have leveraged a combination of model checking

correctness properties, model checking our specification’s re-
lationship with comparable specifications via refinement, and
manual expert review of behaviors implied by our model.
This subsection focuses on the properties we checked, while
particularly interesting specific behaviors will be discussed
alongside our results in Section IV.

1) Correctness Properties: The correctness properties we
check are a collection of the ones listed in Cosmos DB’s
external documentation [9], properties derived from existing
TLA+ specifications of Cosmos DB [18] (which are also
referenced as authoritative by Cosmos DB’s documentation),
and properties inherent to our particular specification’s design.
To aid in our verification process, we extend our base behavior
specification with an auxiliary writeHistory state variable.
writeHistory provides a history of all attempted writes,
including which key, which value, a write token indicating at
which epoch and log index the write began, and a state that
will transition at most once from WriteInitState to either
WriteSucceededState or WriteFailedState.

Using this extended specification, we verify a total of
10 liveness properties and 14 safety properties across the
4 distinct data consistency levels offered by Cosmos DB,
excluding basic type safety invariants. Our verification process
is based on model checking, using a combination of exhaustive
state space exploration of logs up to length 6, and depth-first
random simulation of execution traces exploring up to 100
steps.

PointsValid
∆
=

2[ ∧ readIndex ≤ commitIndex
∧ readIndex ≤ readIndex ′

∧ commitIndex ≤ commitIndex ′]vars

For example, PointsValid defines the relationship be-
tween readIndex and commitIndex: readIndex can-
not be beyond commitIndex, and they must increase mono-
tonically. For the sake of concision, we describe the other
properties via prose summary. The full set is available along-
side our complete specification at https://github.com/tlaplus/
azure-cosmos-tla/tree/master/simple-model.

Read your writes. For strong consistency and session
consistency with the same token, after any write, only the
written value or some later write may be read.

Read after write. It is similar to read your writes at this
level of abstraction, changing from global to client perspective.

Monotonic reads. For strong consistency and session con-
sistency with the same token, reads may only make visible
later writes, and will never return older data than they already
have.

Bounded staleness. Bounded staleness consistency should
never accept more than StalenessBound uncommitted
writes at once.

Session token lifetime. For any arbitrary session token that
is valid, it will either remain valid or become invalid, in which
case it will never become valid again.

https://github.com/tlaplus/azure-cosmos-tla/tree/master/simple-model
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readIndex as lower bound. No reads may return values
that have been overwritten by other operations within the log
prefix defined by readIndex.

Write completion. All writes eventually complete, either
with success or failure.

2) Linearizability: The strongest consistency property of-
fered by Cosmos DB is the linearizability [17], [19] of
write operations at the StrongConsistency consistency
level. Linearizability means that, for any operation on some
concurrent object (here, a key in Cosmos DB), we can choose a
point in time between the beginning and end of that operation
at which it has atomically occurred. For our simple model,
that point is when commitIndex is incremented. Due to
our non-atomic modeling of writes, this point will occur at
some unspecified point in between the beginning and end of
a successful write, whenever IncreaseReadIndexAndOrCom-
mitIndex takes place. We wrote a refinement specification
CosmosDBLinearizability, verifying that every behav-
ior of our Cosmos DB specification with strong consistency
reads and writes corresponds to the same series of atomic reads
and writes applied to a TLA+ function.

3) Refining Existing Specifications: Cosmos DB already
has publicly available TLA+ models for some of its behav-
ior [18], so we used refinement to verify our new specification
does not disagree with existing specifications.

We found that our work offers a superset of previously-
modeled behavior, despite the old specification including con-
cepts we do not explicitly deal with, like synchronization
between replicas in Azure regions. Our model’s behavior is
specifically a strict superset of the old one’s, because we noted
that the existing specifications made no attempt at modeling
data loss or relaxed reads.

4) Refining Read Consistency Levels: It is strongly hinted
in Cosmos DB’s public documentation [9] that different
consistency levels represent a hierarchy of possible behav-
iors, with stronger consistency guarantees forming subsets
of weaker consistency guarantees. We used our specifica-
tion to investigate this property, and determined under what
conditions the implication made by Cosmos DB’s public
documentation holds.

We found that, for the same configured write consistency,
different consistency reads form behavioral subsets directly
matching the documented hierarchy illustrated in Figure 1.
Keeping the write consistency level constant, each stronger
read consistency allows a subset of the behavior of each
weaker read consistency. Note that we consider all possible
session token choices together for session consistency.

Counter-intuitively, this relationship does not hold when
comparing write consistency levels. Consider that strong
consistency allows more non-durable writes than bounded
staleness, because bounded staleness fundamentally relies on
throttling writes to preserve its semantics, whereas strong
consistency does not. See Section IV-D3 for discussion.

TABLE I
READ AND WRITE STRATEGIES AT DIFFERENT CONSISTENCY LEVELS,

TAKEN FROM PUBLIC COSMOS DB DOCUMENTATION [9].

Consistency Level Quorum Reads Quorum Writes
Strong Local Minority Global Majority
Bounded Staleness Local Minority Local Majority
Session Single Replica

(session token)
Local Majority

Consistent Prefix Single Replica Local Majority
Eventual Single Replica Local Majority

IV. RESULTS

Beyond our specification itself, we showcase two key issues
it helped us raise with Cosmos DB’s documentation, both of
which have been addressed. We also present the previously-
unclear root cause of a 28-day high-priority outage within
Azure, alongside a collection of other properties of Cosmos
DB made explicit by our project. Table I lists the semantics we
use when providing replica- and region-level example scenar-
ios. At the implementation level, read and write operations
at different consistency levels require different degrees of
replication or consensus, which are listed in this table.

A. Consistent Prefix and Eventual Consistency Behave Equiv-
alently

During our work, we have discovered that eventual consis-
tency and consistent prefix in Cosmos DB behave identically
from the point of view of a client performing individual
reads and writes. Since eventual consistency is the least
constraining option, we will focus on whether consistent prefix
could behave in any way that is distinguishable from it. For
context, consider the original description of consistent prefix
consistency below, which has now been rewritten by the Azure
documentation team in response to our findings.

In consistent prefix option, updates that are returned
contain some prefix of all the updates, with no gaps.
Consistent prefix consistency level guarantees that
reads never see out-of-order writes.
If writes were performed in the order 〈A,B,C〉, then a
client sees either 〈A,A,B〉, or 〈A,B,C〉, but never
out-of-order permutations like 〈A,C〉 or 〈B,A,C〉.
Consistent Prefix provides write latencies, availability,
and read throughput comparable to that of eventual
consistency, but also provides the order guarantees that
suit the needs of scenarios where order is important.

Azure Cosmos DB Documentation on Consistent
Prefix [9]

Looking at the examples in the above excerpt, the docu-
mentation claimed that neither 〈A,C〉 nor 〈B,A,C〉 should
be observable by clients. We assume the scenario described
involves some implicit key k and values 〈A,B,C〉 written to
key k in sequence alongside 3 concurrent read operations, all
under consistent prefix. In that case, our model of Cosmos DB
allows both sequences of reads that the documentation claims
are forbidden.

The first sequence, 〈A,C〉, is possible because the con-
current interleaving 〈write(A), read(A), write(B),
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Fig. 2. Interaction diagram of a possible scenario for producing read pattern
〈B,A〉 under consistent prefix with a cluster of 5 servers.

write(C), read(C)〉 should naturally be possible, even
if all operations were globally atomic. We are not sure why
this counter-example was claimed to be invalid.

The second sequence, 〈B,A,C〉, is a more complex case.
We have confirmed that read operations in Cosmos DB are
load balanced to potentially any replica, and that any replica
will immediately serve any data that is replicated to it. Fol-
lowing the information from Table I, we know that consistent
prefix read operations will go to only one replica, and that
consistent prefix write operations will be considered successful
once data has been committed by a local majority of replicas in
a single region. Figure 2 illustrates a possible scenario with one
client and 5 replicas that will produce the read pattern 〈B,A〉 2,
while following all known implementation-level semantics of
consistent prefix consistency.

First, assuming some arbitrary single key k , the client writes
values A and B to local majorities. There are 5 replicas, so 3
servers must commit each write. The first write goes to replicas
1, 2, 3, and the second write goes to replicas 1, 4, 5. Then, the
client performs two reads in quick succession. Due to arbitrary
load balancer behavior, the first read is served by replica 5,
and the second read is served by replica 2. Each replica serves
its latest local copy of the data bound to key k , which, due
to how local majorities were chosen during the earlier writes,
and assuming no replication has time to take place, produces
the sequence of reads 〈B,A〉.

Together, these two counter-examples negate the only doc-
umented difference between consistent prefix and eventual
consistency for atomic writes to the same key.

B. Regions Do Not Affect Safety Guarantees

Building on the idea that consistent prefix and eventual
consistency behaviors are identical, we arrive at a second
question regarding Cosmos DB’s public documentation: why
is data consistency so strongly dependent on how regions are
configured? To illustrate, Cosmos DB’s consistency documen-
tation [9] contains 13 bullet points across 3 sections indicating
consistency expectations that depend on the region in which
a client is interacting with Cosmos DB. 12 of those bullet

2We omit C from our example, as additionally writing then reading C after
seeing 〈B,A〉 is intuitive, strongly consistent behavior.

points list either consistent prefix or eventual consistency as
the expected behavior, which we found to be equivalent.

Given how many of these bullet points be argued redundant
according to our specification, we gave thought to whether
they could all be removed. Making the documentation simpler
in this way would be a net positive to potential readers who
seek to understand Cosmos DB’s consistency guarantees.

The 13th bullet point that lists a consistency level other than
eventual consistency or consistent prefix applies to bounded
staleness, when bounded staleness reads go to the same
region as writes. That bullet point claims that, under those
conditions, bounded staleness offers guarantees identical to
strong consistency. Given that both reads and writes under
bounded staleness perform region-local consensus, we can
understand why this case would often be equivalent to strong
consistency in practice: within the same region, it would be
impossible for a client to see any out-of-order artifacts. The
missing condition is durability: Cosmos DB supports write
region fail-over, whereby the write region can be changed if
the original write region has become unavailable. In that case,
the new write region might not have replicated all of the data in
the original write region, or might lag behind other regions that
are still available, allowing both data loss and stale reads. This
would not be the case for strong consistency, which requires
global consensus during writes, meaning that changing write
regions would not create any client-visible inconsistencies.

When our issues were addressed, it was confirmed that for
atomic single reads and writes, our arguments are valid. These
bullet points remain due to an additional detail that is out of
scope for our specification: transactions. Cosmos DB supports
optimistic concurrency via a transaction engine layered on
top of the raw reads and writes our specification supports,
which acts differently under consistent prefix and eventual
consistency. Formally specifying this new information, as we
have done for the original, may be an interesting direction for
future work.

C. Investigating a High-Impact Production Outage

Our work was motivated by a past production outage, which
was highlighted in an ongoing study of cloud incidents at
Microsoft3. The outage, found after 26 days in production by
a customer, impacted thousands of subscriptions over 28 days,
causing significantly increased error rates for certain kinds of
resource allocation calls in Azure.

We have used our work to model the semantics underlying
the outage. As a result, we have been able to identify the
previously-unidentified safety issue underlying the outage. We
presented our analysis to the author of the original outage
postmortem, and they confirmed that our explanation made
sense within the context of their work.

1) Outage Postmortem and Investigation: Figure 3 illus-
trates the underlying structure of the outage, as reported in
the postmortem. It is already clear that a data consistency
issue is occurring: the FrontDoor server makes a complete,

3Note to reviewers: we will add the reference once it becomes available.
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Fig. 3. Interaction diagram of the error underlying a high-impact outage
within Azure Cloud.

successful write to Cosmos DB, and then the Worker server
tries to read that write and fails. The reported explanation
for this issue was based on regions and latency. FrontDoor
was performing writes in one cloud region, and Worker was
reading those writes in another region. Prior to the change,
these writes and reads were occurring in the same region, and
errors were not happening at a noticeable rate. The change in
routing lead to a change in latency, which caused Worker to
read out of date information from Cosmos DB.

From our analysis, while the original postmortem’s com-
ments were correctly diagnosing the change in latency, some
correctness-critical factors were not discussed. We found that
Cosmos DB was configured for session consistency, and we
confirmed that each server (FrontDoor, Worker) was working
with unconfigured, arbitrary session tokens. From the defini-
tion of session consistency, without sharing session tokens, the
two servers were only guaranteed eventually consistent reads.
So, the semantic problem had always existed, but it was only
exposed in practice by a change in region configuration.

2) Modeling the Outage: Our TLA+ model allows us to
verify the abstract scenario from Figure 3, and check our
understanding against our specification of Cosmos DB. In
Listing 1, we use PlusCal to model this scenario. We chose
PlusCal in order to demonstrate a more implementation-like
mode of interaction with our Cosmos DB model, which may
be more familiar to implementation developers. We include
the majority of our PlusCal model of this scenario, with minor
edits and omissions for presentation.

Similarly to Figure 3, in Listing 1 we have two processes
called frontdoor and worker, which match 2 of the 4
processes in the figure. We omit the client process by starting
our model at the point where frontdoor begins to handle
the client request. We do not explicitly specify a process for
Cosmos DB, since that is taken from our core specification.
The configuration that sets WriteConsistencyLevel to
SessionConsistency is also omitted.

Cosmetic differences aside, the underlying series of actions
is the same as in Figure 3: the frontdoor writes some
value (here, X is "taskValue"). The write occurs in two
steps: one to begin the write, and one to await the write’s
success. Assuming the write succeeds, frontdoor writes

variables serviceBus = 〈〉 ;

process ( frontdoor = “frontdoor” )
variables frontdoorToken ;
{
frontdoorWriteTaskDataInit :

assert CosmosDB !WritesAccepted ;
await CosmosDB !WriteInit(“taskKey”, “taskValue”) ;
frontdoorToken := CosmosDB !WriteInitToken ;

frontdoorWriteTaskDataCommit :
await CosmosDB !WriteCanSucceed(frontdoorToken) ;
serviceBus := 〈“taskKey”〉 ;

}

process ( worker = “worker” )
variables workerToken, workerValue ;
{
workerBeginTask :

await serviceBus 6= 〈〉 ;
with ( taskKey = Head(serviceBus),

read ∈ CosmosDB !SessionConsistencyRead(
CosmosDB !NoSessionToken, taskKey) ) {

serviceBus := Tail(serviceBus) ;
workerToken :=
CosmosDB !UpdateTokenFromRead(
CosmosDB !NoSessionToken, read) ;
workerValue := read .value ;

}
}

Listing 1: A PlusCal model of the behavior underlying the
events in Figure 3.

"taskKey" to a service bus (modeled here as a global
sequence), requesting that the worker perform some task
named "taskKey" (X in the figure). To perform the task,
worker must read the task data from Cosmos DB. It does
this using a session consistency read with a null session token,
storing the value it reads.

3) Counter-Example: Based on the original issue’s data
consistency expectations, we can formulate an expected prop-
erty for our model in temporal logic: ♦ workerValue =
"workerValue". That is, eventually the state variable
workerValue will hold the value "workerValue" writ-
ten by frontdoor. Model-checking our property generates
a counter-example. In that counter-example, readIndex and
commitIndex were both at 0, meaning no replication had
taken place, and that unconstrained session-consistency reads
could go to replicas that did not have our single write of
"taskValue". Using a small amount of PlusCal alongside
our model of Cosmos DB, we were able to accurately recreate
the semantic issue underlying a high-impact outage.

Our proposed semantic fix is to pass a session token from
frontdoor to worker, and use it as a starting value for
workerToken instead of CosmosDB!NoSessionToken
when the worker reads from Cosmos DB. Making this change
and re-checking the model, we find that the error no longer
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Fig. 4. Amended interaction diagram showing a correction of the problem in
Figure 3.

occurs. Figure 4 illustrates the modified behavior we expect,
with versioned +tok 0, 1 . . . annotations indicating the pro-
cess of passing along and keeping up to date a session token
tok between FrontDoor and Worker.

D. Notable Anomalies

By writing our specification, we found multiple anomalous
behaviors that we suspected to be specification bugs. However,
in each case it has been confirmed that these represent real
behaviors of which Cosmos DB is capable. These behaviors
are not explicitly mentioned in the documentation, and we dis-
covered them purely by model checking, manually examining
the semantics of our specification, and discussing our results
with author 2, a Cosmos DB expert.

1) Dirty Reads: Strongly consistent writes, which we ex-
pect to be linearizable, are only linearizable in relation to
strongly consistent reads. Other read consistency levels allow
dirty reads, which do not follow linearizability. Since write
operations are not atomic, reads with a consistency level other
than strong may see incomplete writes, because they are able
to see non-durable writes in general.

Following a more implementation-focused analogy, session
and eventual consistency reads are only served by one replica
in a region. Each replica immediately begins serving writes it
receives without waiting for the writes to fully replicate, so if
a read request reaches a replica holding an unreplicated write,
then that read can witness an in-progress strongly consistent
write operation. A similar scenario is possible for bounded
staleness reads under strong consistency, where a write might
be replicated to one region but not a global majority; a
bounded staleness read can likewise be served by a region
that stores an in-progress strongly consistent write.

The non-atomicity of strongly consistent writes is counter-
intuitive and not well-known. Previous drafts of the spec-
ification we present did not include this feature, until we
described to author 2 that our formulation effectively assigned
concurrency barrier semantics to strong consistency writes,
which is incorrect. The resulting explanation of the true
guarantees offered by strong consistency writes inspired the
current version of our specification.

2) Durable Failed Writes: Clients may also read the values
written by failed writes. Our specification does not remove
or invalidate log entries when a client might observe a write

failure, because the write may still succeed after that point.
When in doubt, Cosmos DB will still complete a write
operation even if its notification does not reach the requesting
client.

While this anomaly is well known, it can be counter-
intuitive to developers. Future documentation may benefit from
discussing this possibility, as well as the particular trade-off
made by Cosmos DB.

3) Bounded Staleness Reads are Weaker Under Strongly
Consistent Writes: Because the guarantees underlying
bounded staleness are enforced at write time, performing a
bounded staleness read while Cosmos DB is configured for
strongly consistent writes does not actually guarantee the same
set of bounds as when bounded staleness writes are configured.
Under strong consistency, there is no bound on the number of
in-progress write requests. As a result, bounded staleness reads
are not subject to any bounds either, and will return either the
same result as a strongly consistent read, or a dirty read from
an in-progress strongly consistent write.

We do not expect this more obscure anomaly to cause
problems for developers in practice, but it is important to keep
note of it in documentation and future design discussions.

V. DISCUSSION

The results of our work specifying Cosmos DB shows that a
minimal, purely client-facing model of a sufficiently complex
distributed system has many uses in practice. Our specification
effort enabled us to suggest several improvements to Cosmos
DB’s public-facing documentation, as well as to precisely
diagnose the root cause of a high-impact outage within Azure
Cloud.

Our outcome is a useful intersection between focusing
on implementation correctness and focusing on the purely
theoretical properties of an abstract kind of system. By keep-
ing our specification at the interface level, we were able
to successfully avoid the complexity of Cosmos DB’s low-
level implementation semantics, while still producing useful
practical insights into the behavior of the system we studied.
Furthermore, because of our level of abstraction, we never
needed to materially interact with the Cosmos DB implemen-
tation itself, beyond person to person discussions with author
2.

Our lack of interaction with Cosmos DB’s implementation
is a double-edged sword, in that it is possible that some
error in our specification has escaped the notice of those
reviewing it. If that has happened, any such error could only
be discovered by manual review. In theory, techniques such as
trace validation [20] are relevant, but they are impractical due
to the size and complexity of Cosmos DB’s implementation.
While this is a fundamental limitation of our approach, our
TLA+ model is compact enough that isolating and fixing any
error is not difficult: our core specification is only 390 lines
long, including comments and whitespace. For example, once
we were informed dirty reads should be possible, it took us
only 2-3 days to rewrite our model’s write semantics from



fully atomic to the current two-step version, then adapt and
re-verify any affected correctness conditions.

This is why we believe that, despite the lack of automated
linkage between our model and Cosmos DB’s implementation,
it is practical to keep the model up to date in the face of
any significant design or implementation changes to Cosmos
DB. In fact, analysis of what effect a design change would
have on client-observable behavior would likely be beneficial
to the discussion of that design change. Additionally, TLA+

can be used to explore refinement relationships between our
client-level specification and other internal implementation-
level specifications, such as those currently in use by the
Cosmos DB development team.

Outside of Cosmos DB’s documentation, our work can be
used to precisely model individual interactions with Cosmos
DB, which opens up possibilities for using formal methods
in the design process of systems where it was previously
infeasible due to the need for a re-usable model of Cosmos
DB. This is made possible by our focus on specifying Cosmos
DB’s interface, since implementation-level models will often
be too complex, or have a larger state space than is viable
for model checking, to easily be used as components of other
models.

VI. RELATED WORK

There exist multiple perspectives on studying the observable
behavior of distributed key-value stores: abstract formal rea-
soning, formal methods operating on both specifications and
implementations, and client-level testing tools.

Formally, database consistency properties have been well
studied in the abstract [21], [17]. In particular, [22]’s focus on
client-observable system states partially inspired our modeling
strategy for Cosmos DB.

In formal methods, efforts are ongoing to specify and verify
the correctness of distributed system implementations. Verify-
ing that an implementation satisfies a given specification can
be a powerful tool, but it often requires that the implementation
has a specific structure, often requiring verification to be part
of the development process from the beginning [6], [7], or at
least deeply integrated into the development process [8]. The
adoption cost of such techniques may prove prohibitive for
existing large, unverified codebases.

Tools to explore possible behaviors of an unmodified im-
plementation have been successfully developed [23], [24], but
these tools focus on exposing implementation bugs rather than
studying the set of valid client-observable behaviors.

Client-level testing tools also exist [25], [26], but this work
focuses on more general-purpose anomalies, or relies on user-
provided definitions for dependencies like databases. Database
semantics, especially quirks of a specific implementation, are
hard to define and reason about. Mock implementations and
simulation modes for complex database services cannot be
built as an afterthought. Our work provides a well-reasoned
starting point for building any client-level testing tools spe-
cialized to Cosmos DB and its anomalies.

MonkeyDB [27] provides a general-purpose definition of
database consistency semantics, which it uses to simulate
client code interactions with databases. We believe our ap-
proach is complementary to this kind of more general-purpose
simulator, in that our implementation-specific specification
offers a different set of semantics to simulate, potentially
including quirks that are unique to Cosmos DB.

Elle [28] automatically validates database consistency guar-
antees by analyzing the outcomes of synthetic query se-
quences. It may be useful in both exploring the actual se-
mantics of a black-box database implementation, and in data
consistency bug-finding.

VII. CONCLUSION

We have presented what can best be described as the
lightest-weight useful specification of Azure Cosmos DB’s
semantics in TLA+. Despite its structural simplicity, our model
covers all 5 advertised data consistency levels available to
clients. It represents behaviors with arbitrary configurations of
regions and replicas, including arbitrarily complex scenarios
involving delayed replication, server and region failure, and
otherwise data loss.

Our new specification has been validated by a combination
of model checking, refinement with existing incomplete spec-
ifications, and expert review. While we are now confident in
our model’s correctness, should any bugs be found in it, our
model is also small enough that fixing them would not require
inordinate amounts of work.

We have used our model to predict multiple under-
documented anomalous behaviors of Cosmos DB, and to raise
two now-addressed issues with the service’s publicly-available
documentation. We have also used our model to elaborate
on the root cause of a high-impact outage within Azure
Cloud, successfully producing an abstract explanation for the
underlying series of events.

In the future, we expect our model to be be usable by
the Cosmos DB development team to reason about their
service’s client-facing behavior, in conjunction with their
own implementation-level TLA+ specifications via refinement.
Beyond benefits to Cosmos DB specifically, our compact
specification can also be used to specify systems dependent
on Cosmos DB, growing the set of systems for which formal
verification is viable.

Our results show the value of using formal verification in
industry, even without any interaction with the target system’s
implementation at all. The benefits in terms of understand-
ing and documenting a system’s expected behavior are still
significant for end-users and developers.
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