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Abstract—To understand applications’ memory usage details,
engineers use instrumented builds and profiling tools. Both
approaches are impractical for use in production environments or
deployed mobile applications. As a result, developers can gather
only high-level memory-related statistics for deployed software.
In our experience, the lack of granular field data makes fixing
performance and reliability-related defects complex and time-
consuming. The software industry needs lightweight solutions
to collect detailed data about applications’ memory usage to
increase developer productivity. Current research into memory
attribution-related data structures, techniques, and tools is in the
early stages and enables several new research avenues.

Index Terms—Allocator, memory attribution, memory tagging

I. BACKGROUND AND MOTIVATION

This paper is motivated by our industry experience while
working on problems related to optimizing and tracking
memory usage in both commercial and open-source software
products. We observe the presence of a homogeneous set of
issues related to attribution (“How much memory is used by
a particular component?”) and accountability (“What compo-
nent is exceeding their memory budget?”). Answering those
questions correctly and continuously is necessary to ensure the
application’s performance and reliability.

Software performance is associated with user satisfaction
and how actively users engage with an application [1]. One
criterion that impacts an application’s performance is its
memory usage [2]. Characteristics such as the total size of
allocations, allocation rate, or the allocated memory type
serve as metrics describing how efficiently an application
uses memory. Memory is one of the most precious system
resources on mobile platforms that do not support paging, such
as iOS [3]. A suggested design pattern for environments where
memory is limited is to make each component responsible for
accounting for its own memory usage [4].

A detailed understanding of memory usage is also required
to increase reliability. A variety of modern kernels and operat-
ing systems based on them, such as Android, FreeBSD, iOS,
or Linux, use a system component called an out-of-memory
killer [5], [6], [7]. An out-of-memory killer is responsible for
terminating processes when their memory usage exceeds a
certain quota, or excessive memory usage puts the stability
of an entire operating system in danger. Engineers need to

understand the application’s memory footprint in detail to
avoid premature termination.

In industry, we note that organizations develop their in-
house ecosystems to solve company-specific memory attri-
bution issues. A similar trend is present with open-source
software where projects such as Mozilla Firefox have a
product-specific extensive framework to track and attribute
memory usage [8]. We observe the shortcomings in memory
attribution capabilities and tools even in popular kernels such
as Linux that has three decades of real-world usage and an
active developer community [9].

Most of the research related to memory management fo-
cuses on increasing the performance of custom allocators [10],
[11], [12], [13], [14] or ensuring their correctness [15], [16].
The limited existing research into memory attribution is in
the early stages, involves invasive profiling techniques, and is
specific to the Message Passing Interface [17].

II. STATE OF AFFAIRS

“. . . how it is that memory can be allocated without the
kernel knowing where it went. The problem is that the

tracking infrastructure just isn’t there.”

— 2022 Linux Storage, Filesystem, MM and BPF Summit

Modern operating systems enable tracking memory usage
at the process level [18], [19], [20], [21]. However, the
granularity at the process level is insufficient for engineers to
perform efficient debugging or performance engineering [2].
A common task that engineers encounter in practice is deter-
mining what portion of the allocated amount of memory is
consumed by a specific component, scenario, or a subsystem.
In the context of performance or reliability engineering that
can mean a dynamic library, feature, function, or thread. Data
about memory consumption is necessary to determine (a) what
components to optimize, (b) if performance regressions are
present, and (c) what performance tuning techniques to use.
It is also necessary to understand how memory usage changes
over time. For example, after a new commit, updates to the
toolset, such as a compiler, change in dependent libraries, or
change in some application’s configuration parameters.

The standard approach to acquiring details about an ap-
plication’s memory usage is to use a profiler. When an
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application is executed under the profiler, such as Visual Studio
Profiler [22] or Xcode [23], then the profiler tracks each
allocation and its source. An engineer can later filter, query,
and visualize the resulting dataset. For example, the profiler
may record the complete stack information coupled with the
allocation size and originating dynamic library. Gathering the
profiler data is time-consuming, can require the application to
be compiled with specific flags (in case an instrumentation
framework such as Valgrind [24] is used), and requires a
significant amount of disk storage to store the entire history
of allocations. Above all, this approach is not practical out-
side the application’s development environment. The overhead
caused by instrumentation can cause an application to execute
an order of magnitude slower.

A. Existing attribution techniques

Two main approaches to attribute memory usage in source
code exist: annotating each call to allocate memory and
annotating each scope. We describe the existing usage patterns
for each technique.

In kernel mode, Windows uses pool tagging [19]. Each
driver can specify a pool tag when it requests to allocate
memory [25], [26], [27]. Depending on a size of a driver,
it can use one or more pool tags to differentiate between
various subsystems. Pool tags also have another function in
Windows—kernel crashes if the driver does not release all the
allocations with a specific tag when the driver is unloaded [19].

On macOS, a caller can use a function such as OSMalloc
and associate each allocation with an opaque tag. However,
that tag is used only for reference counting [28]. The tag
count is increased by one each time a specific tag is al-
located. In user mode, macOS also enables passing custom
tags generated by VM_MAKE_TAG macro to functions such as
vm_allocate [28]. Listing 1 shows a sample usage pattern
when a custom tag is associated with an allocation.

Listing 1
TAGGED ALLOCATION IN MACOS.

/* An allocation billed to networking. */
err = vm_allocate(..., VM_MEMORY_LIBNETWORK);

One of the FreeBSD ports is a basic heap memory account-
ing system libpdel [29] that similarly requires each caller
to specify a “memory type” in a form of a string.

As a result of annotations, the application can during
the runtime enumerate its virtual memory, and gather the
distribution and size of allocations per a different memory tag
or a type.

Hierarchically tracking memory usage by annotating source
code is another option. Developers need to attribute each
scope with a specific tag. All the allocator activity in that
scope and its children will be attributed to that tag. Listing 2
displays how all the allocations in the function bar() and its
children will be “billed” to the tag foo using the example of
TfMallocTag tagging system [30].

Listing 2
ALLOCATION TRACKING USING THE TFMALLOCTAG SYSTEM.

void bar() {
TfAutoMallocTag tag("foo");

funcA();
funcB();

}

B. Limitations of current techniques

All these approaches have constraints because they require
(a) annotation of each allocation or scope, (b) complete source
code to be available, and (c) hierarchical tracking needs to
intercept all the allocations in the current process. However,
a standard application has dependencies, such as system or
third-party libraries. Without modifying the dependencies,
the ability to track allocations in detail is limited to the
application’s “own code.”

We are unaware of any operating systems, languages, or
tools that enable engineers to query and keep track of memory
attribution at a granular level without sacrificing the applica-
tion’s performance. The exploration of possible solutions is
still in the early stages. The most recent proposal for memory
allocation tracking in Linux is from August 2022 [31]. The
lack of these facilities negatively impacts each non-trivial
software project. Understanding the application’s memory
usage in detail is realistic only in the development environ-
ment. However, in our experience, predicting or debugging an
application’s behavior in the production environment based on
the data from the development environment is ineffective.

III. FUTURE RESEARCH DIRECTIONS

The choice of the abstraction layers and a variety in the
problem space enables multiple research avenues. Ideally, the
support for memory attribution will be integrated throughout
the operating system, memory allocator, and a runtime library
such as the GNU C Library (glibc) [32]. Support for program-
ming languages used for systems programming (e.g., C, C++,
Rust) is imperative.

The desired solution to improve engineers’ ability to at-
tribute memory (a) can be enabled and disabled on demand,
(b) has a minor performance overhead and will be usable in
the production environment, (c) enables querying the memory
attribution during runtime, and (d) has a well-designed set of
APIs.

One potential practical approach we envision in user mode
is the usage of custom memory allocators [14], [33], [34],
[13] to assist with the attribution. Custom allocators such
as jemalloc intercept each allocation request made in the
context of a process. Therefore, the intercept mechanism
can track all the metadata such as allocation size, current
thread, timestamp, or specific flags passed to the function. The
intercept mechanism can use either data from the application
that specifies the current attribution scope, classify callers
based on sampling the call stack, or use some other techniques.
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