
QFL: Data-Driven Feedback Loop to Manage
Quality in Agile Development

Lidia López
Universitat Politècnica de Catalunya Barcelona, Spain

llopez@essi.upc.edu

Antonin Ahbervé
Softeam

Paris, France

antonin.ahberve@softeam.fr

Alessandra Bagnato
Softeam

Paris, France
alessandra.bagnato@softeam.fr

Xavier Franch
Universitat Politècnica de Catalunya Barcelona, Spain

franch@essi.upc.edu

Abstract— Background: Quality requirements (QRs)

describe desired system qualities, playing an important role in

the success of software projects. In the context of agile software

development (ASD), where the main objective is the fast delivery

of functionalities, QRs are often ill-defined and not well

addressed during the development process. Software analytics

tools help to control quality though the measurement of quality-

related software aspects to support decision-makers in the

process of QR management. Aim: The goal of this research is to

explore the benefits of integrating a concrete software analytics

tool, Q-Rapids Tool, to assess software quality and support QR

management processes. Method: In the context of a technology

transfer project, the Softeam company has integrated Q-Rapids

Tool in their development process. We conducted a series of

workshops involving Softeam members working in the Modelio

product development. Results: We present the Quality Feedback

Loop (QFL) process to be integrated in software development

processes to control the complete QR life-cycle, from elicitation

to validation. As a result of the implementation of QFL in

Softeam, Modelio’s team members highlight the benefits of

integrating a data analytics tool with their project planning tool

and the fact that project managers can control the whole process

making the final decisions. Conclusions: Practitioners can

benefit from the integration of software analytics tools as part

of their software development toolchain to control software

quality. The implementation of QFL promotes quality in the

organization and the integration of software analytics and

project planning tools also improves the communication

between teams.

Keywords— Quality Management Process, Quality

Requirement, Quality Assessment, Software Analytics Tool,

Quality Monitoring, Requirements Pattern.

I. INTRODUCTION

Software quality is an essential competitive factor for the
success of IT companies today. Market prospects indicate that
up to 26% of firms’ IT budgets are dedicated to software
quality assurance and testing, and they predict an increase to
33% in the next three years [1]. A report conducted by the
Tricentis software testing company revealed that software
failures caused more than $1.7 trillion in financial losses in
2017 [2].

Agile software development (ASD) has been adopted by
organizations as a way of reducing time-to-market without
hampering quality. Related to not hampering quality, Quality
Requirements (QRs) are defined as “a requirement that
pertains to a quality concern that is not covered by functional
requirements”, playing an important role in the success of
software projects [3]. QR management is still a challenge in
ASD contexts, “Limited ability of ASD to handle QRs”” is the
most reported challenge in the QR management in agile [4].

Some deficiencies are reported, like lack of techniques for
elicitation or linking QR to functional requirements, and user
stories inadequate to specify this kind of requirements.

In the context of ASD, a large number of tools are used
during the development producing a big amount of data.
Software analytics tools provide features for analysing and
visualizing this data to support data-driven decision-making
[5][6]. The aim of this study is to explore the benefits of
integrating software analytics tools to assess software quality
and support QR management processes. In this context, this
paper presents an experience of continuous assessment and
monitoring of QR using the Q-Rapids software analytics tool
(Q-Rapids Tool for brevity). Its design aligns with the
guidelines defined by Buse and Zimmermann [7] such as
easiness of use and interactivity. The functionalities of Q-
Rapids Tool are based on the definition of product and process
quality-related indicators to assess software quality. Q-Rapids
Tool includes a concrete feature supporting QRs elicitation,
by providing semi-automatic QR generation based on the
product quality-related indicators assessment. The Softeam
company has integrated Q-Rapids Tool into their quality
assessment process allowing them, not only to assess product
quality, but also to monitor the QR development process.

According to Ochodek’ survey on the perceived
importance of some agile RE practices, “the most critical agile
Requirement Engineering practices are those supporting
iterative development with emergent requirements and short
feedback loop” [8]. The Quality Feedback Loop (QFL)
process presented in this paper, supported by Q-Rapids Tool,
has been designed with the purpose of providing decision-
makers continuous feedback about the QRs emerged from
their product quality assessment.

The rest of this paper is structured as follows. First,
Section II includes the details of Q-Rapids Tool and Section
Section III details of the methodology applied. Then, Section
IV presents the Modelio case study from Softeam, describing
the context of this study. Section V presents the Quality
Feedback Loop (QFL) process supporting QR management,
and Section VI the details about it has been implemented by
Softeam, including the used tools. The benefits, challenges
and lessons learned provided by the QFL users about the QFL
implementation are included in Section VII. Finally, Section
VIII closes the paper with the conclusions of this study.

II. Q-RAPIDS SOFTWARE ANALYTICS TOOL

This section describes the Q-Rapids software analytics
tool integrated into Softeam’s development process as part of
this study. In order to fully understand the functionality of the
selected tool, the initial subsection describes how the data is
aggregated by the tool in a 3-layer quality model.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
DOI 10.1109/ICSE-SEIS52602.2021.00015

Fig. 1. Q-Rapids Tool Dashboard (visualization of Strategic Indicators)

A. Q-Rapids Quality Model

The quality assessment provided by Q-Rapids Tool,
described in the following sub-section, follows a 3-layered
structure imposed by the Q-Rapids quality model [6]. The
three layers define quality metrics, quality factors, and
strategic indicators:

• Quality Metrics are low-level indicators measuring a
specific characteristic (e.g., Comments Ratio) assessed
from the raw data (e.g., issues) stored in data source
tools (e.g., JIRA).

• Quality Metrics are aggregated into Quality Factors
(e.g., Code Quality, Tasks’ Velocity) that define
significant concepts in relation to quality.

• Quality factors are combined to compute the higher-
level model elements named Strategic Indicators (e.g.,
Product Quality, Process Performance). Strategic
indicators allow representing the level of achievement
of those aspects that companies consider relevant to
their software products and decision-making
processes.

TABLE I. includes the definition of the two quality factors
used by Softeam for the assessment of the Product Quality
strategic indicator. Detailed Softeam quality model included
in Section IV.B.

TABLE I. PRODUCT QUALITY METRICS

Code Quality quality factor definition

QM Name Definition Data Source

Comments

Ratio

Percentage of files laying within a
defined range of comment density

SonarQube
analysis tool

Complexity

Percentage of files not exceeding
a defined average cyclomatic
complexity (based on the number
of paths through the code)

SonarQube
analysis tool

Duplication

Density

Percentage of files laying within a
defined range of duplicated
blocks of lines of code

SonarQube
analysis tool

Critical Issues quality factor definition

QM Name Definition Data Source

Specification

Task

Completeness

Percentage of specification tasks
defining quality criteria that have
been completed

Project
backlog tool

B. Q-Rapids Software Analytics Tool

Q-Rapids Tool has been developed as a result of the
Q-Rapids European research project (www.q-rapids.eu).
Q-Rapids Tool’s main objective is to provide continuous
quality assessment to support decision-makers in the
management of quality in agile software development.
Besides, the tool provides concrete functionalities to support
decision-making processes related to QR management. In the
following, we describe its main functionalities [9].

Quality Assessment. Q-Rapids Tool gathers data from
heterogeneous external data sources, such as static code
analysis (e.g., SonarQube), continuous integration tools (e.g.,
Jenkins), code repositories (e.g., SVN, Git, GitLab), issue
tracking tools (e.g., Redmine, GitLab, JIRA, Mantis), and
usage logs. This data is aggregated into strategic indicators
following the quality model described in the previous sub-
section, the data is presented to decision-makers through a
dashboard (see Fig. 1).

Predictions and What-if Analysis. These features assist
decision-makers in their decisions related to the product
evolution. A number of available prediction techniques (e.g.,
ARIMA, ETS, Neural Networks) forecast the evolution of the
strategic indicators over time, considering the trends of the
data sources [10][11]. This functionality gives the
opportunity to react to potential issues related to concrete
aspects of the product. When prediction points out possible
upcoming quality issues, what-if analysis can be used to
assess improvement options showing how these changes
would impact on the strategic indicators, i.e., which would be
the SI assessment responding to concrete factors or metrics
values. In fact, what-if analysis can be used as an independent
at any moment during the quality assessment process.

Quality Requirement Semi-automatic Generation. When
the quality assessment is below some user-defined thresholds
for one or more quality model elements, a quality alert is
generated. Q-Rapids Tool suggests candidate QRs related to
these alerts and visualizes the impact on the strategic
indicators of implementing the suggested QR. In order to
suggest QR, Q-Rapids Tool includes a QR pattern catalogue
that should be refined by the organization to address the
quality aspects included in their quality model [12].

III. RESEARCH APPROACH

The goal of this study is to explore the benefits of integrating
the Q-Rapids software analytics tool to assess software
quality and support QR management processes. In order to
achieve this goal, we formulated the following research
questions:

• RQ1. Can we integrate QR management into
Softeam’s development process?

• RQ2. Can we integrate software analytics tool Q-
Rapids in the Softeam’s toolchain?

• RQ3. Can we verify the effectiveness of the QR
management process?

To answer these questions, we followed a technology
transfer approach distinguishing two phases: formative and
summative. The formative phase’s goal was understanding
how to integrate Q-Rapids Tool in Softeam’s development
process and toolchain. This process was conducted in a series
of workshops where the participants discussed concrete
development activities that can benefit the use of Q-Rapids
Tool. These workshops were conducted in the period from
February to May 2019. Participants included company
membres playing quality manager, project manager, and
developer roles. As a result, we defined incrementally the
Quality Feedback Loop (QFL) process supported by the
integration of Q-Rapids Tool and Open Project (Softeam’s
planning tool), answering RQ1 and RQ2. In order to integrate
Q-Rapids Tool in QFL, we specialised the baseline QR
catalogue integrated into Q-Rapids Tool, to fit the quality
expectations for Modelio, and identified the thresholds that
should raise the alerts expected in the process. As part of QFL,
the quality manager and the project manager suggested the
definition of a dedicated strategic indicator in Q-Rapids Tool
to verify the effectiveness of the process. The indicator was
named Quality Feedback Loop and its definition allows
answering RQ3.

The summative phase was conducted in the period from
May to June 2019. In this phase, Q-Rapids Tool was used in
two pilot projects (Modelio NG and Modelio Wyrm). Some
Modelio team members (project owner, project manager,
quality manager, developer, and DevOps engineer) submitted
monthly reports informing on the use of the tool. A final
summative evaluation session was conducted in June 2019.
During a one-day workshop, the participants discussed the
application of Q-Rapids Tool and QFL under realistic
circumstances, the related benefits, and the strengths of the Q-

Rapids Tool. Part of the workshop results are reported as
lessons learned in this paper.

IV. THE MODELIO CASE STUDY

Softeam1 is a French consulting and technology service
company with over 30 years of experience in building
modelling environments, over 1400 employees and operations
in London, Singapore and Paris. One of their products is the
open source Modelio 2 modelling environment software
product line. Modelio allows modellers to create and manage
models in various notations, including UML, BPMN, SysML,
TOGAF and SoaML, among others. It is licensed under the
GNU General Public License version 3 and it is written in
Java, being implemented as an Eclipse Rich-Client Platform
application. Modelio includes its own scripting environment
for various modelling tasks (e.g., code generation), based on
the Jython implementation of the Python programming
language.

The experience reported in this paper has been conducted
in the context of Modelio development. The development
team applies a Scrum-based development process providing a
release every six months. Q-Rapids Tool was used to
continuously manage the quality of the software artefacts
produced and monitor the development process (details on the
use included in Section VI.A). Q-Rapids Tool has been used
from September 2018, in three released versions: Valkyrie
(December 2018), NG (April 2019), and Wyrm (October
2019).

A. Softeam’s Development Process

The Softeam development process (Fig. 2) starts with an
initial specification phase aiming to identify the main features
that will be included in the next release and solve key
architectural questions resulting from previous releases
(activity Defining Features). This initial phase is followed by
the development phase, implemented as iterative development
sprints decomposed each into three main activities: (i) Plan
Feature (Whiteboard Meeting) aiming to define the tasks that
which will be implemented during the next sprint, (ii) Sprint
Implementation which covers all development tasks, and (iii)
Sprint Evaluation which aims to assess the output of the sprint
in order to update the project plan and prepare the next sprint
iteration. The results of the sprint evaluation can lead to some
changes in the process (Process Adaptation activity). In the
pre-release validation phase, the Integration and Validation
activity includes a final quality assessment of the product to
ensure the quality of what will be delivered to customers.

Fig. 2. Softeam development process

1 https://www.softeamgroup.fr/en/ 2 https://www.modelio.org/

The Sprint Evaluation is conducted by Quality Engineers,
who are responsible for the specification of the general quality
criteria and the definition and implementation of the quality
controls performed during the development process. They also
monitor the development process to identify potential
problems and areas for improvement. The Project Manager
oversees all the work required for the on-time delivery of the
product, including the expected features and desired level of
quality. Regarding quality management, the project manager
is responsible for identifying and planning tasks aimed at
resolving the quality problems reported by the quality
engineer. If it appears that the development process must be
adapted, the Project manager is also responsible for
implementing the necessary changes.

B. Softeam Quality Assessment

As part of the customisation of Q-Rapids software
analytics tool, Modelio team defined three strategic indicators
for assessing quality of Modelio product and development
process: Process Performance, Product Quality, and Product
Readiness (see Fig. 3). In order to compute these three
strategic indicators, there needed nine quality factors and
twenty-two quality metrics. Data needed for the quality
metrics computation is gathered from six data sources
(Mantis, Open Project, SonarQube, Jenkins, SVN, and
Modelio logs).

Process performance refers to software development
lifecycle processes’ efficiency and quality; Product Quality
refers mainly to internal quality; and, Product Readiness
provides information used to know if the product is ready to
be released, i.e., implements the scheduled features with no
critical issues open.

V. QUALITY FEEDBACK LOOP PROCESS

In agile development contexts, a big amount of data is
produced during development due to the high number of tools
used in the different development phases (e.g., issue track
systems, source code versioning, testing, integration...).
Software analytics tools use this data to help decision-makers
provide evidence to support their decisions. In the context of
Requirements Engineering, the use of these tools is twofold:
(i) validating the QRs included in the product backlog, and (ii)
making evident some code quality shortcoming, which can be
mitigated by proposing new QRs.

We integrate both aspects in the definition of the Quality
Feedback Loop (QFL) process. The QFL process covers the
whole life-cycle of QR management, from QR elicitation to
their validation, integrating the use of software analytics tools.
QRs are critical to produce a successful product, but they are
not the only factor to succeed. Another important factor to
consider is the development process quality. Therefore, QFL
also controls the QR development process as part of the
product quality control. Fig. 4 presents the QFL cyclic process
that is composed of three phases: QR elicitation, QR planning
(i.e., QR integration in the project plan), and QR feedback
monitoring closing the cycle, which are detailed in the
following subsections

A. Quality Requirements Elicitation

In agile software development, QRs can come explicitly
from the customers or architects or as an outcome of the
quality assessment of the product. Softeam complements the
explicit QRs elicited upfront, with QRs generated semi-
automatically by Q-Rapids Tool, based on the quality
assessment of their products.

Fig. 3. Softeam’s Quality Model implented in Q-Rapids software analytics Tool

Fig. 4. Quality Feedback Loop process

In order to support semi-automatic QR elicitation, Q-
Rapids Tool uses a QR pattern catalogue [12]. The Softeam
QR pattern catalogue contains six patterns organised into
seven categories (some patterns are classified into more than
one category). QR patterns are defined to address concrete
qualities included in the quality model (i.e., quality metrics)
and categories correspond to quality factors (see Table 1). The
connection between the patterns and the quality model
elements allows the tool to identify candidate QRs when the
assessment of the quality model elements reveals some
shortcoming. For example, the catalogue includes three
patterns related to quality factor Code Quality (see Table 1 for
factor definition): one that can be used when the Comments
Ratio quality metric is not good enough, one for Complexity
quality metric, and one for Duplication Density quality metric.
TABLE II. shows the information of the Complex Files
pattern, linked to the Complexity quality metric, which should
be instantiated by the decision-maker in case it is selected as
a candidate to be included in the product backlog.

In addition, this catalogue could be eventually used by
decision-makers to elicit QRs manually using the knowledge
gathered from other projects that are feeding the catalogue.

The fact of using a quality model for the quality
assessment provides a suitable scenario for the use of patterns.
The definition of software quality is systematized in a way that
the desired organization system qualities are analysed and
identified making easier the maintenance of the desired QRs
in a form of patterns, being instantiated depending on the
project they are going to be included.

TABLE II. COMPLEX FILES PATTERN

Name Complex files

Description

Ratio of non-complex files (defined as files with a
cyclomatic complexity below 15) with respect to the
total number of files should be at least the given value
in order to improve the quality of the source code.

Goal Improve the quality of the source code

Pattern text
Ratio of non-complex files should be at least
%value%

Parameter description (between %% in the pattern text)

Name value

Correctness 0 <= value <= 100

Description

value in percentage of the maximum percentage
that acceptable complex files in relation of the
ratio of open/in progress

QM metric complexity

B. Quality Requirements Planning

Elicited QRs need to be integrated in the product backlog.
In Softeam, they took the form of Quality Issues, i.e., backlog
items devoted to document QRs. When a quality issue is
moved to the development phase, it is decomposed into
concrete development tasks in the sprint backlog, similarly to
functional-oriented user stories. The introduction of a specific
type of backlog items for the QRs meets several expectations.

Firstly, having a dedicated issue type in the backlog allows
decision-makers to monitor the implementation of the
associated development tasks independently of other project
activities and thus produce specific indicators to assess how
quality issues are addressed in this development process.

Secondly, decision-makers are reluctant to the idea that
tools can automatically modify the project plan by generating
product backlog items. On the other hand, it is necessary to
ensure that all detected quality issues are addressed and keep
track of the actions taken to solve the problem by them.
Managing QRs as high-level issues is a way to leave the final
decision to the decision-makers. Including all the generated
QR in the backlog is ensuring the traceability of quality
requirements to the development tasks. A quality issue can be
rejected by the decision-maker, postponed or refined as
concrete action.

C. Quality Requirements Feedback Monitoring

In the QR feedback monitoring phase, the decision-maker
analyses feedback from two perspectives: (i) assessing the
quality of the resulting software, thus validating the elicited
QR; and (ii) controlling the QR development process.

The quality model, used for the quality assessment in the
tool, defines the desired system qualities in a measurable form
(i.e., quality metrics), providing the means for the QR
validation. The quality model elements are linked to the QR
in the backlog. This traceability provides control on the QR
development process, allowing decision-makers to control
two process aspects: the effectiveness of the automatic
generation of candidate QR generation and the progress of the
development tasks associated with these QRs. To integrate the
process control, Softeam defined a strategic indicator in the Q-
Rapids Tool named Quality Feedback Loop that measures
both aspects (see TABLE III.). It aggregates two factors:
Quality Requirements Relevance and Quality Requirements
Completion.

TABLE III. FEEDBACK QUALITY LOOP METRICS

Quality Requirements Relevance quality factor definition

QM Name Definition

Quality Requirements

Acceptance

Percentage of quality requirements not
rejected by project manager

Quality Requirements Completion quality factor definition

QM Name Definition

Mitigation Task

Completion

Percentage of development tasks derived
from quality requirements which has been
completed

Quality Requirement

Derivation

Percentage of accepted quality
requirements derived as concrete
development tasks

The Quality Requirements Relevance factor measures
whether the QRs identified in the elicitation phase (quality
issues) are pertinent for the project (accepted for

Fig. 5. QR management life-cycle

implementation). The Quality Requirements Completion
factor measures the progress of the accepted QRs that are in
the development phase (i.e., derived into development tasks).
The data source for all the metrics is the Project backlog tool.

VI. QUALITY FEEDBACK LOOP IN USE

In this section, we describe how the QFL process has been
implemented in Softeam. This implementation is described in
terms of how Softeam has integrated QFL and its associated
tools (software analytics and project planning) in their
development process and how these tools have been used in
the QFL phases.

 Fig. 5 includes the activities covered by the QFL process,
which covers the QR management life-cycle as follows: QR
elicitation, including QR catalogue definition and QR
instantiation in context of a project; QR planning; and, QR
development and QR validation, as part of the QR feedback
monitoring.

A. QFL Integrated into the Softeam Development Process

In the context of the Softeam development process (see
Fig. 2), QFL is affecting the development phase (Plan
Features, Sprint Implementation, and Sprint Evaluation
activities) and the pre-release validation phase (Integration &
Validation activity). Fig. 6 depicts the Softeam software
development process integrating the QFL process and the
tools supporting each phase (Q-Rapids Tool and Open
Project). The figure also includes the data source tools, used
by Softeam, producing data consumed by Q-Rapids Tool for
assessing quality.

During the Sprint Implementation activity, development
data is generated from several tools (Redmine, Mantis,
OpenProject, SVN, Mantis, Jenkins, and Modelio Testing
System), and it is collected and analysed by Q-Rapids Tool to
assess product and process quality. The data is used to
compute quality metrics, quality factors and strategic
indicators on the bases of Softeam’s quality model.

Quality metrics assessment (QR feedback monitoring) is
used by quality engineers and project managers in the Sprint

Evaluation activity to identify quality issues in delivered
artefacts (QR elicitation), which are exported from Q-Rapids
Tool to OpenProject tool. The development process is also
analysed, taking special attention to activities addressing
quality problems.

The team uses analysis reports produced in the sprint
evaluation, in conjunction with the quality issues already
included in the OpenProject, to plan the next sprint iteration
(Plan Feature activity). The project manager decides to
accept (or not) the quality issues, and for the accepted ones,
the best way to implement them by transforming them into
development tasks included in the upcoming sprint backlog.
In the Integration & Validation activity, Q-Rapids Tool is also
used to check the alignment of the release candidate with
quality constraints defined by Softeam for each now product
provided to its customers. When this analysis reveals some
quality shortcoming, the project manager can decide not to
include some features or postpone the release.

During the sprint evaluation, if quality metrics and
strategic indicators related to the development process
highlight major problems, the process can be adapted for the
next sprint (Process Adaptation activity). These adaptations
can take various forms, such as the revision of the quality
criteria applied to all of the products (adjusting the quality
model), the adjustment of the threshold values from which an
alert is triggered, or the updating of the QR catalogue by
introducing new patterns or by modifying the criteria for
applying existing ones.

B. QFL for QR Elicitation and QR Planning

Q-Rapids Tool provides a new mechanism that allows
Softeam to control whether a product meets their quality
criteria; this feature is the semi-automatic QR generation. Fig.
7 depicts the tools interoperability.

The setting up of the QR generation system started by the
configuration of alerts’ thresholds (qr-alert component; step 1
in Fig. 7). Q-Rapids Tool periodically checks the quality
metrics computed by the tool according to customisable
thresholds defined as quality goals by Softeam Quality
Engineers. If a monitored quality metric exceeds the identified
thresholds, the Softeam Quality Team is notified via Q-Rapids
Tool’s dashboard (qr-dashboard; step 2). An adapted answer,
in the form of parameterizable QR (from the QR pattern
catalogue), is suggested to the Quality Engineers who can
choose to include it in the backlog. In this case, a QR candidate
presenting a solution to address the quality issues will
automatically be generated (qr-backlog; step 3) in Softeam’s
project management tool, Open Project.

.

Fig. 6. Quality Feedback Loop integrated in Softeam’ software development process

.

Fig. 7. QFL tool chain in Softeam

On the OpenProject side, the generated QR candidate is
integrated into the project roadmap as a quality issue. Quality
issues are implemented as a new type of abstract Work
Package task named “QualityRequirement”. Softeam made
the decision to not directly generate concrete tasks in the
project roadmap, allowing the project manager to choose the
best approach to solve the identified quality issue. The project
manager decides to keep or reject the quality issues. For the
accepted quality issues, the project manager will derive
development tasks when he or she decides to move it to the
development phase

Fig. 8 includes examples of QRs generated in Softeam’s
OpenProject tool. Some of them accepted and deriving one or
more development tasks (e.g., 133 and 134), and some of them
rejected (e.g., 135).

To evaluate the usability of the semi-automatic QR
generation, we requested quality engineers and project
managers monthly reports defining usage stories, i.e.,
definition of real scenarios where they use this feature and the
purpose of the usage following the next template:

As a <role>, I have used <tool/tool feature>, to
<purpose>, during <activity>.

Following, there is an example of usage scenario reported
by a project manager: “As a Project Manager, I have used

OpenProject to receive notification related to a potential
quality issue in Modelio NG by the intermediary of new
quality requirements generated into my Project Management
Tool (related to Ratio of open issues, and the ratio of properly
commented files), during the Whiteboard Meeting”. The
Whiteboard meeting corresponds to the plan features (WBM)
activity.

Complementing the scenario usage, the user could also
report about the strengths and the general satisfaction. The
same user reported the level of satisfaction as “Happy” and the
following strength “I was able to decide to include a new task
in project development platform to address the ‘Ratio of open
issues’ QR and to reject the ‘ratio of properly commented’
(this issue will be addressed by a reminder to developer about
coding rules)”.

The Softeam’s developed QRs Generator Open Project
Connector is publicly available at GitHub3. We developed a
specific Spring Boot based extendable REST API to transform
QRs generated by Q-Rapids Tool into OpenProject work
items. Information on backlog Services specification is at
GitHub4.

C. QFL for QR feedback monitoring

Q-Rapids Tool provides quality assessment visualization
that can be used for QR monitoring and validation, and for QR
development process assessment.

Related to QR monitoring and validation, the tool includes
an historical view with information about the decision of
adding a QR. Fig. 9 (left) shows the adding QR decisions as
green crosses. This visualisation allows us to analyse if the QR
development matches the expectations when the QR was
elicited, i.e., the assessment of the related quality model
element increases after the decision. The chart shows how
Passed Tests Percentage metric assessment improves 20%
after adding the QR “The percentage of passed automatic tests
should be at least 0.95” on June 26th.

Fig. 8. Quality Requirements in Softeam’s OpenProject Tool

3 https://github.com/q-rapids/qrapids-backlog-openproject 4 https://github.com/q-rapids/qrapids-

dashboard/wiki/qrapids-backlog-Services

Fig. 9. Testing Status (left) and Quality Feedback Loop (right) in historical views

Related to QR development process, using the strategic
indicator Quality Feedback Loop (TABLE II.), the project
manager can control the evolution of the relevance of the
elicited QR (Fig. 9, right, orange series) and, for the QRs that
he or she has accepted, the process of closing the development
tasks associated with them (Fig. 9, right, blue series).

Quality Requirements Relevance factor assesses the
quality of the candidate QRs generated by the tool. Low values
in this indicator are alerting about bad configuration of the
alerting component (i.e., not suitable thresholds). Quality
Requirement Completion factor is assessing the development
progress of the generated QRs that are already in the
development phase (i.e., with derived development tasks in the
backlog).

Fig. 9 (right) shows how the Quality Requirements
Relevance factor has some fluctuations at the beginning of the
period, arriving at an stable assessment after the tuning of the
thresholds that trigger the alerts. Quality Requirement
Completion factor shows how the development has been
completed during the period, following the expected
behaviour, being low at the beginning and high at the end.

The quality assessment visualization, complemented by
some other features provided by the tool (prediction and what-
if analysis), also supports the quality engineer and project
manager in the task of manually identifying new QRs, closing
the feedback quality loop.

During the period from May to December 2019, seven
QRs were suggested by Q-Rapids Tool based on quality alerts.
Six of them were accepted by quality engineers. From these
six, four were confirmed by project managers, being translated
to development tasks, and two rejected. As a result, 85% of the
QR suggested by Q-Rapids were accepted by quality
engineers, from them 66% were accepted by project managers.
In other words, 57% of the QR suggested by Q-Rapids Tool
ended in the product backlog included in the product roadmap,
with plans of being developed by the development team.

VII. CHALLENGES AND LESSONS LEARNED

As a result of the implementation of QFL, Softeam has
automated their quality management process by identifying
quality issues, using the alert mechanism, and including
quality requirements into Softeam’s product backlog. QFL
also provides them the monitorisation of their quality
requirements resolution process. They can check which
identified quality issues have been addressed by their
development cycle and follow the progress of the

implementation of mitigation actions dealing with quality
issues.

The QFL users identified several challenges in the
integration of a software analytics tool and the QFL process
[13]. First, the effort required to deploy a software analytics
platform (i.e., Q-Rapids) in new projects is considerable. User
interfaces to configure data gathering components, avoiding
technical knowledge, could be important contributions.
Second, it is necessary to dedicate efforts to work on the
integration of the software analytics platform in the
organization existing development process, which is only
possible when the adaptation to the practices of the
organization is compliant. A third challenge is building the
confidence of operational teams in the metrics and indicators
to be implemented by the software analytics platform. And
fourth, there are legal and privacy impediments to collect user
usage data (e.g., logs from our customer’s clients) which
deserve attention from the research community.

Below, we summarise the lessons learned provided by the
Modelio team as a summary of the summative evaluation of
QFL.

Tool interoperability. The QR integration approach in the
OpenProject tool was very effective allowing our Softeam’s
project managers to completely control the whole process and
to make the final decisions.

Semi-automatic QR generation. Although quality is
essential for Softeam’s teams, none of Softeam’s project
managers was willing to accept the project plan to be directly
modified by a supporting tool without supervision. To solve
this issue, we decided that QRs to be integrated into the project
work package as a new kind of task type named
“QualityRequirement”. From these abstract tasks, we left the
project manager the possibility to decide to close the task if it
considered that the recommendation is not relevant, or to
derive the abstract task into a concrete action integrated in the
project roadmap if it is relevant. In both cases, the project
manager must justify the decision by providing a rationale.
The project manager's response to these quality issues is
further monitored by Q-Rapids tool in order to produce
indicators on the quality process implementation. Promoting
quality into the organization. This new approach of managing
quality in Softeam projects (QFL process) has stirred up a lot
of enthusiasm both from Softeam’s quality engineers and
project managers. The quality teams see a way to promote
quality in the organization, while project managers appreciate
the recommendation integrated to project management tools
and freedom that have left them on the manner of dealing with

these problems. All project stakeholders have also highlighted
the increasing benefits in communication between the various
teams allowed by the automation of the QR management
process enabled by Q-Rapids Tool.

Knowledge reuse across the organization. Completion of
the QR catalogue during projects allowed a formalization of
the way in which the quality problems are addressed in
software development processes at Softeam. This constant
improvement is enabled by the monitoring mechanisms of
Softeam’s quality management processes embodied by the
Quality Feedback Loop strategic indicator. Most QRs not
being specific to a particular project, distributing this
catalogue to the various development teams of the company
helped disseminate good practices relating to quality
management and significantly improves the quality of the
products delivered by Softeam.

VIII. CONCLUSIONS

In this paper, we present the experience of Softeam, a
French consulting and technology service company, using a
software analytics tool (Q-Rapids Tool) for continuous
assessment and monitoring of Quality Requirements (QR).
The integration of this tool into their quality assessment
process resulted in the definition of the Quality Feedback
Loop (QFL). QFL covers the QR management life-cycle in the
context of agile software development as follows: QR
elicitation, QR planning, and QR feedback monitoring. QFL
process allowed us to integrate QR management into
Softeam’s process (RQ1).

Q-Rapids Tool has been successfully integrated into
Softeam’s toolchain (RQ2). This integration includes the data
gathering needed from Q-Rapids Tool to assess Modelio’s
quality (Mantis, Open Project, SonarQube, Jenkins, SVN, and
Modelio logs) and the integration with the Softeam’s project
management tool Open Project to implement QFL. Q-Rapids
Tool uses product quality assessment and a QR pattern
catalogue to identify candidate QR that are suggested to the
quality engineers. Quality engineers can decide to include
them in the product backlog, and then these QRs are exported
to the OpenProject tool. The project manager needs to accept
(or reject) the QR included in the product backlog (Open
Project) by quality engineers. For the accepted ones, project
managers derive the corresponding development tasks in
OpenProject to be implemented by the development team.

Q-Rapids Tool provides mechanisms to monitor the
quality of the product defining indicators devoted to measure
the desired qualities (QRs validation). Softeam defined the
strategic indicator Quality Feedback Loop, monitoring the
QRs development progress of the corresponding development
tasks, to verify the effectiveness of the QR management
process (RQ3).

From the experience of using QFL from May 2019 to
December 2019, four of the seven (57%) QR suggested from
Q-Rapids Tool ended in the product roadmap, with plans of
being developed by the development team.

Referring to the concrete software components, the
detection of anomalies is performed by Q-Rapids Tool (qr-
alert component), based on quality assessment, and the
generation of quality requirement is triggered manually by
quality engineer using Q-Rapids Tool dashboard (qr-
dashboard web application). In order to integrate Q-Rapids
Tool and OpenProject, Softeam had developed the qr-

issuetracker-openproject plugin allowing to generate quality
requirements into the end user development process tool
(OpenProject).

The users of QFL highlighted as strengths the integration
of Q-Rapids Tool QR generation with their project
management tool (OpenReq) and the fact of giving the final
word to quality engineers and project managers in the decision
of including (or not) the QR in the product backlog. As a
collateral consequence of the QFL definition and
implementation, the quality teams see a way to promote
quality in the organization. The integration of both tools also
improves the communication between teams.

ACKNOWLEDGMENT

This work was supported by Q-Rapids (Quality-Aware
Rapid Software Development. Q-Rapids was funded by the
European Union’s Horizon 2020 research and innovation
programme under grant agreement nº 732253. We thank all
members of Softeam who participated in the evaluation of the
quality feedback loop proposed in this paper.

REFERENCES

[1] Capgemini, Sogeti, Focus, M.: World Quality Report 2018-19 (2018).

[2] Tricentis: Software Fail Watch: 5th Edition. White Paper (2018).
http://www.tricentis.com/resources/software-fail-watch-5th-edition/,
last accessed 2020/07/31

[3] K. Pohl, “Requirements Engineering: Fundamentals, Principles, and
Techniques”. Springer 2010.

[4] W. Behutiye, P. Karhapää, L. López, X. Burgués, S. Martínez-
Fernández, A.M. Vollmer, P. Rodríguez, X. Franch, and M. Oivo,
“Management of quality requirements in agile and rapid software
development: a systematic mapping study”. Information and Software
Technology, 123, 106225 (2020).

[5] D. Zhang and S. Han, Y. Dang, J. Lou, H. Zhang, T. Xie, ”Software
analytics in practice”. IEEE Software, 30(5), 30–37 (2013).

[6] S. Martínez-Fernández, A.M. Vollmer, A. Jedlitschka, X. Franch, L.
López, P. Ram, and J. Partanen, “Continuously assessing and
improving software quality with software analytics tools: a case study”.
IEEE Access, 7, 68219-68239 (2019).

[7] R.P.L. Buse, T. Zimmermann, “Information Needs for Software
Development Analytics”. Proceedings of the 34th International
Conference on Software Engineering (ICSE). IEEE Press, 987–996
(2012).

[8] M. Ochodek and S. Kopczyńska, ”Perceived importance of agile
requirements engineering practices–a survey”. Journal of Systems and
Software, 143, 29-43 (2018).

[9] L. López, S. Martínez-Fernández, C. Gómez, M. Choraś, R. Kozik, L.
Guzmán, A.M. Vollmer, X. Franch, and A. Jedlitschka, “Q-Rapids
Tool Prototype: Supporting Decision-Makers in Managing Quality in
Rapid Software Development”. Proceedings of the 30th International
Conference on Advanced Information Systems Engineering (CAiSE
2018), pp. 200-208 (2018).

[10] M. Manzano, C.P. Ayala, C. Gómez, L. López, “A software service
supporting software quality forecasting”. Proceedings of the IEEE 19th
International Conference on Software Quality, Reliability and Security
Companion (QRS-C 2019), pp. 130-132 (2019).

[11] M. Choraś, R. Kozik, M. Pawlicki, W. Hołubowicz, X. Franch,
“Software Development Metrics Prediction using Time Series
Methods”. Proceedings of the 18th IFIP International Conference on
Computer Information Systems and Industrial Management (CISIM),
LNCS 11703. Springer (2019).

[12] M. Oriol, S. Martínez-Fernández, W. Behutiye, C. Farré, R. Kozik, P.
Seppänen, A. M. Vollmer, P. Rodríguez, X. Franch, S. Aaramaa, A.
Abhervé, M. Choraś, and J. Partanen, “Data-driven and tool-supported
elicitation of quality requirements in agile companies”. Software
Quality Journal, vol. 28, pp. 931–963 (2020).

[13] A. Bagnato, A. Abhervé, S. Martínez-Fernández, and X. Franch,
“Challenges and Benefits from Using Software Analytics in Softeam”.
Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops (ICSEW 2020), p. 512

