
NOTES TO THE REVIEWERS

Folks,

The di�erences between this journal submission for the ICSE98 special issue and the ICSE98 conference paper are

as follows:

� Overall the paper is about 50% longer than the conference version

� Our understanding of the details of 5ess process has changed - we have corrected section 3.2

� We added section 5 which deals with the e�ects of parallel changes, correlating the increased parallelism with

increased faults. The other parts of the paper forecasting and summarizing reect this addition. We moved

the interfering changes subsection to this section and expanded somewhat

� We added further analysis and data extending our understanding of parallel change phenomena, particularly

�gure 8 and reorganized the section moving from higher to lower levels.

� We added the appropriate information to the validity section about the quality correlations

� We expanded the summary and evaluation section: added sections 7.3 and 7.4

� Section 7.5 has been updated to reect the current plans



Parallel Changes in Large Scale Software Development:

An Observational Case Study

Dewayne E. Perry Harvey P. Siy Lawrence G. Votta

Bell Laboratories Bell Laboratories Bell Laboratories�

September 17, 1998

Abstract

An essential characteristic of large scale software development is parallel development by teams of develop-
ers. How this parallel development is structured and supported has a profound e�ect on both the quality and
timeliness of the product. We conduct an observational case study in which we collect and analyze the change
and con�guration management history of a legacy system to delineate the boundaries of, and to understand the
nature of, the problems encountered in parallel development. The results of our studies are 1) that the degree of
parallelism is very high{higher than considered by tool builders; 2) there are multiple levels of parallelism and the
data for some important aspects are uniform and consistent for all levels; 3) the tails of the distributions are long,
indicating the tail, rather than the mean, must receive serious attention in providing solutions for these problems;
and 4) there is a signi�cant correlation between the degree of parallel work on a given component and the number
of quality problems it has. Thus, the results of this study are important both for tool builders and for process
and project engineers.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Maintenance and Enhance-
ment { version control; D.2.8 [Software Engineering]: Metrics { process metrics; D.2.9 [Software Engi-

neering]: Management { programming teams, software con�guration management; K.6.3 [Management of

Computing and Information Systems]: Software Management { software development

General Terms: Management, Measurement

Additional Key Words and Phrases: Change management, parallel/concurrent changes, parallel versions, merging
interfering and non-interfering versions, software integration

1 INTRODUCTION

Large scale software development presents a number of signi�cant problems and challenges to software engineering

and software engineering research. In our pursuit of a deep understanding of how complex large scale software

systems are built and evolved, we must understand how developers work in parallel. Indeed, in any software project

with more than one developer, parallel changes are a basic fact of life. This basic fact is compounded by four essential

�Authors' addresses: D. Perry, Software Production Research Department, Bell Laboratories, Lucent Technologies, Murray Hill, NJ
07974, USA, dep@research.bell-labs.com; H. Siy and L. Votta, Software Production Research Department, Bell Laboratories, Lucent
Technologies, Naperville, IL 60566, USA, fhpsiy,vottag@research.bell-labs.com

1



[2] problems in software development: evolution, scale, multiple dimensions of system organization, and distribution

of knowledge.

� Evolution compounds the problems of parallel development because we not only have parallel development

within each release, but among releases as well.

� Scale compounds the problems by increasing the degree of parallel development and hence increasing both the

interactions and interdependencies among developers.

� Multiple dimensions of system organization1 [17] compounds the problems by preventing tidy separations of

development into independent work units.

� Distribution of knowledge compounds the problem by decreasing the degree of awareness in that dimension of

knowledge that is distributed.2

Thus, a fundamental and important problem in building and evolving complex large scale software systems is how

to manage the phenomena of parallel changes. How do we support the people doing these parallel changes by

organizational structures, by project management, by process, and by technology? How can we support this kind

of parallel change e�ort and maintain the desired levels of quality in the a�ected software? We are particularly

interested in the problems of technology and process support.

Before we can adequately answer these questions we need to understand the depth and breadth of the problem and

correlate it to the related quality data. To explore the dimensions of this phenomena, we take a look at the history

of a subsystem of Lucent Technologies' 5ESS R telephone switch [15] to understand the various aspects of parallel

development in the context of a large software development organization and project.

We use an observational case study method to do this empirical investigation. We describe this study as observational

since it captures many important quantitative properties associated with the problem of concurrent changes to

software. We consider it to be a case study because it is one speci�c instance of the observed phenomena.

Central to this technique is an extended series of repeated observations to establish credibility [22]. In this way, the

method is similar to the ones used in Astronomy and the social sciences [10]. Finally, a theory is built using these

observations (e.g., with grounded theory [7]) to make predictions (hypotheses) that are tested with future studies.

Our strategy for understanding the problem of parallel changes is to look at the problem from a number of di�erent

angles and viewpoints in the context of a large-scale, real-time system and a large-scale development. We have three

goals in this initial study. First, we provide a basic understanding of the parallel change phenomena that provides

the context for subsequent studies. For this we provide basic observational data on the nature of parallel changes.

Our thesis is that these problems cannot be (and indeed have not been) adequately addressed without quantitative

1By system organization, we mean the hardware and software components which make up the product. It is not to be confused with
the developers' organization.

2Here there are two possibilities of knowledge centralization: the knowledge of a part of the system, or the knowledge of (part of) the
problem to be solved. If one centralizes knowledge of the system (for example, by �le ownership where only the �le owner makes changes)
then one must distribute knowledge of the problems to be solved over the �le owners. Conversely, as is done here, if one centralizes
knowledge of the problems (for example, by feature ownership) then one must distribute the knowledge of the system over the feature
owners.

2



data illustrating their fundamental nature.

Second, we begin an investigation (which we will continue in subsequent studies) of an important subproblem:

interfering changes. Given the high degree of parallelism in our study system and the increasing emphasis on shorter

development intervals, it is inevitable that some of these changes will be incompatible with each other in terms of

their semantic intent. Here we look at the prima facie cases where we have changes to changes and changes made

within the same day. In subsequent studies we will explore the extent to which parallel changes interfere with each

other semantically (that is, they a�ect the data ow with in the same slice).

Third, we explore the relationship between parallel changes and the related quality data. We have several hypotheses

about this relationship. First, interfering changes are more likely to result in quality problems later in the development

than non-interfering changes. Second, �les with signi�cant degrees of parallel changes are likely candidates for code

that \decays" over time. The degree of interference increases this likelihood. Third, technology supporting the

management of these problems address only super�cial aspects of these problems.

We �rst summarize the various kinds of tools that are available to support parallel development. We then describe

the context of this study: the characteristics of the organizational, process and development environment and the

characteristics of the subsystem under investigation. We do this to provide a background against which to consider

the phenomena of parallel changes. Having set the context for the study, we present our data and analyses of the

parallel change phenomena, the extent and magnitude of interfering changes, correlate the parallel change phenomena

to the quality data, and discuss the construct, internal and external validity of our study. Finally, we summarize

our �ndings, evaluate the various means of technological and process support in the light of our results, and suggest

areas for further research and development.

2 RELATED WORK

In terms of technical support for parallel changes, there are three di�erent strands of research that are relevant:

con�guration management, program analysis research and build coordination.

2.1 Con�guration Management

Classic con�guration management systems in widespread use today, SCCS [18] and RCS [20], embody the traditional

library metaphor where source �les are checked out for editing and then checked back in [8]. They induce a sequential

model of software development. The locking for an edget operation guarantees that only one user can change a

particular �le at a time and blocks other developers from making changes until an edput operation has been done

thereby releasing the lock on the �le. There is no checking for the presence of conicts between successive changes.

The purpose of the con�guration management system is to guarantee that, like a database, no changes are lost due

to race conditions.

3



One of the standard features of even the classic con�guration management systems that enables developers to create

parallel versions is the branching mechanism. The problem, however, is not in creating parallel versions, but in

�guring out how to merge them back into a single version. Mahler [14] makes a distinction between temporary and

permanent variants. Permanent variants are \branches in the product development path that have their own life

cycle". Temporary variants on the other hand are meant to be merged eventually and only need to exist for the time

needed until merging.

Rational's ClearCase R [13] provides support for automatic merging of up to 32 versions. This support consists of

automatically �guring out the best sequence for merging the changes.

An automatic merge facility can help with the mechanics of merging source code changes. A merge

tool that knows the common ancestor of the versions being merged can generally merge with little or no

human interaction. Experience with DSEE and with ClearCase has shown that over 90% of changed �les

can be merged without asking any questions. The merge tool asks the user to resolve a conict in the

other cases. In about 1% of the cases, the merge tool inappropriately makes an automatic decision, but

nearly all of those cases are easily detected because they result in compiler syntax errors. [13]

This data came from an in-house merge of the Windows port of ClearCase with their UNIX version [12]. The merge

involved several thousand �les resulting from nine to twelve months of diverging development e�ort by about 10

people.

The Adele Con�guration Manager [6] incorporates the notion of workspaces into con�guration management to provide

support for change management. Within a workspace a lock can be set on a �le which causes the transparent

creation of a copy (referred to as dynamic versioning). Releasing the lock causes the merging of the dynamic copies.

Coordination control is provided amongst the workspaces (WSs) because

... object merging is not a perfect mechanism. Inconsistencies may arise from an object merger;

the probability of problematic mergers rapidly increases with the number of changes performed in both

copies. Were mergers to be performed only at transaction commit, most of them would not be successfully

performed. Frequent mergers, at some well de�ned points, are needed to maintain two cooperating WSs

in synch. [6]

Thus Adele requires frequent updating of the changes being made in the other workspaces to keep the various parallel

versions more or less in synch.

2.2 Program Analysis

The other strand of research is that of Horwitz, Prins and Reps' [9] work on integrating noninterfering versions.

They describe the design of a semantics-based tool that automatically integrates noninterfering versions, given the

4



base version and two derived but parallel versions. The work makes use of dependence graphs and program slices to

determine if there is interference and, if not, to determine the integration results.

2.3 Build Coordination

In trying to synchronize a consistent build of a system, we have to worry about logical completeness of changes | that

is, we have to worry about dependencies that are shared across multiple components in the system [17]. Cusumano

and Selby [5] noted this problem in the course of applying Microsoft's synch and build strategy to Windows NT.

Their solution to coordinating changes [5, page 273] was to post the intent to check in a particular component and

for related �les to prepare and coordinate their changes so as to be able to synchronize a consistent build.

This problem of coordinating changes is certainly an important one in the context of large scale system builds out

of separately evolved components. This is compounded by multiple dimensions of organization such as we have in

the system under study.

2.4 Empirical Evaluation

In neither Adele nor Reps, Prins and Horwitz is any data o�ered in support of their approaches. In the Adele case,

we believe the motivation to have come from usage experience of the sequentialization of development. In the case

of Horwitz, Prins and Reps, we believe the motivation to be that of advancing basic science by the investigation of

an interesting but di�cult problem.

The data o�ered in support of ClearCase is the only data we know of that is relevant to the merging of parallel

versions and that data, as published, must be considered anecdotal.

While there is no direct data about the number of components on average involved in the evolution of Windows

NT, there is data provided about the speci�c case of �xing faults [5, page 319]: each fault repair usually required

changing 3 to 5 �les.

3 STUDY CONTEXT

This study is one of several strands of research being done in the context of the Code Decay Project [4], a multi-

disciplinary and multi-institution project supported in part by NSF.

We describe �rst the characteristics of the subsystem under study, then the change and con�guration management

data available to the Code Decay Project, and �nally the change and con�guration management processes.

5



RELEASE TIMELINE

R
E

LE
A

S
E

DELTAS PER MONTH

85 86 87 88 89 90 91 92 93 94 95 96

D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11

I1
I2
I3
I5
I6
I7
I8
I9

I10
I11
I12
I13
I14
I15

Figure 1: Timeline of parallel releases. Each histogram represents work being done for one release of the software.
The top and bottom halves show releases for the international and domestic products, respectively.

3.1 The Subsystem Under Study

The data for this study comes from the complete change and quality history of a subsystem of the Lucent Technologies'

5ESS. This data consists of the change and con�guration management history representing a period of 12 years from

April 1984 to April 1996. This subsystem is one of 50 subsystems in 5ESS. It was built at a single development

site. The development organization has undergone several changes in structure over the years and its size has varied

accordingly, reaching a peak of 200 developers and eventually decreasing to the current 50 developers. There are two

main product o�erings, one for US customers and another for international customers. Historically, the two products

have separate development threads although they do share some common �les.

3.2 The 5ESS Change Management Process

Lucent Technologies uses a two-layered system for managing the evolution of 5ESS: a change management layer,

ECMS [21], to initiate and track changes to the product, and a con�guration management layer, SCCS [18], to

manage the versions of �les needed to construct the appropriate con�gurations of the product.

All changes are handled by ECMS and are initiated using an Initial Modi�cation Request (IMR) whether the change

is for �xing a fault, perfecting or improving some aspect of the system, or adding new features to the system. Thus

an IMR represents a problem to be solved and may solve all or part of a feature. Features are the fundamental unit

of extension to the system and each feature has at least one IMR associated with it as its problem statement.

Each functionally distinct set of change requests is recorded as a Modi�cation Request (MR) by the ECMS. An MR

6



represents all or part of a solution to a problem. A variety of information is associated with each IMR and MR. For

example, for each MR, ECMS includes such data as the date it was opened, its status, a short text abstract of the

work to be done, and the date it was closed.

When a change is made to a �le in the context of an MR, SCCS keeps track of the actual lines added, edited, or

deleted. This set of changes is known as a delta. For each delta, the ECMS records its date, the developer who made

it, and the MR where it belongs.

The process of implementing an MR usually goes as follows:

1. Make a private copy of necessary �les,

2. Try out the changes within the private copy,

3. When satis�ed, retrieve the �les from SCCS, locking them for editing,

4. Commit the changes as deltas in the SCCS, releasing the locks,

5. Retrieve the �les again from the SCCS for reading,

6. Put the �les through code inspection and unit testing,

7. Submit the MR for load integration and feature and regression test

There are several observations. In step 3, the developer has to make sure that his changes do not conict with other

recent changes put into the code. In step 6, the code that is inspected contains only the o�cially approved base code

plus changes from the developer's MR. It does not include unapproved changes made by other developers. Hence

the inspection and testing may not catch any conicts when all these di�erent MRs are combined. It is hoped that

any conicts are caught during load integration and feature and regression testing.

When all the changes required by an MR have been made, the MR is closed after all approval has been obtained

for all the dependent units. Similarly, when all the MRs for an IMR have been closed, the IMR itself is closed, and

when all IMRs implementing a feature have been closed the feature is completed.

4 DATA AND ANALYSIS

The change management data provides various di�erent viewpoints from which to delineate the boundaries of, and

to understand the nature of, the phenomena of parallel changes. We �rst discuss the di�erent levels at which parallel

development takes place, and then explore the e�ects of parallel changes at the �le level and discuss the basic problem

of change interference. We conclude this section by analyzing and summarizing the data about parallelism at the

levels of features, IMRs, MRs and �les.

In this section we make liberal use of histograms to provide a clear picture of the data that would not be evident if

we were to report merely the minimum, mean, and maximum of each distribution. It is important to notice that the

tails of several distributions are long and fall o� more slowly than the Poisson or binomial distributions (classical

engineering distributions). This is extremely important to consider in designing tools: if a tool is designed around

7



TIME

R
E

LE
A

S
E

FEATURE DENSITY

6/88 9/91

D1

D2

D3

D4

D5

D6

D7

I2

I3

I6

I7

I10

TIME

IMR DENSITY

6/88 9/91

TIME

MR DENSITY

6/88 9/91

Figure 2: Concurrent development activities in the development interval of Release I6. These panels
show the activities being conducted in parallel at the feature, IMR, and MR levels during the development interval
for Release I6. It also shows activities for other releases during the same time period.

the mean value, it will not be particularly useful for the critical cases that need the support the most, namely, those

cases represented by the tail of the distribution.

4.1 Levels of Parallel Development

The 5ESS system is maintained as a series of releases, with each release o�ering new features on top of the existing

features in previous releases. The timeline on Figure 1 shows the number of deltas applied every month to each

release of the 5ESS subsystem under study. The top half shows the international releases (labeled I1{I15) and the

bottom shows the domestic ones (labeled D1{D12). It shows that for each product line, there may be 3{4 releases

undergoing development and maintenance at any given time.

Within each release shown in Figure 1, multiple features are under development. The overlapping time schedule of

successive releases suggest that features for di�erent releases are being developed almost concurrently. Figure 2 is a

timeline showing the density of new feature development during the development interval of Release I6. At its peak,

there was work on about 60 features. It not only shows that multiple features are being developed concurrently for

Release I6, but also shows that 8 other releases are doing new feature development.

Figure 2 also shows the density of IMRs and MRs developed for Release I6 as well as other releases in the same

interval.

Thus, we have parallel development going on at di�erent levels in the development of this subsystem. Releases are

being built in parallel with varying amounts of overlapping development. Features are being developed in parallel

both within a single release and in the context of multiple releases. Typically multiple IMRs are being developed in

parallel for each feature, and MRs are developed in parallel for each IMR. And, �nally, �les are changed in parallel

8



Features IMRs MRs
Min Median Mean Max Min Median Mean Max Min Median Mean Max

Active per day 0 23 25.3 86 0 21 21.8 62 1 65 69.3 223
Interval (days) 1 201 318.5 3344 < 1 1 14.6 2233 < 1 1 10.1 2191
Files a�ected 1 8 31.0 906 1 1 4.3 388 1 1 1.1 15
MR count 1 6 34.6 2188 1 1 2.6 86 n/a n/a n/a n/a
Developer count 1 2 4.0 98 1 1 1.1 9 n/a n/a n/a n/a

Table 1: Data summary. This table summarizes the data to be used in analyzing the degree of parallelism.

0
20

0
60

0
10

00

NUMBER OF FEATURES PER DAY

N
U

M
B

E
R

 O
F

 D
A

Y
S

0 10 20 30 40 50 60 70 80 90

0
20

0
60

0
10

00

NUMBER OF IMRs PER DAY

N
U

M
B

E
R

 O
F

 D
A

Y
S

0 10 20 30 40 50 60 70

0
20

0
60

0
10

00

NUMBER OF MRs PER DAY

N
U

M
B

E
R

 O
F

 D
A

Y
S

0 20 40 60 80 100 120 140 160 180 200 220

Figure 3: Feature, IMR, MR distribution per day. These histograms show the distribution of the number of
features, IMRs, and MRs being worked on per day.

within MRs, IMRs, features and releases.

4.2 Multilevel Analysis of Parallel Development

To understand the amount of parallelism going on at the di�erent levels, we examine the number of features, IMRs

and MRs being developed per day. We then look at four measures associated with the amount of work within each

feature, IMR and MR: their intervals, the number of �les a�ected, the number of MRs involved, and the number of

developers involved. Table 1 summarizes these data.

Figure 3 shows the frequency distributions of features, IMRs, and MRs being worked on per day. The feature and

9



100 200 300 400 500 600 700 800 900 1000 >1000

0
20

40
60

80
10

0

FEATURE INTERVAL IN DAYS

N
U

M
B

E
R

 O
F

 F
E

A
T

U
R

E
S

<1 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
50

0
15

00
25

00

IMR INTERVAL IN DAYS

N
U

M
B

E
R

 O
F

 IM
R

s

<1 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
20

00
60

00
10

00
0

14
0

MR INTERVAL IN DAYS

N
U

M
B

E
R

 O
F

 M
R

s

Figure 4: Interval distributions. These histograms show the development interval distributions for features, IMRs
and MRs in number of days.

IMR distributions have means of 25 and 22, and maximum values of 86 and 62, respectively. On the other hand,

there is a mean of 69 MRs open per day, and a maximum of more than 200. Note that in all cases the tail is very

long with respect to the mean.

Figure 4 shows the frequency distributions of development intervals at the three levels. The intervals are measured by

taking the dates of the �rst and last delta associated with that feature, IMR, or MR, and computing the di�erence.

Thus the interval reects the activity only with respect to coding.3 One observation here is that the shapes of all

three distributions appear to be similar, even though their scales are orders of magnitude apart. Also, 46% of the

IMRs and 50% of the MRs are opened and solved on the same day. Nevertheless, the tails here are even longer with

respect to the mean than in Figure 3.

Figure 5 shows the frequency distributions on the number of �les a�ected in implementing each feature, IMR or MR.

The number of �les per feature exhibits a very large tail distribution, 33% of the features a�ected more than 20 �les.

On the other hand, 51% of the IMRs and more than 90% of the MRs a�ect only one �le.

Figure 6 shows the frequency distributions on the number of MRs it took to implement each feature and IMR. The

number of MRs per feature again exhibits a large tail, 25% of the features needed more than 20 MRs. The tail for

3For instance, the feature interval measured excludes other feature activities like estimation, planning, requirements, design, and
feature test.

10



1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
20

40
60

FILES AFFECTED BY FEATURE

N
U

M
B

E
R

 O
F

 F
E

A
T

U
R

E
S

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
50

0
15

00
25

00

FILES AFFECTED BY IMR

N
U

M
B

E
R

 O
F

 IM
R

s

1 2 >2

0
50

00
15

00
0

25
00

0

FILES TOUCHED BY MR

N
U

M
B

E
R

 O
F

 M
R

s

Figure 5: Files touched. These histograms show the distributions of number of �les a�ected per feature, IMR and
MR.

IMRs, while not as long as that for features, is still signi�cant with a maximum of 86 needed for the largest IMR

while the mean is less than 3.

Figure 7 shows the frequency distributions on the number of developers working on each feature and IMR.4 The

number of developers working on a feature does not have as large a tail as the number of MRs per feature, but

there were still more than 20 features which involved more than 10 developers, with the largest feature involving

98 developers. Similarly, the mean is 1.1 developer per IMR, but the tail stretches out to a maximum of 9. Note

however, the percentage of IMRs requiring more than one developer is only 10%.

4.3 Parallel Development Within a File

The preceding discussion does not show how these parallel activities interact with each other, particularly in the

case when several of them make changes to the same �le. Figure 8 shows the distribution of the number of features,

IMRs, developers and MRs a�ecting each �le over the lifetime of the �le.

To illustrate further, Figure 9 shows the di�erent levels of ongoing activity for a certain �le. This clearly shows that

4Because of the way MRs are de�ned, there can be only one developer per MR.

11



1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
20

40
60

80

MRs PER FEATURE

N
U

M
B

E
R

 O
F

 F
E

A
T

U
R

E
S

1 2 >2

0
10

00
30

00
MRs PER IMR

N
U

M
B

E
R

 O
F

 IM
R

s

Figure 6: Number of MRs used. These histograms show the distributions of number of MRs used in implementing
each feature and IMR.

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
50

10
0

15
0

DEVELOPERS PER FEATURE

N
U

M
B

E
R

 O
F

 F
E

A
T

U
R

E
S

1 2 >2

0
10

00
30

00
50

00

DEVELOPERS PER IMR

N
U

M
B

E
R

 O
F

 IM
R

s

Figure 7: Number of developers involved. These histograms show the distributions of number of MRs used in
implementing each feature and IMR.

parallel activities are going on at every level.

4.4 Parallel Versions

The set of changes belonging to a feature, IMR, MR and developer can be thought of as creating di�erent versions

of the code. Among these, MRs are the atomic component. Hence, in the subsequent discussion, we will use parallel

MR activity as the basic unit of parallel development.

12



1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
20

0
60

0
10

00

FEATURES PER FILE

N
U

M
B

E
R

 O
F

 F
IL

E
S

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
20

0
40

0
60

0
80

0

IMRs PER FILE

N
U

M
B

E
R

 O
F

 F
IL

E
S

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
10

0
30

0
50

0

MRs PER FILE

N
U

M
B

E
R

 O
F

 F
IL

E
S

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
20

0
60

0

DEVELOPERS PER FILE

N
U

M
B

E
R

 O
F

 F
IL

E
S

Figure 8: Number of features, IMRs, MRs and developers per �le. These histograms show the distribution
of the number of features, IMRs, MRs and developers a�ecting each �le over the lifetime of the �le.

In Figure 10, we see that in the interval when Release I6 was being developed, about 60% of the �les are touched by

multiple MRs. Note also that the tail of the distribution is signi�cant here | 17% of the �les are touched by more

than 10 MRs.

Figure 11 is a closeup of Figure 9. It magni�es the MR panel at one period with high activity. It shows that at one

time, there were as many as 8 open MRs a�ecting this �le, with 4 of them having deltas on the same day. We de�ne

PCmax, the maximum number of concurrently open MRs per day over the entire lifetime of the �le, as our initial

measure of the degree of parallel change. (For the �le in Figure 9, PCmax = 9.) We computed PCmax for each �le

in the subsystem. Figure 12 shows the frequency distribution of PCmax. It shows that an average �le may have up

to 2 MRs per day, which translates to 2 active variants at a given time. It also shows that 55% the �les never have

more than one MR at a time, although about 25% of the �les can have 2 MRs per day and 20% of the �les can have

3 to 16 MRs per day.

5 EFFECTS OF PARALLEL CHANGES

In the preceding section we presented the phenomena of parallel changes in the context of a very large scale develop-

ment. In this section, we look at the consequences of parallel development such as is found here. We �rst investigate

13



YEAR

F
E

A
T

U
R

E
S

0
2

4
6

8
10

NUMBER OF ACTIVE FEATURES PER DAY

84 85 86 87 88 89 90 91 92 93 94 95 96

YEAR
IM

R
s

0
2

4
6

8
10

NUMBER OF ACTIVE IMRs PER DAY

84 85 86 87 88 89 90 91 92 93 94 95 96

YEAR

M
R

s

0
2

4
6

8
10

NUMBER OF ACTIVE MRs PER DAY

84 85 86 87 88 89 90 91 92 93 94 95 96

YEAR

P
R

O
G

R
A

M
M

E
R

S

0
2

4
6

8
10

NUMBER OF ACTIVE PROGRAMMERS PER DAY

84 85 86 87 88 89 90 91 92 93 94 95 96

Figure 9: Activity pro�le for one �le. The top two panels show the number of features and IMRs that a�ect
this �le over time. The third panel shows the number of open MRs modifying this �le. The fourth panel shows the
number of developers with open MRs modifying this �le.

0 1 2 3 4 5 6 7 8 9 10 >10

0
20

0
40

0
60

0

NUMBER OF MRs ON THE SAME FILE IN THE INTERVAL OF 5ee4_1t

N
U

M
B

E
R

 O
F

 F
IL

E
S

25%

17.2%

10.6%

7.2%
6.2%

4.6%
4.1%

2.5% 2.4% 2.1%
1.4%

16.7%

Figure 10: Distribution of number of MRs touching each �le in the development interval of Release I6.
Bar N shows the number of �les which were touched by N MRs during the development interval of Release I6.

the quality consequences of this parallelism and show how the higher the degree of parallelism, the higher the number

of defects. We then look at one of the possible root causes of these quality problems, interfering changes, and discuss

the most obvious cases of interference: changes on top of previous changes, and changes made within very close

temporal proximity to each other.

14



TIME

M
R

s

MR ACTIVITY

8/
1/

89

8/
2/

89

8/
3/

89

8/
4/

89

8/
5/

89

8/
6/

89

8/
7/

89

8/
8/

89

8/
9/

89

8/
10

/8
9

8/
11

/8
9

8/
12

/8
9

8/
13

/8
9

8/
14

/8
9

8/
15

/8
9

8/
16

/8
9

8/
17

/8
9

8/
18

/8
9

8/
19

/8
9

8/
20

/8
9

8/
21

/8
9

8/
22

/8
9

8/
23

/8
9

8/
24

/8
9

8/
25

/8
9

8/
26

/8
9

8/
27

/8
9

8/
28

/8
9

8/
29

/8
9

8/
30

/8
9

8/
31

/8
9

A
B
C
D
E
F
G
H
I
J
K
L
M
N

TIME

O
P

E
N

 M
R

s

0
2

4
6

8
10

NUMBER OF ACTIVE MRs PER DAY

8/
1/

89

8/
2/

89

8/
3/

89

8/
4/

89

8/
5/

89

8/
6/

89

8/
7/

89

8/
8/

89

8/
9/

89

8/
10

/8
9

8/
11

/8
9

8/
12

/8
9

8/
13

/8
9

8/
14

/8
9

8/
15

/8
9

8/
16

/8
9

8/
17

/8
9

8/
18

/8
9

8/
19

/8
9

8/
20

/8
9

8/
21

/8
9

8/
22

/8
9

8/
23

/8
9

8/
24

/8
9

8/
25

/8
9

8/
26

/8
9

8/
27

/8
9

8/
28

/8
9

8/
29

/8
9

8/
30

/8
9

8/
31

/8
9

Figure 11: A closer look at MR activity. This is a closer look at the MR activity during one busy period (8/89)
of the �le in Figure 9. Each line in the top panel shows shows the lifespan of an MR being worked on during this
period, from the date it was opened until the date it was closed. The X's indicate when deltas were made into the
�le. The solid line in the bottom panel shows the number of open MRs on each of those days. It is a magni�cation
of the MR panel from Figure 9. The dotted line shows the number of deltas actually made on each day.

1 2 3 4 5 6 >6

0
50

0
10

00
15

00
20

00

MAXIMUM NUMBER OF MRs PER DAY PER FILE

N
U

M
B

E
R

 O
F

 F
IL

E
S

Figure 12: Maximum number of parallel MRs per �le. This histogram shows the distribution of PCmax, the
maximum number of parallel MRs that a�ected each �le in a day.

5.1 Implication on Quality

To examine the impact of parallel changes on software quality, we examined the defect distribution of the �les for

each value of PCmax. We counted as a defect every MR whose purpose is to correct a problem in the �le. The MR

classi�cation was done automatically by analyzing the MR descriptions for known keywords. The paper by Mockus

and Votta [16] describes the MR classi�cation method in more detail.

In order to avoid double-counting the MRs, we recomputed the parallel development measure including only MRs

opened up to 1994 and we plotted it against the number of defects discovered from 1994 to 1996. The results are

15



0
10

20
30

40
50

60

1 2 3 4 5 6 >6

MAXIMUM MRs PER DAY PER FILE (1984-1994)

N
U

M
B

E
R

 O
F

 F
A

U
LT

S
 (

19
94

-1
99

6)

Figure 13: Parallel development (PCmax) vs. number of defects. This boxplot shows the number of defects
for each �le, grouped by degree of parallel changes.

Degrees of Sum of Mean F Value Signi�cance
Freedom Squares Squares

Number of deltas 1 14379 14379 3288 0.0000
File lifetime 1 4 4 1 0.3298
Creation date 1 548 548 125 0.0000
File size 1 164 164 38 0.0000
Parallel changes (PCmax) 1 104 104 24 0.0000
Residuals 3267 14287 4

Table 2: Analysis of variance. This table shows the contributions of various factors to the variance in number of
defects. The column of major interest is the last one, which gives the signi�cance of the contribution of each factor
to the variance. As shown here, every factor is signi�cant except lifetime.

shown in the boxplot in Figure 13.5 The plot shows that �les that have high degrees of parallel changes also tend to

have more defects.

We then performed an analysis of variance (ANOVA) [1, Ch. 6] to account for the e�ects of other widely regarded

factors of number of defects. We examined the following: �le creation date (date the �rst delta was made), lifetime

of �le (from �le creation date up to 1994 or the date of last delta, whichever came �rst), total number of deltas made

between 1984-1994, and size of �le at 1994. The results are shown in Table 2. The sum of squares and corresponding

signi�cance probabilities were computed from the �rst factor to the last. The table shows that, even after accounting

for all of these other factors, the degree of parallel changes PCmax makes a signi�cant contribution to the variance

of the defect distribution. (See Appendix A for more detailed explanation.)

We also ascertained that the results were not an artifact of the measure of degree of parallel changes that we de�ned.

We had been using PCmax, the maximum number of MRs open in parallel, as our degree of parallel changes (e.g.,

for the �le in Figure 9, PCmax = 9). Another measure of the degree of parallel changes is to count, for each �le, the

5Boxplots are a compact way to represent data distributions. Each data set is represented by a box whose height spans the central
50% of the data. The upper and lower ends of the box marks the upper and lower quartiles. The data's median is denoted by a bold
point within the box. The dashed vertical lines attached to the box indicate the tails of the distribution; they extend to the standard
range of the data (1.5 times the inter-quartile range). The detached points are \outliers" lying beyond this range [3].

16



LOG[NUMBER OF DAYS WITH PARALLEL MRs (1984-1994)]

LO
G

[N
U

M
B

E
R

 O
F

 D
E

F
E

C
T

S
 (

19
94

-1
99

6)
]

0 2 4 6

0
1

2
3

4
Figure 14: PCdays (number of days with parallel MRs) vs. number of defects. This scatterplot shows
the number of defects for each �le, plotted against PCdays, the number of days the �le had parallel MRs. A log
transformation was applied to both axes to spread the points. In addition, a small random o�set was added to each
point to expose overlapping points.

LOG[WEIGHTED NUMBER OF DAYS WITH PARALLEL MRs (1984-1994)]

LO
G

[N
U

M
B

E
R

 O
F

 D
E

F
E

C
T

S
 (

19
94

-1
99

6)
]

0 2 4 6 8

0
1

2
3

4

Figure 15: PCwdays (weighted number of days with parallel MRs) vs. number of defects. This scatterplot
shows the number of defects for each �le, plotted against PCwdays, the number of days the �le had parallel MRs,
weighted by the number of parallel MRs per day. Transformations were applied as in Figure 14.

number of days in which more than one MR was open. We label this as PCdays. Figure 14 indicates that PCdays

correlates well with the defect count (cor = 0.63). When we replaced PCmax with PCdays in the ANOVA model,

the results remained signi�cant.

Yet another measure of parallel changes is to take the number of days with more than one open MR and weigh each

day by the number of open MRs. We label this as PCwdays. Figure 15 again shows that PCwdays correlates well with

the defect count (cor = 0.62). When we used PCwdays in the ANOVA model, the results again remained signi�cant.

Table 3 compares the three measures of the degree of parallel changes. Of these three, PCdays appears to be the

best measure.

17



Degrees of Sum of Mean F Value Signi�cance
Freedom Squares Squares

Maximum parallel MRs (PCmax) 1 104 104 24 0.0000
Number of days with parallel MRs (PCdays) 1 388 388 90 0.0000
Weighted number of days (PCwdays) 1 298 298 69 0.0000

Table 3: Three measures of degree of parallel changes. This table compares the contribution of the three
measures of the degree of parallel changes. The sum of squares, F values and signi�cance values are obtained when
each one replaces the parallel changes entry in the ANOVA table in Table 2.

DELTA - DEVELOPER

P
R

O
G

R
A

M
 L

IN
E

 N
U

M
B

E
R

 (
M

A
G

N
IF

IE
D

 V
IE

W
)

Base 1 A 2 A 3 A 4 B 5 C

7950

7930

7910

7890

7870

7850

Figure 16: Lines changed per delta. Each vertical line represents a version of the �le as it was changed by a delta
(denoted 1{5). The x-axis also encodes the developer who made the delta (denoted A{C). The delta sequence is read
from left to right. The lines connecting the vertical lines show where lines have been changed from one version to the
next. Lines that diverge show where new code was inserted while lines that converge show where code was deleted.
The trapezoids show where code was changed. Note that this �gure only shows a fragment of each program version,
approximately from lines 7850-7950.

5.2 Interfering Changes

Thus far, we have examined the amount of parallel activities going on and how it might contribute to quality

problems. We have not actually delved into the mechanisms by which parallel changes could cause defects. In this

section, we provide results of our initial investigation into parallel changes that interfere with each other.

Upon analyzing the delta data, we found that 12.5% of all deltas are made to the same �le by di�erent developers

within 24 hours of each other. Given this high degree of parallel development, it seems likely that changes by one

developer will interfere with changes made by another developer. For this study we have looked at the prima facie

case where changes interfere by one change physically overlapping another. For example, Figure 16 traces several

versions of the �le examined in Figure 9 as 5 deltas were applied to it during a 24-hour period. Developer A made

3 deltas, the �rst two of which did not a�ect this fragment of code. Then developer B put in changes on top of A's

changes. Finally some of B's changes were modi�ed by developer C on the same day.

Across the subsystem, 3% of the deltas made within 24 hours by di�erent developers physically overlap each others'

changes. Note that physical overlap is just one way by which one developer's changes can interfere with others. We

18



believe that many more conicts arise as a result of parallel changes to the same data ow or program slice | that

is, conicts arise as a result of semantic interference.

6 VALIDITY

In any study, there are three aspects of validity that must be considered in establishing the credibility of that study:

construct validity, internal validity, and external validity. We consider each of these in turn.

We have operationalized the de�nition of parallel changes in several ways. First, we looked at the level of parallel

development with respect to di�erent levels (release, feature, IMR, MR and �le). Second, in deriving a summary

measure of the degree of parallel development for use in the quality model, we looked at multiple measures and

showed that they are consistent with each other. Thus we argue that we have the necessary construct validity.

As can be seen from the data as we have presented it, we have done only the minimal amount of data manipulation

and then only to put it into easily understood forms of summarization. Also, in the quality study, we have sought

to account for other factors that may a�ect the number of defects in the software. Thus we argue that we have the

necessary internal validity.

It is in the context of external validity that we must be satis�ed with arguments weaker than we would like. We

argue from extra data (namely, visualizations of the entire 5ESS system similar to Figure 1) that this subsystem is

su�ciently representative of the other subsystems to act as their surrogate.

The primary problem then is the representativeness of 5ESS as an embedded real time and highly reliable system. In

its favor are the facts that it is built using a common programming language (C) and development platform (UNIX).

Also in its favor are the facts that it is an extremely large and complicated system development and that problems

encountered here are at least as severe as those found in smaller and less complicated developments. Thus we argue

that our data has a good level of external validity and is generalizable to other developments of similar domains.

7 SUMMARY AND EVALUATION

7.1 Study Summary

This work represents initial empirical investigations to understand the nature of large scale parallel development.

The data shows that in this subsystem:

� There are multiple levels of parallel development. Each day, there is ongoing work on multiple MRs by di�erent

developers solving di�erent IMRs belonging to di�erent features within di�erent releases of two similar products

aimed at distinct markets.

19



� The activities within each of these levels cut across common �les. 12.5% of all deltas are made by di�erent

developers to the same �les within a day of each other and some of these may interfere with each other.

� Over the interval of a particular release (I6), the number of �les changed by multiple MRs is 60% which, while

not directly concurrent, is concurrent with respect to the release. These may also have interfering changes |

though we would expect the degree of awareness of the implications of these changes to be higher than those

made within one day of each other.

� There is a signi�cant correlation between �les with a high degree of parallel development and the number of

defects. Moreover, even accounting for lifetime, size and number of deltas, the degree of parallel changes makes

a signi�cant contribution to the variance of the defect distribution.

The data presented illustrates the problems of evolution, scale, and multiple dimensions of organization described in

Section 1: of evolution because of the increasing number of releases that needed to be maintained; of scale because

of the sheer number of parallel activities going on within a release interval; and of organization because the parallel

activities are not independent, but that at some point they need to coordinate, especially if they are modifying

common �les.

7.2 Evaluation of Current Support

As we mentioned in subsection 4.2, the histograms provide a critical picture of the problems that need to be solved.

In particular, the tails of the distributions are the signi�cant factors to consider in technical support, not the mean

values. In both the cases of workspaces and merging, we claim that those critical factors have not been understood

or appreciated.

The data in subsection 4.2 suggests that, if each MR had its own workspace, we would need on the order of 70 to 200

workspaces per day for this particular subsystem. (And this is just one of 50 5ESS subsystems!) Moreover, since 50%

of MRs are solved in less than a day, the cost and complexity of constructing and destroying workspaces becomes

very important. One might reduce the number of workspace per day by assuming one workspace per IMR or per

feature. Doing so introduces further coordination problems since there may be more than one developer working on

the IMR or feature.

Given the multi-level nature of feature development, one might imagine the need for a hierarchical set of workspaces[11]

such that there is a workspace for each feature, a subset of workspaces for each IMR for that feature and then in-

dividual workspaces for each MR. In either case, further studies are needed to determine the costs and utility of

workspaces in supporting the phenomena we have found in this study.

The utility of the current state of merge support depends on the level of interference versus non-interference. The data

in subsection 4.4 indicates that about 45% of the �les can have 2 to 16 parallel versions with potentially interfering

changes. It is not clear how well current merge technologies will be able to support this degree of parallel versions

| how do you merge 16 parallel versions? The data we have uncovered certainly leads us to be sympathetic with

20



Adele's claim that frequent updates are necessary for coordinated changes and that waiting until commit time will

lead to parallel versions that cannot be merged without some very costly overhead and coordinated e�ort. In fact,

their supported strategy is what is left unsupported in these developments reported here.

Further studies are needed to assess the validity and utility of merge technologies. We note in the next section one

such study that will help to assess this area.

The synchronize and build strategy poses a problem in this context where features are the primary unit of work.

Features represent a set of logically coherent changes to the system. As noted in Figure 5, features frequently involve

a large number of �les, with 33% of all features a�ecting more than 20 �les and a maximum of 906 �les as shown

in 1. The current build process synchronizes at the MR level. However, each MR represents only a partial solution

to a problem and failure to include all the dependent MRs has been a common cause of build problems. The same

problem would also arise at the IMR level because IMRs sometimes depend on MRs belonging to other IMRs. Further

studies are needed to understand the optimal build strategy.

7.3 Process and Project Management

Because of the direct correlation between the degree of parallelism and an increased number of defects, process and

project management need to take a careful look at how to support the development process at this particular point. A

study of the software development organization which maintains this subsystem yielded two results relevant to parallel

development, 1) a focus toward development interval reduction by gradually shifting from a code ownership model

{ in which a developer was designated to be the \owner" of one or more modules of code { to a feature ownership

model { in which a developer was authorized to make all the changes necessary to implement a given feature or �x,

and 2) a trend toward features that cut across an increasingly larger number of modules [19]. While the orientation

towards feature development has useful properties for evolving and marketing the product, the resulting parallel

development by multiple developers compared to that with �le ownership poses signi�cant problems that need to be

carefully managed.

As it is very likely that the changes done in parallel conict with each other, it is very important that the developers

making the concurrent changes understand what each other is doing and how their changes interact with each other.

This is the area where tool support is needed. Where these interdependencies cannot be managed automatically,

they must be managed manually.

Much of the current coordination is done informally between developers where they know there are conicts. The

conceptual distance between the changes exacerbates the problem and increases the need for explicit coordination

| that is, developers working on the same IMRs are likely to understand how the changes �t together much better

than those working on di�erent features in di�erent releases.

21



7.4 Our Contributions

In our observational case study, we have established that

� parallel development is a signi�cant factor in large{scale software development;

� current tool, process and project management support for this level of parallelism is inadequate; and

� there is a signi�cant correlation between the degree of parallelism and the number of defects.

In addition, we have provided a novel form of visualization for the di�erences within a sequence of versions of a �le,

showing where code has been inserted, deleted and replaced (see �gure 16).

7.5 Future Directions

We have looked at only the prima facie conicts, namely, those where there are changes on changes or changes

within a day of each other. A more interesting class of conicts are those which we might term semantic conicts.

These cases arise where changes are made to the same slices of the program and hence may interfere with each other

logically rather than syntactically. This phenomena requires us to look very closely at the �les themselves rather

than just the change management data. Our plans for this analysis include combining the use of dataow and slicing

analysis techniques to determine when semantic interference occurs.

Given the appropriate analysis techniques, we will then look at a subset of the �les to determine the degree of

interference associated with various degrees of parallelism and to establish the correlation with the existing defect

data.

ACKNOWLEDGEMENTS

The Code Decay Project [4] is a multi-disciplinary and multi-institution project for which a common infrastructure

has been created in support of multiple strands of software engineering research. We thank several members of the

project, Audris Mockus and Todd Graves, who extracted and prepared the change data into a form we could use.

Todd Graves was supported by NSF Grant SBR-9529926. We also thank Dave Atkins who helped us to better

understand the current 5ESS software development process.

References

[1] George E. Box, William G. Hunter, and J. Stuart Hunter. Statistics for Experimenters. John Wiley and Sons,
Inc., 1978.

[2] Frederick P. Brooks, Jr. No silver bullet: Essence and accidents of software engineering. IEEE Computer, pages
10{19, April 1987.

22



[3] John M. Chambers, William S. Cleveland, Beat Kleiner, and Paul A. Tuckey. Graphical Methods For Data

Analysis. Chapman & Hall, 1983.

[4] Code decay home page. http://www.bell-labs.com/org/ 11359/projects/decay.

[5] Michael A. Cusumano and Richard W. Selby. Microsoft Secrets. The Free Press, 1995.

[6] Jacky Estublier and Rubby Casallas. The Adele con�guration manager. In Walter F. Tichy, editor, Con�guration
Management. Trends in Software. John Wiley & Sons, 1994.

[7] Barney G. Glaser and Anselm L. Strauss. The Discovery of Grounded Theory: Strategies for Qualitative Research.
Aldine Publishing Company, 1967.

[8] Rebecca E. Grinter. Doing software development: Occasions for automation and formalisation. In Proceedings

of the European Conference on Computer Supported Cooperative Work, Lancaster, U.K., September 1997.

[9] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating noninterfering versions of programs. ACM Trans. on

Software Engineering and Methodology, 11(3):345{387, July 1989.

[10] Charles M. Judd, Eliot R. Smith, and Louise H. Kidder. Research Methods in Social Relations. Harcourt Brace
Jovanovich College Publishers, 1991.

[11] Gail E. Kaiser and Dewayne E. Perry. Workspaces and experimental databases: Automated support for software
maintenance and evolution. In Proceedings of the 1987 International Conference on Software Maintenance, pages
108{114, Austin, Texas, September 1987.

[12] David B. Leblang. Personal communication.

[13] David B. Leblang. The CM challenge: Con�guration management that works. In Walter F. Tichy, editor,
Con�guration Management. Trends in Software. John Wiley & Sons, 1994.

[14] Alex Mahler. Variants: Keeping things together and telling them apart. In Walter F. Tichy, editor, Con�guration
Management. Trends in Software. John Wiley & Sons, 1994.

[15] K.E. Martersteck and A.E. Spencer. Introduction to the 5ESS(TM) Switching System. AT&T Technical Journal,
64(6 part 2):1305{1314, July{August 1985.

[16] Audris Mockus and Lawrence Votta. Identifying reasons for software changes using historic databases. ACM

Trans. on Software Engineering and Methodology, 1998. Under review.

[17] Dewayne E. Perry. System compositions and shared dependencies. In 6th Workshop on Software Con�guration

Management, Berlin, Germany, March 1996.

[18] Marc J. Rochkind. The Source Code Control System. IEEE Trans. on Software Engineering, SE-1(4):364{370,
December 1975.

[19] Nancy Staudenmayer, Todd Graves, J. Steve Marron, Audris Mockus, Dewayne Perry, Harvey Siy, and Lawrence
Votta. Adapting to a new environment: How a legacy software organization copes with volatility and change.
In 5th International Product Development Management Conference, Como, Italy, May 1998.

[20] Walter Tichy. Design, implementation and evaluation of a revision control system. In Proceedings of the 6th

International Conference on Software Engineering, pages 58{67, Tokyo, Japan, September 1982.

[21] P. A. Tuscany. Software development environment for large switching projects. In Proceedings of Software

Engineering for Telecommunications Switching Systems Conference, 1987.

[22] Robert K. Yin. Case Study Research: Design and Methods. Sage Publications, 2nd edition, 1994.

23



A REVIEW OF ANOVA

This appendix gives some additional explanations of the ANOVA table in Table 2.

The �rst column gives the source of variation or the factors being considered.

The second column is the degrees of freedom, which is always 1 for numeric variables. For the residuals, it is the

di�erence between the number of points in the analysis and the number of degrees of freedom used up by the factors

being considered.

The third column (sum of squares) is obtained as follows:

1. for the �rst factor (e.g. number of deltas), �t a linear regression line between that factor and the number

of faults, then sum up the squares of the di�erences between each of the �les' number of faults and the

corresponding value �tted from the regression;

2. for the second factor, �t a linear regression line between that factor and the residuals from the �rst regression

and repeat the sum of squares calculation;

3. for the third factor, �t a linear regression line between that factor and the residuals from the second regression

and repeat the sum of squares calculation;

4. and so on.

The fourth column is the mean square, which is just the sum of squares divided by the degrees of freedom.

The �fth column is the F statistic, which is the ratio of the mean square of each factor divided by the mean square

of the residuals, and can be thought of as a measure of how real the contribution of each factor is relative to chance

(the larger the number, the higher the likelihood of a real e�ect).

The last column is the signi�cance of the F statistic (a value less than 0.05 is usually considered signi�cant).

Note that because the factors are not all independent of each other and because of the way the sum of squares are

computed, the signi�cance values are sensitive to the ordering of the factors. In this case, we purposely put parallel

changes at the end to see if it would still be signi�cant after all the other factors have been considered. As it turned

out, the contribution of parallel changes was signi�cant regardless of its position in the ordering.

Introductory explanations of ANOVA can be found in most statistics textbooks. In addition, there are several online

references:

1. David Stockburger. ANOVA: Why multiple comparisons using t-tests is not the analysis of choice.

http://www.psychstat.smsu.edu/introbook/sbk27.htm,

2. David Lane. Partitioning the sums of squares. http://www.ruf.rice.edu/�lane/hyperstat/B83612.html.

24


