
Lowering Barriers to Application Development With
Cloud-Native Domain-Specific Functions

José Miguel Pérez-Álvarez
jm.perez@naverlabs.com

Naver Labs Europe
Meylan, France

Adrian Mos
adrian.mos@naverlabs.com

Naver Labs Europe
Meylan, France

Benjamin V. Hanrahan
bvh10@psu.edu

Pennsylvania State University
University Park, PA 16802, USA

Iyadunni J. Adenuga
ija5027@psu.edu

Pennsylvania State University
University Park, PA 16802, USA

ABSTRACT
Creating and maintaining a modern, heterogeneous set of client
applications remains an obstacle for many businesses and individu-
als. While simple domain-specific graphical languages and libraries
can empower a variety of users to create application behaviors
and logic, using these languages to produce and maintain a set of
heterogeneous client applications is a challenge. Primarily because
each client typically requires the developers to both understand
and embed the domain-specific logic. This is because application
logic must be encoded to some extent in both the server and client
sides.

In this paper, we propose an alternative approach, which allows
the specification of application logic to reside solely on the cloud.
We have built a system where reusable application components can
be assembled on the cloud in different logical chains and the client
is largely decoupled from this logic and is solely concerned with
how data is displayed and gathered from users of the application.
In this way, the chaining of requests and responses is done by the
cloud and the client side has no knowledge of the application logic.
This means that the experts in the domain can build these modular
cloud components, arrange them in various logical chains, generate
a simple user interface to test the application, and later leave it to
client-side developers to customize the presentation and gathering
of data types to and from the user.

An additional effect of our approach is that the client side de-
veloper is able to immediately see any changes they make, while
executing the logic residing on the cloud. This further allows more
novice programmers to perform these customizations, as they do
not need to ‘get the full application working’ and are able to see
the results of their code as they go, thereby lowering the obstacles
to businesses and individuals to produce and maintain applications.
Furthermore, this decoupling enables the quick generation and cus-
tomization of a variety of application clients, ranging from web to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9227-3/22/05. . . $15.00
https://doi.org/10.1145/3510458.3513017

mobile devices and personal assistants, while customizing one or
more as needed.

KEYWORDS
domain-specific, activity flow, cloud execution, model-driven engi-
neering

ACM Reference Format:
JoséMiguel Pérez-Álvarez, AdrianMos, BenjaminV. Hanrahan, and Iyadunni
J. Adenuga. 2022. Lowering Barriers to Application Development With
Cloud-Native Domain-Specific Functions. In Software Engineering in Society
(ICSE-SEIS’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3510458.3513017

LAY ABSTRACT
Creating new computer applications, distributing them to users,
and maintaining them, is complex and time-consuming. Building
even a simple application requires years of study. Furthermore,
given the number of devices we have today (from smartphones to
voice assistants), the task is further complicated and difficult even
for experienced programmers.

The world is undergoing a digital transformation, and computer
applications are now part of our everyday existence and building
them is a requirement for many organizations and businesses. How-
ever, only companies and individuals with large budgets and skills
can build these applications, a consequence of which is an increased
digital gap between those with means and those without. We see
a clear need to lower the barriers to building these applications
so a more diverse set of voices are able to participate and shape
our digital futures, as underrepresented groups are often left out of
designing and building these platforms.

Previous researchers have proposed approaches where appli-
cations can be easily specified by people without (or with few)
technical skills. However, handling different device platforms and
maintenance/distribution were neglected in these efforts.

In this paper we propose an approach where the program is
executed on the cloud, while the client only needs to display and
gather data from users. A result of our approach is that generic
front-end applications adapt to any changes to the program being
executed on the cloud. Our programs work with end-user apps on
any device, the application that the user sees automatically adapts
to any changes.

ar
X

iv
:2

20
4.

09
75

8v
1

 [
cs

.S
E

]
 2

0
A

pr
 2

02
2

https://doi.org/10.1145/3510458.3513017
https://doi.org/10.1145/3510458.3513017

ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA José Miguel Pérez-Álvarez, Adrian Mos, Benjamin V. Hanrahan, and Iyadunni J. Adenuga

1 INTRODUCTION
Creating and customizing domain-specific applications remains
an expert task, resulting in the design and development of these
systems excluding voices of underrepresented groups from the
design process. This means that any groups or areas where these
skills are not present, such as rural America or underrepresented
groups, do not get to have a voice in determining our digital futures,
and are disenfranchised to an extent.

One area of research that has tried to lower the barrier to develop-
ing applications are domain-specific approaches [20] and Domain-
Specific Languages (DSLs) [39], and the advantages of these tech-
niques to software development [23] are clear [22]. However, there
are still significant hurdles on the path between the behavioral mod-
els created by non-technical users and a fully executable application.
so, while simple domain-specific graphical languages and libraries
empower a variety of users to create application behavior and logic,
translating this logic into a suite of user-facing applications is out
of reach for the typical domain expert. We argue that this is in large
part due to two related issues: first, the application logic that is
encoded in the behavioral models created with DSLs, needs to be
represented in some way throughout each of the various layers of
the application (e.g., the client needs to know how to interact with
the behavior of the server); second, this problem is compounded
by the ubiquitous requirement for full-stack, heterogeneous clients
(e.g., mobile, web) that each requires a different language and set
of development tools.

In this paper, we present a novel approach to solving both of
these closely related problems. Our system provides methods for
creating and specifying behavioral models which execute solely
on the cloud. In this system, the behavioral models are comprised
of logical elements, named activities, that are chained together to
produce logical flows. These behavioral models encapsulate the
application logic, the individual activities are reusable across be-
havioral models, and can be arranged in various ways (e.g., a login
element or credit card data element can be reused). We then iso-
late the behavioral model and the logic it contains from the client
through our coordination mechanism, which provides a layer of
abstraction for the client, which becomes only responsible for dis-
playing and gathering data from the user. The behavioral model on
the cloud is then responsible for persisting data and determining
the next activity. In the aforementioned login example, the client
would receive a communication from the coordination mechanism
that it needs to gather a text value and a password value from the
user. The coordination mechanism would prepare and format this
data and send it to the cloud, where it would be connected to the
current activity, and the cloud would determine whether or not the
user id and password were correct and communicate the appropri-
ate next step to the coordination mechanism (e.g., depending on
whether the login was successful or not). In this way, the coordina-
tion mechanism is what handles requests and responses to the cloud
– which is untouched by developers – and the client has no knowl-
edge of the application logic and is only concerned with displaying
and gathering data from the user. This means that the client code
is almost completely decoupled from the code being executed on
the cloud. Decoupling in this way enables domain experts to build
these modular activities, arrange them in various logical flows, and

generate a simple initial user interface for heterogeneous clients
running on devices ranging from voice-based assistants to mobile
phones and the web. Later, front-end developers can customize
these generated user interfaces if needed. In this way, our system
makes it easier to develop and maintain applications using DSLs.

Our method makes the development of user interfaces easier, pri-
marily because the client-side developer is able to immediately see
the effects of any code changes that they make, all while executing
the production version of the behavioral model. This effectively low-
ers the barrier for more novice client-side developers – or ones who
do not understand the cloud-based logic – to do further customiza-
tions of the user interfaces. They would start with fully functional,
generated versions of the user interface and iteratively change the
code while seeing the results of their changes immediately.

Likewise, this approach makes the long-term maintenance of
applications easier. This is because, as domain experts push changes
or corrections to logical elements on the cloud, in the vast majority
of cases, consuming these updates on the client requires no tech-
nical skills or even knowledge that these updates have occurred.
Our system achieves this through this same isolation of the be-
havior models to the cloud, which enables these changes to be
seamlessly propagated to the client side through the use of the
coordination mechanism. Contrast our approach and system with
typical full-stack, multi-client applications, where each of the differ-
ent front-end applications (e.g., iOS, Android, and web-apps) have
to essentially duplicate, or mirror, much of the same application
logic that has already been encoded on the cloud back-end. In such
cases, any changes to the back-end must be coordinated with the
front-end. While large companies, with large software development
budgets, are able to deal with this complexity, maintaining this com-
plex software ecosystem is cost prohibitive or beyond the expertise
of many small organizations and businesses.

We do acknowledge that there are other approaches for moving
from domain-specific descriptions to execution, such as Mos et
al. [25], where modeled behavior was transformed into Business
Process Model and Notation (BPMN) [24]. Such approaches have a
somewhat tangential aim of leveraging the execution stacks ofmany
available Business Process Management System (BPMS) in order
to make it easier to deploy behavioral models, however they have
the following drawbacks: they require technical involvement from
business analysts to deploy the generated BPMN models into the
various BPMS and configure a number of custom parameters; the
behavioral models of domain-specific processes do not map directly
over the various BPMN constructs, which entails the generation
of additional activities and third party components [12], thereby
increasing the complexity of the resulting artifacts; they introduce
a dependency to an additional language, and more importantly, to
a full execution stack that needs to be acquired and managed sepa-
rately; they do not have mechanisms to isolate client-side code from
changes on the server-side, which complicates maintenance activ-
ities. Therefore such approaches do not help achieve the specific
goals of this proposal, which are centered around making it easier
to develop, deploy, and maintain full-stack applications through
the decoupling of the front-end from the back-end code.

We evaluate our approach in two main ways. First, we demon-
strate the flexibility and validity of the method by implementing the
Conduit application, which is a clone of medium.com, as described

Lowering Barriers to Application Development With Cloud-Native Domain-Specific Functions ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA

in the RealWorld project [36]. We use this large open-source project
as a programming benchmark, as there are many competing imple-
mentations against which we can compare our approach. Second,
we validate that novice-level programmers (i.e. students who have
taken an introductory programming course) are able to customize a
simple generated client app without being aware of the application
logic on the cloud.

The paper is organized as follows: Section 2 introduces the over-
all architecture and the concepts of our proposed system, where
we outline how the behavioral models are defined and executed,
and how the coordination mechanism enables the decoupling of
the client and cloud components. Section 3 describes the two eval-
uations that we performed on our system: first, we describe a pro-
totype we developed using the Conduit scenario to compare our
implementation with other languages and technology stacks; sec-
ond, we carried out a user evaluation with novice developers who
performed different customizations of a simple system. Finally, Sec-
tion 4 presents the most relevant related work and contrasts it with
our approach, and Section 5 provides our final thoughts and future
plans for our system.

2 SYSTEM OVERVIEW
In this section, we outline our system and how we have designed it
to decouple the behavioral models and user applications, effectively
decoupling the cloud-side logic from the client front-ends. The key
to how we achieve this decoupling is our coordination mechanism,
which provides a set of abstract instructions that reduce or eliminate
the responsibilities of the client code in communicating with the
cloud. The cloud components of our system are responsible for
isolating data between different applications, locations, and users.
These components are additionally responsible for preserving state
continuity of individual user interactions and persisting data of and
between sessions. This continuity is achieved without the client
code needing to know or be concerned with how data is being
managed and carried forward to future interactions by our system.
This isolation means the client code in our system does not depend
on the cloud application logic, and enables the system to generate
generic end-user interfaces which can later be easily customized.
Building our system in this way, allows the rapid bootstrapping of
heterogeneous client applications with progressively unique user
experiences.

Figure 1 illustrates the different elements contributing to the ap-
proach our system embodies. There are three distinct components
in our system that we describe in this section: theDomain Definition
component, where technically skilled domain experts create the
Domain Model by defining the basic activities supported by the
domain (e.g., login, retrieve data) and the Behavioral Model that
assembles these activities into meaningful logical flows (e.g., buying
an item or viewing users); the Cloud Execution, where deployed
behavioral models are executing on the cloud and interacting with
databases and external services as needed; and the Client Coordi-
nation, where clients are ushered through the different activities
in the behavioral model and instructed to either display or gather
data from the user. The focus of this paper is the Cloud Execution
and the Client Coordination, particularly in how the coordination

mechanism enables client customization and seamless pushing of
changes to the behavioral models.

2.1 Domain Definition
While a more detailed overview of these three modeling elements
are out of the scope of this paper (they are available in our previous
work [29]), some amount of background is needed for the Domain
Definition where domain experts specify the Domain Model and
Behavioral Model. In our system, users with technical knowledge
create individual Activities as part of different Domain Models, these
domain models are essentially a library of available activities that
are logically grouped around a domain, for example a shopping do-
main would include payments or object details, etc. These activities
are reusable and support many different types of functionality, such
as connecting to a database, defining inputs/outputs, connecting to
external web services, user login, etc.

Using these activities, users with less technical knowledge then
create Behavioral Models where they assemble these activities and
different non-functional elements (e.g., starting/ending points, and
decision/looping constructs) into logical flows, such as buying an
item or retrieving articles from a site.

A sample flow that models the behavior for retrieving the list of
articles in our Conduit evaluation scenario, can be seen in Figure
2, where each rectangle represents an activity and each arrow a
transition element. The first activity, Get Articles, is defined to re-
trieve a set of articles from a database (or alternatively an external
service). Once these articles are retrieved from the database the
logical flow indicates that the article list will be displayed to the
user. The domain expert specifies aspects of this activity such as the
article data type, what needs to be displayed to the user, and what
information needs to be gathered from the user. In this example,
the data gathered from the user is if they would like to request
more articles (which activates the pagination transition) or select
an individual article to view (which activates the selection transi-
tion). If the user selects an individual article, the behavioral model
specifies that the next activity will be to retrieve the details about
the individual article from the database and proceed to the the final
activity, where the behavioral model specifies to send the individual
article to the client to display to the user. Throughout the process
of assembling activities into these logical flows, domain experts can
experiment and interact with them through the generated clients,
without writing any client code. In the following section, we detail
how these behavioral models are executed on the cloud.

2.2 Cloud Execution
The behavioral flows are executed solely on the cloud, effectively
isolating the application logic from the client which only needs to
display and gather data from the user. Figure 3 gives an overview of
this execution and details when the system exchanges data to/from
the client.

In the first step, we create an instance of the behavioral model, in
this instance we store information about the application state. This
application state data is in many ways similar to session data in a
web application, however, it differs in that it contains additional
information specific to our system (e.g., what the current activity is,

ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA José Miguel Pérez-Álvarez, Adrian Mos, Benjamin V. Hanrahan, and Iyadunni J. Adenuga

Client CoordinationCloud CordinationDomain Definition

Domain Model
(Define Basic Activities)

Behavioral Model
(Use Activities to

Compose Complex
Behaviors)

Execution of
Behaviors

C
oo

rd
in

at
io

n

[…]

http

Figure 1: System overview: the different components of our system are grouped into the Domain Definition, Cloud Execution,
and Client Coordination. Each group has different responsibilities and is essential to the decoupling of cloud and client.

Get Articles Display List of
Articles to User

Get Individual
Article Details

Display Article
to User

pagination
by user

selected
by user

Figure 2: Example behavioral model: while all activities exe-
cute on the cloud, only activities in bold are communicated
to the client through the coordination mechanism.

global variables for the entire model, and other system status/health
information).

Once the instance has been created, the execution engine running
on the cloud enters the main execution loop of the behavioral model.
This is a continual loop where it determines which activity needs to
be executed and then proceeds to start the execution of that activity.
During the execution of the activity, the engine uses the activity
metadata to determine if it is a user facing operation or not. This
is defined in the activity by whether or not it requires displaying
or gathering data from the user, if user interaction of some sort is
required, then the cloud engages with the coordination mechanism
(part of which runs on the cloud and part of which runs on the
client, indicated by the dotted outline). Whatever the nature of the
activity being executed, upon completion, the application state is
updated and the loop continues. Once the model has reached the
final activity, the execution terminates.

Additionally, there are a few details on cloud execution worthy
of note. We do support parallelism, in that there can be multiple
starting points in the behavioral model and our system queues the
different activities, if there are dependencies between the activities
our system resolves them. Each execution of an activity also cre-
ates an activity instance, where specific details and data needed
to complete that activity are stored. Once the activity has finished
executing, these instances are destroyed.

2.3 Coordination Mechanism
This section focuses on the main contribution of this paper which
details how we automatically execute application logic residing on
the cloud and how it integrates with the client application. This
automatic integration enables the client code to be completely
decoupled from the logic on the cloud. Decoupling in this way
allows clients to be written in a very generic way.

Figure 4 illustrates how the coordination mechanism orches-
trates the execution of the behavioral model between the cloud
and the client. When the client first launches a behavioral model
through the front-end, the engine retrieves the behavioral model
specification and starts executing it, entering the main loop. The
cloud coordinator executes each subsequent activity on the cloud,
and continues execution until a client facing activity is encountered.
Once a client facing activity is encountered, the cloud coordinator
serializes the application and activity state information that the
client coordinator will need to proceed. Essentially, this informa-
tion is a JSON dictionary that outlines the elements to display to
the user, the elements to gather from the user, any constraints that
the client coordinator must satisfy before sending a response, and
any data objects to display. This dictionary does not contain any
information about how to interact with the end user (no HTML,
CSS, or other user interface code). This is because the cloud coordi-
nator completely delegates the responsibility of interacting with
the end user to the client coordinator, and it will depend on the
characteristics of the client device (e.g., whether it has a screen or
not, the available sensors). For example the data that would be sent
in Figure 2 to display articles to a user would be:
{"instanceId": 15,

"displayElements": [

{"name":"alist", "label":"Article List",

"set":true,

"subElements": [

{"name":"title", "label":"Article title",

"type":"String"},

{...},]}],

"gatherElements": [

{"name":"selected", "label":"Article selected",

"set":false, "type":"String"},

{"name":"pagination", "label":"Get more",

"set":false, "type":"boolean"}]

"constraints": [

{"name":"selected", "valueFrom": "alist"}]]

"value": [

{"alist": [{"id":1, "title":"How to create the

behavior model"}, {...}]}]}

When the client coordinator receives this information, it is able
to determine the basic aspects of how to render the user interface
in order to both display and gather information from the user.

Lowering Barriers to Application Development With Cloud-Native Domain-Specific Functions ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA

Start Behavioral
Model

Determine Next
Activity Execute Activity

Complete
Behavioral

Model

Activity
Exists?

Activity
Type?

Client Facing
Activity

Exchanges Data
to/from Frontend

Cloud Activity

Update Application
State

Figure 3: Behavioral model execution. The focus of this paper is how the client and cloud communicate throughout steps
Client Facing Activity, Exchanges Data to/from Frontend, and Update Application State.

Cloud Coordination Mechanism

Client Coordination Mechanism

Parse Activity
Information

Determine
Need for User

Interaction

Send Activity
Information

Parse Activity
Information

Render User
Interface

Send Activity
Information

Determine
Next Step or

Terminate

Determine
Client

Customizations

Figure 4: Communication Model

• The displayElements portion tells the client coordinator what
elements to display, along with a label, and in this case infor-
mation describing the structure of the individual elements
of this set.

• The gatherElements portion tells the client coordinator what
elements to gather from the user, in this case there are two
options, selecting an individual article or to request more
articles.

• The constrains portion tells the client coordinator whether
or not there are any further requirements for the elements
to gather from the user, in this case the ’selected’ element is
a value from the value ’alist’.

• Finally, the value portion tells the client the actual values to
display to the user as described in displayElements.

Once the user has satisfied these conditions using the user inter-
face, the client coordinator is able to send a message back to the
cloud coordinator about the result of the interaction.

{"instanceId": 15,

"response": [

{"selected":{"id":1, "title":"How to create the

behavior model"}}}

The cloud coordinator receives this information and determines
the next step, in this case to get the individual article from the
database and send it to the client coordinator. What is worth noting
here is that the cloud coordinator is able to keep track of which
activity instance a particular http response is in regards to with the
instanceId, as such the cloud engine is able to juggle many parallel
instances of activities and behavior models. Furthermore, the client
coordinator is not aware of the overall execution of the behavior
model, and only knows the current activity, what data are provided
by the cloud coordinator, and what data is needed by the cloud
coordinator.

This is why changes to the behavior logic on the cloud do not
affect the clients. Consider an example: in the Conduit scenario,

ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA José Miguel Pérez-Álvarez, Adrian Mos, Benjamin V. Hanrahan, and Iyadunni J. Adenuga

the list of articles does not contain a representative image. If the
domain designers wish to correct this, they can add it to the activity
definition in the domain definition on the cloud-side. This will in
turn entail an automatic update to the information sent by the cloud
coordinator which will become:

{"instanceId": 15,

"displayElements": [

{"name":"alist", ...,

"subElements": [

{"name":"title","label":"..","type":"String"},

{"name":"rimage", "label":"Representative image",

"type":"Image"}

{...},]}],

"gatherElements": [...]

"constraints": [...]

"value": [

{"alist": [{"id":1, "title":"How to create the

behavior model", "rimage":"http://bit.ly/1"}, {

...}]}]}

However, the client code does not change at all and need not be
aware of the change on the cloud side. The client coordinator will
simply manage the updated user interface based on this informa-
tion.

Although it is out of the scope of this document, it is also possible
to include extra information in the exchanges, such as a customer
identifier. This could be used by the engine, for example, to disam-
biguate the origin of the data in case of multi-client execution of
the same task, or indeed to qualify certain properties of sensor data
depending on the device.

One important consequence of decoupling the logic on the cloud,
is that clients for any target device and platform, being highly
generic with respect to application logic, can be systematically
generated to run natively on the user platform. [27]. These native
clients can therefore take advantage of the specific features and
sensors on that platform, and use them in the application logic.

2.3.1 Enabling Client Side Customizations. In this section, we de-
scribe how the combination of components and abstractions in our
system enables easier development and customization of hetero-
geneous client applications. The majority of these customizations
are brought in during the Determine Client Customizations stage
in Figure 4. Here the coordination mechanism makes a series of
checks for client customizations.

First, the coordination mechanism checks if there is a specific
custom implementation for presenting the current activity. This is
the highest form of customization in our system, here the front-end
developer can create their own bespoke layout that applies only to
that particular activity as a whole. In a web front-end for example,
this is an HTML file named with an identifier that includes the same
name as the activity. The communication of this layout between
the client and the cloud is still handled entirely by the coordination
mechanism, however, the rendering of the user interface is defined
by the front-end developer.

The second type of customization that the coordination mech-
anism checks for – if there is no specific customization for the

activity – is represented by customization layouts for the differ-
ent variable types. Here the rendering of the user interface is still
handled almost entirely by the coordination mechanism, however,
when the mechanism renders a specific type of field (e.g., a boolean),
it will check to see if the front-end developer has provided an over-
riding implementation. That is, as the client coordinator is looping
through the different display and gather elements, it renders a dif-
ferent snippet (e.g., of HTML) in that slot. If the client developer has
created an HTML template to override that snippet, that custom
template is put into the slot in the user interface.

2.3.2 Seamlessly Propagating Cloud Side Changes. The same mech-
anisms that enable easier client application development, also make
it easier to propagate changes from the cloud to the client.

The vast majority of changes require no additional development
in the client application. For instance, changing the label of an
attribute related to an activity of a domain would automatically
be taken into account when rendering the appropriate input and
output data handling elements in the user interface. In addition,
adding any number of attributes to the data used in activities, pro-
vided these types are supported by the client coordination code,
would also not involve any change in the front-end code. Even
more importantly, changing the logic of the behavior models, in-
cluding reordering existing activities, updating conditions on the
transitions between activities, adding any number of new activities
at any place in the behavior models, would not require any changes
in the client application. The only times changes are needed on the
client is when customizations are needed to support very specific
activities or indeed to support new primitive data types used in
activities (e.g., video or 3D images if not already supported).

This effectively means that the overall coordination mechanism
nearly ensures that any client application that is currently function-
ing will continue to function regardless of changes to behavioral
models on the cloud. The coordination mechanism in the client ap-
plications with automatically adapt to the new behavioural model.

3 EVALUATION
To evaluate the efficacy and validity of the approach proposed
in this paper we performed two evaluations. First, we needed to
validate that our system was capable of implementing a realistic
application, and compare the amount of effort involved to other
implementations. To do this we chose the RealWorld [36] Conduit
benchmark, for which there are multiple implementations. Second,
we needed to validate that a novice would be able to make progres-
sively complex modifications to the generated user interface, for
this we did an evaluation with undergraduate students at the start
of their programming sequence of classes. Both of these evaluations
are presented below.

3.1 Prototype Evaluation
In order to evaluate the efficacy of our system, we developed a fully
operational prototype of the system, which provided the function-
ality needed to design and execute behavioral models, as well as
to communicate with client code through the coordination mecha-
nism. We did this using several technologies. The main technology
that we used for the front-end of the prototype (a web portal for
designing and managing models) is the open source framework

Lowering Barriers to Application Development With Cloud-Native Domain-Specific Functions ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA

Angular [19], maintained by Google. On the server, for the cloud-
based engine, we used Spring [16], which provides components for
many purposes such as inversion control, managing web requests,
security or data access. Our prototype follows the Model-Driven
Engineering (MDE) methodology [21], with Eclipse Modeling
Framework (EMF) [35], as well as Xtext [5], as the main tech-
nologies for managing the different models. We use the Tamgu
language [33] for rich definition of conditions and expressions in
behavioral model flows.

We used our prototyped system to implement the RealWorld [36]
Conduit multi-technology benchmark. Since Conduit is a blogging
application, its main element is an article, containing a title, subtitle,
body, set of tags related to the content, as well as meta-data. Con-
duit offers functionalities that allow the user to write new articles,
retrieve existing articles, remove articles, add comments to articles,
among others. An important advantage of using Conduit as a bench-
mark is that it has a very clear separation between client-side and
server-side, with precise specifications of what can be placed on
each. All the different versions that implement it follow the same
strict separation.

Our evaluation strategy was as follows. First, we created a full-
blown clone of the Conduit cloud-side functionality using our
prototype by specifying the application logic for its various sce-
narios. Second, we created two fully-fledged clients that behave
identically to the Conduit clients, by leveraging the coordination
mechanism for two distinct platforms. Third, we measured the ef-
fort that was required to implement three existing versions of the
original Conduit benchmark, and compared it to the effort required
to implement the same functionality using our approach. Fourth,
we proposed a meaningful change in the application logic and we
implemented it by modifying the client and cloud code bases of
the same three Conduit versions as well as of our version. Lastly,
we measured and compared the impact of this change across these
code bases.

3.1.1 Our Implementation of Conduit. Our approach implies the
specification of cloud-side reusable logic as models, so it doesn’t
require users to write code. Naturally, external services need to
be implemented and made available but this is the case for any
approach, and theConduit benchmark provides these services for all
its implementations. Our approach enables the declarative, wizard-
based configuration of the reusable units of behavior (activities)
that can leverage external services. The only additional service
activity beyond our basic functionality that our implementation
needed was for processing Markdown text, and we implemented it
using available libraries, in about 10 lines of code. The rest of the
service activities that other Conduit versions use, were supported
directly by built-in functionality available in our engine.

To develop the models we created one supporting domain def-
inition with 20 activities, 9 services, and 3 different data Types.
This task took one full day, we acknowledge however that as the
creators of the system, we are far more familiar with the system
than real users would be, however, this does give a measure of the
effort involved. Implementing the application logic required the
creation of 13 different logical flows. This task took another day, so
two total days of work to implement the cloud side.

Finally, we wrote two clients that use the coordination mecha-
nism to access the cloud-based application logic. One of the clients,
with almost identical look and feel to the ones of the Conduit bench-
mark versions, is implemented as a mobile application for iOS by
using the Ionic Framework [42]. The other client is implemented
as an Amazon Alexa skill [1] so its user interaction is performed
via speech recognition and generation, all while executing the same
application logic.

In order to facilitate debugging the server and client code, our
prototype offers a set of capabilities to the user. First, while devel-
oping flows, the flows are in a special state called sandbox, where
the user can make modifications without impacting production
versions. This enables the user to observe what is happening in the
executing flows, as well as those that have finished. Users are also
able to modify the data received by the different flow instances that
are executing, and view the impacts of these changes. The client
applications do not have a special set of tools, and therefore are
debugged with the standard debugging tools of the platform.

3.1.2 Comparative Evaluation. In order to provide a meaningful
evaluation, we systematically extracted the relevant code for the
same functionalities, from several versions of the Conduit bench-
mark, using its open-source GitHub repository [37]. We counted the
number of files (excluding certain non-essential ones) and the lines
of code (LOC) across these versions for the server code as well as the
client code. We did the same for our approach. Since our approach
involves mostly models (on the cloud side), we generated textual
version of the graphical models using automated tools, and counted
those lines as well. The reasons for comparing lines of actual code
with lines of model descriptions is that the alternative would be to
compare lines of code with graphical constructs. We believe that
any creation (code or models) requires some expertise and it would
be misleading to say that models, because they are graphical, are
equivalent to zero code. This is why we use this approach, which,
while not perfect, gives a good indication of complexity, size and
ultimately human effort required to create them.

In the previous subsection, we have provided the effort of our
implementation of Conduit in days. However, since we do not know
the number of hours invested in implementing the different versions
of the Conduit benchmark, we believe that LOC can provide a proxy
for the level of complexity of the different implementations.

The tables in this section highlight the differences between the
“classic” approach used in three different versions of the Conduit
benchmark, and our approach. The tables describe the baseline (ini-
tial code-base with the Conduit standard functionality) in columns
B. Files and B. LOC as well as a modified version (for which we
report the total number of modified files in M. Files and the strict
delta, the new code and files with Δ LOC and Δ Files respectively).
The modified version is simply an updated version that adds sup-
port for adding an image to articles. This is a simple, reasonable
change, that one could imagine such an application would need. It
involves changes on the cloud side and it must also be visible on
the client side.

Table 1 focuses on the cloud-side application logic, and Table 2 on
the client-side. While the contribution of this paper is mostly con-
centrated on the cloud-side representation of behavior as reusable
functions, it is important to highlight the positive impact of the

ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA José Miguel Pérez-Álvarez, Adrian Mos, Benjamin V. Hanrahan, and Iyadunni J. Adenuga

B. Files B. LOC M Files Δ Files Δ LOC
Django 38 1064 10 +6 +31
Express 14 2442 7 +2 +36
Spring 103 4124 12 +6 +194
Ours 15 560 1 0 +5

Table 1: Cloud Code

B. Files B. LOC M Files Δ Files Δ LOC
Angular 105 2631 15 +1 + 106
Our iOS 62 2488 0 0 0

Our Alexa 19 784 0 0 0
Table 2: Client Code

coordination mechanism on the clients. This is visible in a dynamic,
change management scenario, such as the one described above.
For the client-side comparison we used only one Conduit version
because no further insight could be extracted from more versions.

The most striking difference between the Conduit versions and
our approach in Table 1 is visible in the baseline implementations.
Certainly, writing thousands of LOC for the baseline versions, even
in the most optimistic estimates, spans at a minimum, several weeks
of development, significantly longer than with our approach (as
mentioned, the LOC for our approach includemostly the textual rep-
resentation of the graphical models for domain, behavioral model
flows and bindings to external services). This is partly explainable
by the built-in support for flow execution that includes robust data
management capabilities, both for transient data-flow and exter-
nal persistence. When changes to existing application logic are
required, the advantages of our approach (as seen in the Δ columns)
revolve around easy re-composition of the flows and one-shot ap-
plication of domain changes across multiple flows. For instance,
adding support for the article image involves lightly modifying the
domain, but doesn’t require any change to existing flows.

Table 2 gives an overview of the effort required to implement
fully functional generic client applications for our approach using
different technologies (and contrast them to a state-of-the art client
implementation specific to Conduit). Particularly, this table high-
lights the impact of change on these clients. It is notable that while
these are fully functioning client applications on very different
platforms, they need no change to support the update in applica-
tion logic. While on a mobile phone article images are displayed
as expected, on the voice platform, image support takes different
forms. In the simplest version (which we took for this paper), the
agent speaks out the image label.

3.2 User Evaluation
In our user evaluation we evaluated whether novice programmers
would be able to effectively utilize our cloud functionality, while
customizing the corresponding generated user interfaces. In line
with this goal, we recruited six (5 males, 1 female) participants
from the second programming class in the College of Information,
Sciences and Technology at a 4-year college to evaluate a simple
scenario. Participant ages ranged from 19-21 and included all class

Figure 5: Take A Guess template

levels (freshman, sophomore, junior and senior). We recruited our
participants at the start of the semester, as such, they had only had
an introductory programming course at the time of this evaluation.

In order to evaluate our approach, we created a guessing game
web application and asked participants to customize the user in-
terface of a web-client. This application had two connecting steps
(templates) called Take-a-Guess and Show-Message. The Take-a-
Guess template (Figure 5) asks a user for their guess while the
Show-Message template (Figure 6) informs the users of the correct-
ness of their guess. The default HTML templates for these steps
were generated and provided to participants. The interviews were
conducted via Zoom and the users performed most of the tasks de-
scribed below with the HTML templates on a JetBrains WebStorm
IDE while viewing the results on a web page.

There were 3 parts to this evaluation. There was a pre-interview
where users were asked intermediate level programming questions
to gauge the participants programming experience, e.g. server ar-
chitecture and JSON objects. We also asked about their general
knowledge of HTML/CSS and whether they had ever created a
web application. We then gave them a brief overview of our sys-
tem (where snippets are defined) before they completed the tasks
described below.

Tasks and Procedure. We asked the participants to complete three
tasks. In the first task, the participants had to change the back-
ground color of the texts in the default Take-a-Guess template. In
the second task, the participants had to replace the congratulations
image shown to the user when they enter the correct guess. The
third task was the most complex, participants needed to create their
own custom Take-a-Guess template. We gave the participants min-
imal details, in that we pointed out the values that were available
(the details are rendered in the user interface as one customizes the
template).

After attempting to complete the tasks, the participants were
asked questions to understand their experience with the system
and questions to see their knowledge of the cloud architecture. The
participants that took part in this evaluation had no web application
experiences and 5/6 had no experience with HTML or CSS. The
one participant who did have experience with HTML, had taken a
first year HTML class. All participants had beginner programming
knowledge in either Python or Java, no participants had knowledge
of cloud architecture (e.g. how data is communicated between the

Lowering Barriers to Application Development With Cloud-Native Domain-Specific Functions ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 6: Show Message template

cloud and the client). The responses from the participants, labeled
P1 - P6, are discussed below.

3.2.1 Levels of User Customization. The difficulty of the tasks in-
creased as the evaluation progressed. Even though the participants
were able to complete the variety of tasks from simple modification
of existing templates to creation of their own templates, they men-
tioned that they found modifying the default templates by changing
the colors, images very much easier than having to design their
own templates which is as expected.

The different types of Take-A-Guess templates created by the
participants were mainly concerned with changing the manner in
which the text was displayed, however, some participants attempted
different designs and modified the position of the text and different
validations on the user input.

Just design aesthetic wise, I would probably like that.
Take a guess part would be better, if it was centered
and more bold, I would like that.- P6

3.2.2 Understanding the Interface Design Tool. The participants
had to customize and design the interfaces with HTML. Due to
the absence of experience in HTML, it was initially difficult for
the participants to create their template customizations. These
comments show the lack of experience that our participants had
with HTML, and they were still able to complete the tasks.

because I mean code can be confusing when you first
look at it and you don’t know exactly what it is you’re
looking at - P2
There [were] some parts where I was really confused
on [for example] the labels [...] and like syntax struc-
tures. - P6

We gave the participants a very brief explanation of some HTML
tags if they asked, but primarily they found that interacting with
these tags for some time was informative – especially as they could
see the results within the application in real-time.

But once I got used to them, [it was] fairly simple to
customize the web page - P5

3.2.3 Understanding the Logic. Based on their comments, the par-
ticipants did seem to gain high level knowledge of the cloud-side
logic employed by the system through interacting and designing
an interface for the system. They basically defined the steps and
conditions used in the creation of the flow for the game.

[The system] matches it to see if it is equal to the
stored data, which is already five to see if it is correct.
- P1
Oh, so maybe just takes the number and then goes
through like an algorithm and sees if it’s higher or
lower - P6
Supported as like as an input and then the program
compares it to see whether it’s bigger or smaller than
the actual number and then if it’s bigger, it tells you
to pick a lower number, and if it’s smaller tells you to
pick a higher number - P3

While the behavioral model that we used for this evaluation is
simple, each step is representative of the level of complexity in a
larger, more complex behavioral model. This is because, when you
isolate the application logic from the client, the client developer is
only concerned with modifying the rendering of an individual step,
in the same manner in which the participants did.

3.2.4 Ease of Use. In terms of learning how to modify code and
see how it impacted the user interface, this enabled our participants
to quickly understand how to make their modifications. Keep in
mind that many of our participants only have experience with the
Java language, and had never worked with HTML or CSS before.

In the span of 20 minutes, the fact that I was able to
learn that much through trial and error it was pretty
impressive. - P1

Isolating the individual activities and being able to use already
existing, running code proved important for these novice develop-
ers. Not having to worry about getting the code running before
being able to see changes, helped them to feel that it was a more
tractable problem.

That the code is it’s there and it’s not daunting like
some code can be sometimes it’s a small exercise for
just examples you can kind of look at and with very
little knowledge. - P5
I like that it had like immediate feedback and I could
see what I was doing and see the changes immediately
- P3

Some participants wanted a more cohesive environment with
what-you-see-is-what-you-get operations, which can be provided
with different IDEs that are more aimed at novices. This could be
included in future more feature complete versions, or they could
use other development environments that provided this capability.

I was expecting [to be able to change] the website
itself, [...] like drag and drop stuff - P6

All the participants with just little programming knowledge
created multiple functional and seamless versions of the guessing
game without any change in the cloud logic. Even though the

ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA José Miguel Pérez-Álvarez, Adrian Mos, Benjamin V. Hanrahan, and Iyadunni J. Adenuga

interface changes were mainly textual, the versions were unique
to each user and some participants expressed interest in wanting
to augment the interface designs using images, etc. Also, while the
participants gained the general logic of the guessing game from
creating their interface, they did not need to learn the technical
aspects of the logic being executed on the cloud to achieve their
goals.

4 RELATEDWORK
We consider our contributions in this paper structured around
three main axes. The first relates to themodel-based description
of reusable behavior, which, combined with the coordination
mechanism, completely decouples client interaction from the logic
being executed on the cloud. The second relates to the execution
and sharing of the application logic on the cloud, enabling
support for heterogeneous client platforms, seamless updates and
management, among others. The third relates to the possibility
of having generic, easily customizable clients, which allows
having applications that work with any logic the cloud, as well as
being customizable by users without much technical knowledge.

Related to the first axis, significant amount of work targets the
definition of behavior as models or high-level specifications. Such
behavior, seen as higher-level than programming code, and target-
ing less technical roles, is also referred to as business logic, typically
defined using DSLs or graphical languages. DSLs are typically used
to improve the productivity of developers and the communication
with domain experts [14]. As such, they are still often relatively
low-level and in reality rather technology-oriented. For instance,
many DSLs target specific concerns in application development.
YANG [6] is a data modeling language used to model configuration
data, state data, Remote Procedure Calls, and notifications for net-
work management protocols. ADICO-Solidity DSL [15] is designed
to allow the specification and interpretation of smart contracts [10].
Defining such textual DSLs is made easier by complete frameworks
and tools such as Xtext [5].

Graphical approaches to behavior specification are well repre-
sented by workflow and process languages. Yet Another Workflow
Language (YAWL) [38] is a good example of a workflow language
while BPMN is the standard [26] for describing processes. Business
Process Execution Language (BPEL) [40] is another language used
to orchestrate connections between different services, in the form of
BPEL workflows. All such approaches target the need of describing
execution sequences, complete with conditional transitions and ex-
tensions for integrating external services. This is similar to how our
approach defines behavioral flows, however the critical distinction
is that in our approach the flows are defined using domain-specific
elements previously created in a domain definition. BPEL, YAWL or
BPMN remain generic with respect to the application domain. There
are attempts to bring more semantics in BPMN-like languages. For
instance, in [32] the authors propose an extension to model secu-
rity requirements and in [8] the authors propose an extension for
integrating BPMN with social networking applications. In [7] the
authors propose an extension to model non-functional aspects, such
as performance. A comprehensive overview of various extensions
brought by different works to the BPMN standard can be found
in [9]. Despite these attempts, such languages remain relatively

generic and, crucially, do not bear domain semantics. Each time a
new process is defined in BPMN, its activities need to be configured
in a technical environment to actually do something useful (some
limited reuse exists in some tools, but this doesn’t change the na-
ture of the approach). In contrast the flows that define the reusable
functions in our approach are composed of already executable ac-
tions whose types are previously defined in a domain definition,
and fully connected to the elements that make them ready to be
executed. Even more importantly, our approach provides the coor-
dination mechanism that enables a clear distinction between what
is executing and its representation on the client. The clients in our
approach mainly just need to know how to manage the generic
data received from the cloud coordinator. This is in contrast with
how BPMN requires clients to behave. Such clients are either fully
integrated in the BPMSs, or, if they are separate applications, they
fully depend on the process logic being executed.

Related to the second axis, there are many approaches that target
cloud support for application development. Amazon Lambda [2]
enables users to focus on writing code without the need to techni-
cally manage servers and containers. IBM Cloud Foundry [17] also
brings support for cloud-native applications in the form of fast de-
ployment and management of user code. In fact, the last few years
saw rapid growth in the cloud-native space, with many initiatives
[13] focusing on facilitating access to containers, micro-services
and infrastructure in ways that accelerate application development
and deployment. In relation to such work and initiatives, our execu-
tion approach sits at a higher level of abstraction but can certainly
leverage their support. Whereas cloud-native approaches typically
involve support for technical programming languages, our engine
directly executes domain-specific activities, and can decide how to
break them down in individual tasks based on domain knowledge,
on overall policies, on privacy and security settings and other con-
siderations. This is because the specification effectively understands
what it executes. It can, therefore, bring a level of optimization and
smart reasoning to the actual execution. This is impossible in en-
gines that execute generic languages because such engines run
generic tasks without ways to take run-time decisions based on
domain semantics. This is a core difference with of our approach
where the execution ultimately adapts to the domain.

Related to the third axis, there exist efforts to develop generic
GUI models, which can later be interpreted by device-independent
applications, or generic applications [11]. Other approaches aim at
modeling generic client-server interfaces, which enable indepen-
dent, generic clients capable of interpreting the conversations with
the cloud [28]. However these approaches are highly technical and
lack the ability to be easily extended and customized by users with
little technical knowledge. Furthermore, although generic, they
only target screen-based devices, and as such they cannot support
other common devices such as voice-based ones.

In novel areas where programming is simplified for end users, a
popular approach is the use of visual programming (VP) systems
[18, 34]. For example, to learn Internet of Things programming,
Besari et. al [3] allow users to connect different widgets which can
be set with different characteristics in visually programmed An-
droid applications. In the domain of robot programming, CAPRICI
provides a drag and drop interface that simulates the mental models
of different people who work with robots [4]. VP environments go

Lowering Barriers to Application Development With Cloud-Native Domain-Specific Functions ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA

beyond the textual forms of high level programming languages and
express programming in graphical illustrative forms. They can ei-
ther be general purpose or domain specific [31]. Similarly to BPMN,
general purpose VP systems use blocks and arrows to signify logic
while domain specific VP systems use shapes meaningful to do-
main experts [31]. Most existing VP environments tend to be user,
platform or domain specific [30] but they don’t offer a mechanism
equivalent to our coordination system that would enable the full
application life-cycle described in this paper.

5 CONCLUSION AND FUTUREWORK
This paper proposes an approach for creating applications where
the client is decoupled from the application logic which is encoded
on the cloud. It does this by creating domain-specific descriptions of
behavior, expressed as flows, and make them available for integra-
tion into any application. The primary method by which we achieve
this decoupling, and the primary contribution of this paper, is in
the coordination mechanism. To validate the approach and evaluate
its efficacy, we created a complete prototype implementation. We
used this prototype to implement an application and compared with
similar implementations, as well as assess whether or not novices
would be able to modify the generated client.

Based on our evaluation we can say that this framework will
allow domain-experts – or other types of users – with limited
technical knowledge to customize the client components of a fully
functioning app. We expect, due to the small amount of code that
is necessary to implement complex flows, that these same domain
experts will be able to implement a large amount of fully functioning
back-ends running on the cloud as well. One aspect that we did not
evaluate, but remains true of our implementation, is that we are able
to support a variety of options for user interface creation, ranging
from web-based clients – such as the one done in our evaluation –
as well as mobile apps, or even voice-based personal assistants.

The coordination mechanism enables the decoupling between
the application behavior and the user interaction. This, combined
with the interpreted nature of the execution allows on-the-fly
changes to behavioral logic to be propagated instantly to applica-
tions.We believe that this can significantly reduce the entry barriers
to application development. For instance, it can be imagined that
a community of user interface specialists provide a multitude of
“empty” client applications, ready to integrate with any executable
application logic written as flow-based functions. This would allow
people with little to no coding background to provide their domain
knowledge directly in the form of executable, reusable functions
and pick-and-choose from existing such “empty” client apps. This
is similar to how Wordpress blog writers choose a visual theme
for their blog [41]. Such plug-and-play composition would result
in fully functioning self-updating applications, effectively created
from the synergy of domain experts and platform-specific user
interface experts.

In the future, we are planning on further building and evaluating
the impact of lowering technical barriers to application develop-
ment. We are interested in what people will build for themselves,
and are planning on deploying to groups that have historically not
had much say in the direction of the technology that they use, this

will include rural parts of America, as well as with underrepresented
groups.

REFERENCES
[1] Mark Alexa. 2017. Amazon Alexa: 2017 User Guide + 200 Ester Eggs. Independently

published.
[2] Amazon. 2020 (accessed May 9, 2020). AWS Lambda - Run code without thinking

about servers. Pay only for the compute time you consume. https://aws.amazon.
com/lambda/

[3] Adnan Rachmat Anom Besari, Iwan Kurnianto Wobowo, Sritrusta Sukaridhoto,
Ricky Setiawan, and Muh. Rifqi Rizqullah. 2017. Preliminary design of mobile
visual programming apps for Internet of Things applications based on Raspberry
Pi 3 platform. In 2017 International Electronics Symposium on Knowledge Creation
and Intelligent Computing (IES-KCIC). 50–54. https://doi.org/10.1109/KCIC.2017.
8228460

[4] Sara Beschi, Daniela Fogli, and Fabio Tampalini. 2019. CAPIRCI: a multi-modal
system for collaborative robot programming. In International Symposium on End
User Development. Springer, 51–66.

[5] Lorenzo Bettini. 2016. Implementing Domain Specific Languages with Xtext and
Xtend - Second Edition (2nd ed.). Packt Publishing.

[6] Martin Bjorklund. 2016. The YANG 1.1 Data Modeling Language. Technical
Report.

[7] Paolo Bocciarelli and Andrea D’Ambrogio. 2011. A BPMN Extension for Model-
ing Non Functional Properties of Business Processes. In Proceedings of the 2011
Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Sympo-
sium (Boston, Massachusetts) (TMS-DEVS ’11). Society for Computer Simulation
International, San Diego, CA, USA, 160–168. http://dl.acm.org/citation.cfm?id=
2048476.2048497

[8] Marco Brambilla, Piero Fraternali, and Carmen Karina Vaca Ruiz. 2012. Com-
bining Social Web and BPM for Improving Enterprise Performances: The
BPM4People Approach to Social BPM. In Proceedings of the 21st International
Conference on World Wide Web (Lyon, France) (WWW ’12 Companion). ACM,
New York, NY, USA, 223–226. https://doi.org/10.1145/2187980.2188014

[9] Richard Braun and Werner Esswein. 2014. Classification of Domain-Specific
BPMN Extensions. In The Practice of Enterprise Modeling, Ulrich Frank, Pericles
Loucopoulos, Óscar Pastor, and Ilias Petrounias (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 42–57.

[10] Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized
application platform. white paper (2014).

[11] Jacek Chmielewski, Jakub Flotynski, Dariusz Ruminski, and Adam Wójtowicz.
2016. Declarative GUI descriptions for device-independent applications. Personal
and Ubiquitous Computing 20 (2016), 185–194.

[12] Mario Cortes Cornax, José Miguel Pérez-Álvarez, Adrian Mos, and María
Teresa Gómez López. 2017. Domain-Specific Data Management for Platform-
Independent Process Governance. In Proceedings of the ER Forum 2017 and
the ER 2017 Demo Track co-located with the 36th International Conference on
Conceptual Modelling (ER 2017), Valencia, Spain, - November 6-9, 2017. 165–178.
http://ceur-ws.org/Vol-1979/paper-06.pdf

[13] Cloud Native Computing Foundation. 2020 (accessed May 9, 2020). Building
Sustainable Ecosystems for Cloud Native Software. https://www.cncf.io

[14] Martin Fowler. 2010. Domain-specific languages. Pearson Education.
[15] Christopher K Frantz and Mariusz Nowostawski. 2016. From institutions to code:

Towards automated generation of smart contracts. In 2016 IEEE 1st International
Workshops on Foundations and Applications of Self* Systems (FAS* W). IEEE,
210–215.

[16] F. Gutierrez. 2016. Pro Spring Boot. Apress. https://books.google.es/books?id=
SOg0DAAAQBAJ

[17] IBM. 2020 (accessed May 9, 2020). IBM Cloud Foundry - Deploy and scale apps
without manually configuring and managing servers. https://www.ibm.com/
cloud/cloud-foundry

[18] Piedade João, Dorotea Nuno, Sampaio Ferrentini Fábio, and Pedro Ana. 2019. A
Cross-analysis of Block-based and Visual Programming Apps with Computer
Science Student-Teachers. Education Sciences 9, 3 (2019). https://doi.org/10.3390/
educsci9030181

[19] S.K. Kasagoni. 2017. Building Modern Web Applications Using Angular. Packt
Publishing. https://books.google.es/books?id=VY_HjwEACAAJ

[20] Steven Kelly and Juha-Pekka Tolvanen. 2008. Domain-specific modeling: enabling
full code generation. John Wiley & Sons.

[21] Stuart Kent. 2002. Model Driven Engineering. In Integrated Formal Methods,
Michael Butler, Luigia Petre, and Kaisa Sere (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 286–298.

[22] Tomaž Kosar, Sudev Bohra, andMarjanMernik. 2015. Domain-Specific Languages:
A Systematic Mapping Study. Information and Software Technology 71 (11 2015).
https://doi.org/10.1016/j.infsof.2015.11.001

[23] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and how to
develop domain-specific languages. ACM computing surveys (CSUR) 37, 4 (2005),

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://doi.org/10.1109/KCIC.2017.8228460
https://doi.org/10.1109/KCIC.2017.8228460
http://dl.acm.org/citation.cfm?id=2048476.2048497
http://dl.acm.org/citation.cfm?id=2048476.2048497
https://doi.org/10.1145/2187980.2188014
http://ceur-ws.org/Vol-1979/paper-06.pdf
https://www.cncf.io
https://books.google.es/books?id=SOg0DAAAQBAJ
https://books.google.es/books?id=SOg0DAAAQBAJ
https://www.ibm.com/cloud/cloud-foundry
https://www.ibm.com/cloud/cloud-foundry
https://doi.org/10.3390/educsci9030181
https://doi.org/10.3390/educsci9030181
https://books.google.es/books?id=VY_HjwEACAAJ
https://doi.org/10.1016/j.infsof.2015.11.001

ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA José Miguel Pérez-Álvarez, Adrian Mos, Benjamin V. Hanrahan, and Iyadunni J. Adenuga

316–344.
[24] Adrian Mos and Mario Cortes-Cornax. 2016. Business matter experts do matter:

a model-driven approach for domain specific process design and monitoring.
In International Conference on Business Process Management. Springer, Cham,
210–226.

[25] Adrian Mos and Mario Cortes-Cornax. 2016. Generating domain-specific process
studios. In Enterprise Distributed Object Computing Conference (EDOC), 2016 IEEE
20th International. IEEE, 1–10.

[26] OMG. 2011. Business Process Model and Notation (BPMN), Version 2.0. http:
//www.omg.org/spec/BPMN/2.0

[27] José Miguel Pérez-Álvarez and Adrian Mos. 2020. From abstract specifications
to application generation. In ICSE-SEIS ’20: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering in Society,
Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae
(Eds.). ACM, 11–20. https://doi.org/10.1145/3377815.3381381

[28] Christian Prehofer, Andreas Wagner, and Yucheng Jin. 2016. A Model-Based
Approach for Multi-Device User Interactions. In Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Systems
(Saint-malo, France) (MODELS ’16). Association for Computing Machinery, New
York, NY, USA, 13–23. https://doi.org/10.1145/2976767.2976776

[29] José Miguel Pérez-Álvarez and Adrian Mos. 2020. Modeling Support for Domain-
Specific Application Definition.

[30] Partha Pratim Ray. 2017. A survey on visual programming languages in internet
of things. Scientific Programming 2017 (2017).

[31] Alex Repenning. 1993. Agentsheets: A Tool for Building Domain-Oriented
Visual Programming Environments. In Proceedings of the INTERACT ’93 and
CHI ’93 Conference on Human Factors in Computing Systems (Amsterdam, The
Netherlands) (CHI ’93). Association for Computing Machinery, New York, NY,
USA, 142–143. https://doi.org/10.1145/169059.169119

[32] Alfonso Rodríguez, Eduardo Fernández-Medina, and Mario Piattini. 2007. A
BPMN extension for the modeling of security requirements in business processes.
IEICE transactions on information and systems 90, 4 (2007), 745–752.

[33] Claude Roux. 2020 (accessed May 9, 2020). Tamgu, a FIL programming language:
Functional, Imperative, Logical all in one for annotation and data augmentation.
https://github.com/naver/tamgu/wiki

[34] Wolfgang Slany. 2012. Catroid: a mobile visual programming system for children.
In Proceedings of the 11th International Conference on Interaction Design and
Children. 300–303.

[35] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2009. EMF:
Eclipse Modeling Framework 2.0 (2nd ed.). Addison-Wesley Professional.

[36] Yiyi Sun. 2019. A Real-World SPA. Apress, Berkeley, CA, 219–246. https:
//doi.org/10.1007/978-1-4842-4069-4_10

[37] Yiyi Sun. 2020 (accessed May 9, 2020). The mother of all demo apps: Exemplary
fullstack Medium.com clone powered by React, Angular, Node, Django, and many
more. https://github.com/gothinkster/realworld

[38] Wil MP Van Der Aalst and Arthur HM Ter Hofstede. 2005. YAWL: yet another
workflow language. Information systems 30, 4 (2005), 245–275.

[39] Arie Van Deursen, Paul Klint, and Joost Visser. 2000. Domain-specific languages:
An annotated bibliography. ACM Sigplan Notices 35, 6 (2000), 26–36.

[40] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and
Donald F Ferguson. 2005. Web services platform architecture: SOAP, WSDL, WS-
policy, WS-addressing, WS-BPEL, WS-reliable messaging and more. Prentice Hall
PTR.

[41] WordPress.com. 2018. Premium WordPress Themes. https://wordpress.com/
themes/premium. Accessed: 2022-02-10.

[42] S. Yusuf. 2016. Ionic Framework By Example. Packt Publishing. https://books.
google.es/books?id=LQMcDAAAQBAJ

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
https://doi.org/10.1145/3377815.3381381
https://doi.org/10.1145/2976767.2976776
https://doi.org/10.1145/169059.169119
https://github.com/naver/tamgu/wiki
https://doi.org/10.1007/978-1-4842-4069-4_10
https://doi.org/10.1007/978-1-4842-4069-4_10
https://github.com/gothinkster/realworld
https://wordpress.com/themes/premium
https://wordpress.com/themes/premium
https://books.google.es/books?id=LQMcDAAAQBAJ
https://books.google.es/books?id=LQMcDAAAQBAJ

	Abstract
	1 Introduction
	2 System Overview
	2.1 Domain Definition
	2.2 Cloud Execution
	2.3 Coordination Mechanism

	3 Evaluation
	3.1 Prototype Evaluation
	3.2 User Evaluation

	4 Related Work
	5 Conclusion and Future Work
	References

