
Exploiting the Map Metaphor in a Tool for Software Evolution*

William G. Griswold' Jimmy J. Yuan' Yoshikiyo Kato'

'Department of Advanced Interdisciplinary Studies
University of Tokyo

4-6- 1 Komaba, Meguro-ku, Tokyo 153-8904, Japan

'Dept. of Computer Science & Engineering
University of California San Diego, 01 14

La Jolla, CA 92093-01 14 USA
{wgg, jyuan}@cs.ucsd.edu

Abstract
Software maintenance and evolution are the dominant ac-

tivities in the software lifecycle. Modularization can sep-
arate design decisions and allow them to be independently
evolved, but modularization often breaks down and compli-
cated global changes are required. Tool support can reduce
the costs of these unfortunate changes, but current tools are
limited in their ability to manage information for large-scale
software evolution. In this paper we argue that the map
metaphor can serve as an organizing principle for the design
of eflective tools for petforming global software changes. We
describe the design of Aspect Browser, developed around the
map metaphor, and discuss a case study of removing a fea-
ture from a S00,OOO line program written in Fortran and C.

1 Introduction
The cost of software maintenance and evolution are of-

ten disproportionately large relative to the amount of code
changed or the resulting change in software behavior. One
cause is inadequate modularity: a change that might have
otherwise been local is dispersed across several components.
Because the programmer making the change does not have
all the code of interest in a single place, extra effort must
be invested in identifying all the places requiring change
(completeness), and changing those places such that each
change is consistent with the others (consistency) 131. Oth-
erwise, the change will be made incorrectly, requiring even
higher correction costs. As a simplistic example, renaming a
global variable requires locating the variable's definition and
its uses, and changing them all to the same name. A mis-
spelling or the choice of a name that is the same as a local
variable can inject a hard-to-find software fault.

When a change is limited to a module's file, the code of
interest is concisely enumerable by scanning all the lines
visually with an editor or by using a simple search. Con-
flicts with other modules are precluded or minimized by en-
capsulation. This inherent visibility is what gives modular-
ity its cognitive leverage: consistency and completeness can
be achieved through a process of reliable visual recognition,
with a minimal dependence on potentially faulty recall from

'This research was supponed in pan by NSF grants CCR-9508745 and
CCR-9970985, and in pan by UC MICRO grant 98-054 with Raytheon Sys-
tems Company, and took place in pan while the first author was on sabbati-
cal with the Aspectl group at Xerox PARC.

yoshi@ai.rcast.u-tokyo.ac.jp

memory [13, pp. 118-1211. This reduces the likelihood of
injecting faults or the need to double-check for completeness
and consistency of the change.

Unfortunately, achieving long-term, stable modularity of
a useful software system is impossible 123. For one, the soft-
ware designers must anticipate all future changes-added
features, performance improvements, and interoperability
requirements-and localize each anticipated change to its
own module. The whims of users and competitive markets
inevitably create a need for software changes that could not
have been anticipated. Consequently, designers make a best-
effort estimate of what changes are most likely in the foresee-
able future and focus on isolating them to modules. Changes
outside this scope will be dispersed throughout the source
code.

A natural question, then, is how can tool support assist in
making these global changes? The tool of choice today is
the text matching tool grep [l] or one of its many cousins,
due to its ease of use, speed, and integration with the edit-
ing environment. Grep takes a regular expression and a list
of files and lists the lines of those files that match the pat-
tern. However, these tools have several limitations: relatively
weak pattern matching capabilities; insufficient information
about both a match's relationship to the module in which it
appears, to the other matches, and to the results of previous
searches; and incomplete management of information relat-
ing to the change, such as progress in the overall task. These
can complicate achieving completeness and consistency by
increasing the programmer's dependence on recall to make -
the changes correctly. A tool like Seesoft, which enables vi-
sualizing lines of code that match a criterion (like a textual
regular expression) in a global view of files 141, can comple-
ment a tool like grep, as it enables seeing how such match-
ing lines relate both to each other and to the system at large.
This was our starting point for Aspect Browser (AB), a tool
for assisting evolutionary changes by making the code re-
lated to a global change (a kind of aspect [6])l feel like a
unified entity, even like a module [5]. However, a pilot study

An uspm is a program propeny or behavior whose implementation nat-
urally cmsscufs the behavioral decomposition (e.g., procedures and objects)
of a system. Consequently, it may be difficult or impossible to effectively
separate an aspect from other program entities. Prototypical aspects are se-
curity, caching, memory management, and complex protocols, although the
aspects arising out of sofiware evolution are ofien due to the addition of new
functionality afier the basic architecture of the software is established.

265
0-7695- I050-7/0 I $10.00 0 200 I IEEE

mailto:jyuan}@cs.ucsd.edu
mailto:yoshi@ai.rcast.u-tokyo.ac.jp

revealed that AB’s simple combination of the two technolo-
gies would inadequately relieve the programmer of recall de-
mands when evolving large programs.

This experience led us to the insight that, instead of AB
providing support so that aspect code can be treated as a
module, AB could adopt a metaphor based on maps 17, 141,
which would support the manipulation of both modules and
aspects as first-class entities in their own right. Maps are a
highly evolved human artifact for planning and way-finding
based on spatio-visual abstraction. They abstract away un-
needed detail to compress presentation to human-sized pro-
portions and leverage the human visual system to recognize
entities and organize complex information.

Symbols and a host of other standard map features elevate
physically dispersed entities to first-class status. For exam-
ple, the location of an entity on a map (placement on a 2-
dimensional plane) is readily discernible by humans. Like-
wise, a symbol representing a class of entities (e.g., shape,
texture, or color) that is visually distinguishable from others
permits quick recognition and classification. To apply the
map metaphor to programs, spatial and symbolic qualities
must be ascribed to otherwise non-spatial and non-symbolic
entities. A seemingly natural choice is for delineation of re-
gions to denote modules and for symbols to denote mem-
bers in aspects: a module is a scoped entity and its code is
logically contained in it; aspects, lacking such containment,
are naturally assigned to symbols that are recognized by ap-
pearance rather than location. Using location relationships-
proximity and containment-the relationships amongst mod-
ules, amongst aspects (e.g., by proximity of aspect symbols),
and between modules and aspects can be quickly recognized.
This is a property exploited by Seesoft 141. AB completes
the map metaphor, including indexing (ala street indexes), a
cursor (“you are here”), customization (e.g., zooming), an-
notation, and folding (i.e., as a street map is folded to make
it smaller). Some of these features fall into the realm of ani-
mated maps (support for automated customization), and oth-
ers are implementations of informal ways that maps are used
to make them more useful. These are essential in our domain
both because of the extraordinary size of the programs being
mapped and the wide variety of uses (tasks) to which the map
is applied: there is no one-map-fits-all solution. Animation
also permits the map to remain up-to-date, as of course the
program is being ch,anged as a part of the overall task.

The next two sections discuss the relevance of the map
metaphor to software evolution and AB. To gain insight on
the relevance of the map metaphor to evolution, we then de-
scribe a case study of AB applied to removing a feature from
the 500,000 line FortranK finite element solver system. Be-
fore closing, we discuss related work.

2 The Map Metaphor
In addition to putting modules and crosscutting aspects

on an equal footing by overlaying aspect symbols on module
regions, adopting the map metaphor addresses the challenge

of scale. Evolving and maintaining large systems involves
crosscutting aspects of enormous size and complexity, and
could result in global views that are beyond the capacity of
normal computer monitors or the cognitive capabilities of a
programmer. Likewise, a change to an aspect can be spread
over a considerable span of time, stressing a programmer’s
ability to recall what had been accomplished so far and what
remains to be done.

Maps have evolved over time to address scale issues [141.
Modern maps provide magnified inse$ (zooming) to show
needed detail in small, critical regions, thus allowing the
main map to be rendered at a smaller scale; they provide
indexes of special entities (e.g., roads, parks, schools) to per-
mit locating them by alphabetic search rather than scanning
the entire map; they are creased to permit folding to fit in
a small space, while at the same time allowing two far-away
locations to be placed next to each other; they can be marked,
annotated, and stuck with pins to record long, complex routes
and mark one’s current location on that route; and the color
scheme can be “dimmed”on parts of the map to indicate they
are not of (current) interest (e.g., the periphery of a map of
the U.S. will show Mexico and Canada in greyish tones). An-
imated maps allow the map user to dynamically choose what
is zoomed and how much, what is dimmed, and what features
are displayed on the map, permitting a higher level of cus-
tomization than informal actions like folding and marking.
Animation also ensures that the current state of the entity is
being mapped, which is an essential property for software
evolution. Likewise, changes to the map over time can re-
flect progress in completing a task, for example conveying
which places have already been visited and which have been
changed. With animation, a map really comes to represent a
map-or plan-of the software evolution task being carried
out, not just the (static) program.

We used the map metaphor, then, to instruct us on how to
manage scale in AB. The metaphor also revealed that seem-
ingly independent features in AI3 could be related through
the metaphor. For example, when we cast the list of as-
pects as an index of aspects, we recognized that the list of
redundancies that the tool infers for the user (Section 3) is
an aspect index as well, and should be managed through a
common mechanism. Such unification, combined with the
programmer’s familiarity with the features of maps and how
they work, eases use of the tool.

3 Aspect Browser
An aspect in AB is defined as a pair consisting of a pat-

tern (a grep-like regular expression) and a color. When an
aspect is enabled, the display of any program text matched
by the pattern is highlighted with the aspect’s corresponding
color. By using enclosed regions to represent modules (e.g..
files) and swatches of color within regions to denote the loca-
tion of a portion of an aspect, both modules and aspects can
be given first-class representation in the environment. This
functionality is achieved with two integrated tools, Nebulous
and Aspect Emacs.

266

if(eent.getSowce0 == nhextkpect)

(in t activeID = nAspectComboBox.getCctiveID();

brean; // do nothing
case RAspectComooBox. kAnbFlrpe

mLWswContro1 l e r .flov

nIMwrContro1 l e r .flov$i

Figure 1. A screen shot of Aspect Browser being used on the Nebulous source. The top of the foreground panel is the aspect index,
containing a pattern forward in blue and c u r s o r in green, chosen to help find where code has to be added for a new traversal
feature, based on conflict highlighting. Below the index is an Emacs buffer containing these aspects. In the background is Nebulous
with aspect-less files folded under. The Nebulous cursor is about 213 down the first unfolded file from the lefl. The zooming and
traversal features appear near the bottom, with the status bar below them.

Nebulous. Nebulous provides the main map of the pro-
gram (or task), using a view based on the Seesoft concept [4].
Each file is represented as a region-a vertical strip-in
which the first row of pixels in the strip represents the first
line of code, and so forth (Figure 1, background). Each file’s
background is set to the editor’s background color to provide
a cue that the file strips are low-resolution maps of editable
source code. Files are placed by default in alphabetical order
from left to right, although other orders (e.g., by age) may
be chosen. Subdirectories of the project are also shown as
(large) regions, each containing its out set of file strips. The
hierarchical and alphabetical listing provides a spatially ac-
curate map of how a project is represented in the file system,
minimizing reorientation when the programmer changes fo-

cus from the tool to the command prompt and vice versa?
The files in a project are specified by a list of regular ex-
pressions and an indication of whether inclusion should be
hierarchical; the specification is stored in a project file for
use across sessions,

In Nebulous, each displayed aspect is highlighted in its
color at matching locations on a line-by-line basis, permit-
ting the nature of the crosscutting to be readily perceived.
If more than one aspect resides in the same line (e.g., two
aspect patterns match different parts of the same line), Neb-
ulous highlights the line in red to indicate that there is an
“aspect collision”. This is necessitated by the low resolution
of the view, but it also proves useful during software evolu-
tion tasks by providing a cue as to where aspects are likely

‘Alternate hierarchical presentations of the project can be specified.

267

interacting. Proximity of aspect highlighting provides a sim-
ilar cue, when there is not a collision. A separate map key
lists the aspects in the view (including the “conflict aspect”),
listing each aspect’s pattern, color, and number of matches
found throughout the system.

All state-changing operations such as enabling an aspect
pattern or saving a file are reflected in the Nebulous map.
Double-clicking on a strip in the Nebulous window causes
Emacs to open the file and display the portion of the file
where the user clicked, in essence generating an editable map
“inset”. This action leaves a red cursor in the Nebulous view,
helping the programmer to stay oriented when returning to
Nebulous.

In addition to the “you are here” cursor, Nebulous pro-
vides several mechanisms for managing large maps. First, it
provides the standard, un-map-like scrolling operations: hor-
izontal scrollbars for showing hidden files and vertical scroll-
bars for showing hidden portions of a file? A “Where was
I?” operation is also available for quick-scrolling to the cur-
rent cursor, should it be moved off the screen during perusal
of the view.4

Since invisibility of information is generally undesirable,
zooming permits changing the resolution of the map to better
fit the display or show more detail. Zooming out one level,
for example, causes two program source lines in a file to be
mapped to one row of pixels in a file region; merging two
highlighted lines of different aspects results in red conflict
highlighting. File width can be separately adjusted if desired.
Since a narrow width can clip a file’s name, a status window
shows the name of the file currently under the mouse.

Dimming grays out files that do not contain any high-
lighted aspects, helping the programmer to focus attention
on the brighter files. Folding narrows the interior of each file
that does not contain highlighted aspects, leaving its border
as a “crease” that indicates a file has been folded under. Fold-
ing provides compaction of the view, but it also alters spatial
relationships such as positioning. This can bring portions
of an aspect closer together, but can also disorient the pro-
grammer by putting files in unfamiliar locations in the map
(i.e., farther to the left). The amount of folding that occurs
can also provide a quick assessment of how extensively an
aspect crosscuts the system.

To both manage scale and to ease non-modular operations
such as aspect perusal (i.e., make aspects first-class entities
in the tool), Nebulous provides two kinds of traversal oper-
ations. Aspect traversal enables walking forward and back-
ward through the lines comprising an aspect. A single cho-
sen aspect can be traversed, or all enabled aspects may be
traversed together. Forward traversal proceeds from top-to-

30ne could argue that scrolling is akin to flipping through the pages
of an atlas. An atlas is in essence an ordered list of maps with a shared
index, packaged in a small form factor (small for maps, anyway). They are
most effective when the coupling between maps is minimal, which is not
necessarily the case with the evolution of crosscutting aspects.

41n which case the cursor is functioning like a bookmark in an atlas.

bottom, left-to-right in the map, with the cursor indicating
the location on the map and the editor window showing the
code at the location. If the traversal starts in the upper left-
hand comer, then the cursor divides the map into a “visited”
region to the left and a “to be visited” region to the right, thus
helping the programmer keep track of progress in the traver-
sal or task with a single concise cue. History traversal allows
backing up and revisiting a series of previously visited loca-
tions, whether visited by aspect traversals or double-clicking
with the mouse. It is useful for reviewing or revising prior
changes.

Aspect Emacs. Aspect Emacs (AE), an Emacs-Lisp exten-
sion to GNU Emacs, provides the map indexing, map inset,
and editing capabilities of AB. When an aspect is enabled,
AE highlights the matching text in any displayed buffers
with the aspect’s corresponding color (Figure 1, bottom fore-
ground). Because of the high resolution of the editing view,
there is no need for conflict highlighting-each aspect match
is independently highlighted in its color.

AE manages aspects through an aspect index browser
(Figure 1, top foreground). The browser shows the pattem,
color, match count, and programmer annotation of each as-
pect. The user can perform a number of operations on as-
pects: create, delete, hide (disable), show (enable), list (show
all lines of an aqpect), change color, and edit annotation. Be-
cause a large number of aspects may be created and the tool
may be used for a variety of tasks, hierarchical indexes are
provided to organize aspects. An index is essentially a com-
pound disjunctive aspect, so all aspect operations can be ap-
plied to indexes, providing concise manipulation of a group
of aspects. There is a simple tool for walking a user through
initializing a project (specifying the project files and naming
conventions), and the full browser state can be saved across
tool sessions.

As requirements evolve, modules may be explicitly
added by the programmer, but aspects can emerge, unno-
ticed. Consequently, it is helpful if aspects can be dis-
covered for the programmer. AE uses two simple proof-
of-concept tools for aspect discovery-automatic genera-
tion of aspect indexes-called redundancy-f i n d e r and
tag-f i n d e r . The redundancy-f i n d e r tool searches
the project to find redundancies in the code, reporting any
line that appears more than once (ignoring leading and trail-
ing white space). This approach is effective in identify-
ing code introduced by copy-paste programming, a common
programming tactic [151. The tag-f i n d e r tool extracts
fragments of identifier names (tags) from source code ac-
cording to a programmer-specified naming convention. For
example the name de le t e - source - f i l e contains three
tags, delete, s o u r c e , and f i l e , separated by under-
scores. Both tools report their results a$ an index of aspect
patterns and associated occurrence counts, although their ini-
tial state is unhighlighted (disabled), unlike manually created
aspects.

268

4 Casestudy
There were three questions we wished to explore with

respect to A B ’ s use in making large-scale, crosscutting
changes. First, we wanted to see whether a programmer
would use AB as a map; that is, adopt behaviors consistent
with using maps, including language, gestures, and actions.
Such behaviors would suggest a naturalness of the metaphor
to software evolution and indicate that we had been success-
ful in employing it. Second, we wanted to see whether the
map metaphor actually assisted the programmer. Third, we
wished to identify potential improvements to AB.
4.1 Experimental Method

We chose to perform a case study-that is, introduce our
tools into a real work environment, with minimal manip-
ulation by the experimenters [16]? Such a choice would
achieve high realism in all aspects of the task. We chose a
project in the Bioengineering department at UCSD that had
been developing and using an advanced finite element analy-
sis tool for a number of years. This large project had been en-
countering problems in on-going development due to legacy
software issues, making it suitable for study.

The programmer who volunteered for the study had used
an earlier version of the tool, and understood the concept of
crosscutting aspects. He usually uses the v i editor rather
than Emacs, but since he felt our tools would help him with
a specific task, he volunteered for this case study.

We used an observational method called constructive in-
teraction, in which a pair of programmers work in conjunc-
tion to make the change [ti]. Paired problem solving resula
in natural, productive conversation, providing insight into
the programmers’ thought processes without the unnatural-
ness of consciously talking aloud for the experimenters. The
programmer (hereafter called the subject) had used paired
programming extensively as an undergraduate, so this was a
natural work mode for him.

The subject, however, used paired programming only oc-
casionally in this work context. Since he was not very fa-
miliar with AB or Emacs, using one of the tool authors to
help with unfamiliar features seemed natural, as paired pro-
gramming often occurs in learning situations. Since the pro-
gram was written in Fortran, we chose a tool author who
also had Fortran expertise. Together, these would reduce
the “second wheel” status of the second subject, resulting in
more constructive interaction. (Observation bore this out; the
second, participant-observer subject successfully questioned
the primary’s programming several times and instructed him
on some obscure aspects of Fortran.) Below, when we refer
to “the subject”, we are referring to the primary subject.

For data collection, we videotaped the monitor of the SGI
Octane Inx (Unix) workstation where the subjects worked.
Each subject had a small microphone clipped to him in order
to record the dialog throughout the experiment. These two

~~~ - 
common conmm with a single-case study is that it represents just 

one data point. Case studies, however, are analogous to experiments, whose 
results are tested via replication, not sampling [16, pp. 45-50]. 

sources allowed us to study the discussions, mouSe move- 
ments, and process through which the work got done. 

The second subject provided a brief tutorial of new fea- 
tures added to Aspect Browser since the subject had last used 
the tool. After this, the subject was allowed to use any tools 
as he saw fit, and the second subject was instructed to not 
influence such choices (and stuck to this instruction). In- 
teraction between the subjects and experimenters took place 
only if there were technical problems with the tools or the 
like.6 

The Task. Prior to the study, the subject had selected a 
maintenance task that a tool like Aspect Browser should be 
able to help him perform. We did not set any time limit for 
the task, since it was part of his job (it took 18 hours). Like- 
wise, the subject was free to take breaks as he liked and de- 
cide when the experiment was over. 

The program being modified was a finite element anal- 
ysis program consisting of about 500,OOO lines of Fortran 
code and several thousand lines of C, totalling about 40MB 
of data. The program is divided into about 2500 files over 20 
directories. 

A feature called regions had been abandoned many years 
ago, but not removed. Regions had been implemented by 
adding a dimension to existing arrays and an integer value 
denoting the number of regions being used in the current 
problem. This integer, usually communicated to functions as 
a parameter called NR, was hardwired to be 1 in every place 
it existed in the code, and in other places it was never put in 
at all. The task was to remove all code pertaining to regions 
without breaking the program. The feature’s code spanned 
across all major directories of the program source. 

4.2 State of Aspect Browser 

and hence unavailable during the study: 
A few features described in Section 3 were not complete 

0 tool for project file creation (an editor was used instead), 
0 hierarchical aspect indexes, 
0 Nebulous’s status panel (tooltips were shown instead), 
0 file strip ordering options in Nebulous (defaulted left to 

0 complete regular expression support. 
right in the order read in from the file system), 

Although useful, none were deemed essential for the task, 
and issues that arose that pointed to their usefulness would 
be valuable outcomes. One sub-feature of regular expression 
matching was supported, exact-word matching, which per- 
mitted matching on short variable names without extraneous 
matches to variables that contained the pattern as a substring. 

‘The presence of one or more observers, either external or participant- 
observer, is a necessary component of case study research for the purpose 
of data collection; the potential for bias is minimized by issuing careful 
instructions for interaction and following them [16, pp. 86-89]. 

269 



4.3 Observations 
High-level observations. The subject knew a key variable 
for the regions feature was NR. He also had some documen- 
tation (on a website) that listed functions and arrays, some of 
which took NR as il parameter. This was a starting point for 
the task. He wrote the function, array, and variable names on 
paper, and said they were his initial aspects. 

The subject ran AB on a per-directory basis, choosing the 
directories in the order reported by the Unix Is directory 
listing command. He used grep on the first couple of direc- 
tories, and concluded that they contained no code of interest. 
In directory f e0 2, his search produced many matches, so he 
started AE. He created an exact-word pattern for NR to avoid 
matching the letters “NR” contained in any word.7 He also 
added the other names he had written down, and changed 
their colors to something less objectionable. 

He then created a file for Nebulous that specified what 
files are part of the project, and started Nebulous. f e 0 2 con- 
tained 90 files. He zoomed in once to make the aspect lines 
thicker. (In this project the convention is to have one func- 
tion per file, so this zooming only obscured lines in a file for 
the largest functions.) He changed the file strip width from 
50 to 30 pixels to get more files on the screen. 

Starting with the leftmost file in the Nebulous view, he 
double-clicked on the first highlighted line, which brought up 
an Emacs view with highlighting of the selected aspect line 
(and those nearby) in the view. He began removing occur- 
rences of NR and related entities while scrolling down using 
editor commands. 

Several subtasks emerged. One, he removed reference.. 
of NR appearing in function calls. Tho, if he had not en- 
countered this function before, he wrote it down to be added 
as an aspect, along with an annotation about the parameter 
position at which NR appeared. All new functions would be 
added when he finished modifying the file. Three, such func- 
tion definitions had to have the parameter declaration deleted 
as well. Four, he removed uses of NR as an array index. 
Five, he removed the region dimension from the declarations 
of said arrays. Six, he removed loops iterating over the re- 
gions (with NR representing the upper bound of the loop). 
Finally, because certain variable declarations (formerly) re- 
lated to regions were imported (i.e., include’d)  but un- 
used, he checked for this and removed the import if not used. 
The include file’s name was an aspect, serving as a reminder 
to do this subtask. 

When the task was complete, he had created 128 aspects. 
He then ran a small set of standard multi-part test caqes to 
expose any introduced bugs, working from easiest to hard- 
est, running them interactively so he could isolate any mis- 

7Although NR is not global, apparently the naming conventions on the 
project vinually ensured that any function parameter representing the num- 
ber of region would be named NR. This is not just fonunate, but a wise 
tactic, as Fortran’s simple data representations and type system cause pro- 
grammers to encode many entities as integers, rendering program type in- 
formation useless in distinguishing entities. Even with modem languages, 
of course, programmers often use integers directly for all kinds of quantities. 

behaviors. Only one malfunctioned, but the subject could not 
determine if the problem was associated with the changes he 
made or not, in part because he had not run the test cases 
immediately prior to the change as a baseline. Later, it was 
determined that it was a problem unrelated to the change. 
The most difficult test case waq the most demanding prob- 
lem ever run on the system-a simulation of an electrical 
wave propagating through a heart-and it ran to completion 
without any glitches. The subject was surprised at the per- 
formance improvement, claiming it was 25% faster. 

Routine Behaviors. For each directory, the subject entered 
the directory, copied the project file specification from the 
previous directory, and started Emacs with aspect browser 
mode. He then loaded the list of aspects he had built up 
and saved from previous directories. Launching Nebulous, 
he folded under files without aspect matches, changed the 
file strip width to be thinner than the default, and zoomed in 
once. Starting at the leftmost file strip, he always double- 
clicked on the first match, which brought up Emacs with the 
match in its view. When done with a file, he would save 
it and then raise the aspect index window to add any new 
aspects, immediately saving the list. He would then slide the 
mouse over the Nebulous view where the cursor had been 
left behind by the double-click navigation to Emacs, slide 
the mouse to the next file strip to the right, and then double- 
click on its first match to bring up the code at the selected 
match in Emacs. 

For functions that took NR as an argument, the sub- 
ject wanted to define an aspect using not only the name 
as a pattern (e.g., ZPZE), but he also wanted to use regu- 
lar expressions to capture the full argument list of the call 
(zPzE(.*, .*, .*, .*, .*, .*, .*)). In this way, only 
unedited calls would be matched (in the example, those con- 
taining 7 rather than 6 parameters). Thus when the file was 
saved after editing, Nebulous would be updated to show that 
the aspect no longer appeared in the file, signalling that the 
change was complete (“I want all this to be white,” he said, 
true to the map metaphor, although in fact the map would 
have been refolded to remove irrelevant “white” file strips). 

Lacking full regular expression support, the subject de- 
pended upon a less reliable combination of cues and pro- 
cess. The subject would double-click from Nebulous to the 
first match in a file, and inspect the matches top-down in the 
edit buffer, normally using line-by-line scrolling (e.g., hold 
down control-N for continuous scrolling), quickly looking at 
each match, making a change if necessary, continuing to the 
bottom of the buffer. He would then (normally) rescroll to 
the top of the buffer to make sure everything was OK. This 
second backwards pass also served to return the subject to 
the top of the buffer where sometimes the possibly unused 
import resided, permitting it to be deleted if no uses of the 
import were encountered on the way up. This process en- 
sured that every match-some spurious-was inspected up 
to two times. Relevant lines were usually highlighted in two 

270 



places in two colors: a use of the parameter NR and a function 
known to take a region number as a parameter. The bright 
green highlighting of NR was a sure hit, but sometimes just 
the function was highlighted because the constant literal 1 
was passed instead of NR to the function. At a glance, such 
calls have the appearance of an edited call or other kinds of 
spurious matches. The subject in fact missed one of these, 
but it was caught by his partner. 

Ultimately, the subject used three different methods to 
visit each match in a file. He volunteered that he tended to 
scroll over the matches in the edit buffer rather than use the 
traversal features because he did not have to take his hands 
off the keyboard. (He suggested that we add a hotkey short- 
cut for aspect navigation.) He said he used double-clicking 
on each match in a file strip (always top-to-bottom) when the 
matches were so far apart that it was faster to move his hand 
off the keyboard and use the mouse. Finally, he noted that 
he used the aspect traversal buttons for large files whose file 
strip was not fully visible (and hence not fully clickable with- 
out scrolling). This method took him to the next file automat- 
ically, which he complained about because he wanted to save 
a file before going on to the next. His choice of method was 
not entirely consistent with these conditions, however, sug- 
gesting that factors like habit played a role in “choosing” a 
traversal method.’ 

After completing changes to the directory, the subject 
would typically recompile the directory to expose syntax er- 
rors. (Recompiling and running the whole program was im- 
possible until all declarations and uses were made consistent 
across all directories). The most common error uncovered 
was deletion of the wrong ENDDO. Sometimes an NR refer- 
ence in a function body was overlooked, which was unde- 
fined because its declaration had been deleted from the func- 
tion definition. Also, after modifying the first directory, sev- 
eral array uses referenced fewer dimensions than their decla- 
rations defined; the subject immediately went to the include 
directory and deleted the region dimension from the declara- 
tions. Mismatches between procedure calls and declarations 
were not checked by the compiler or linker. 

Other Observed Behaviors. The subject deviated from 
these routine behaviors in several instances, three of which 
we discuss here. One, after directory fe07, which intro- 
duced many new aspects, the subject turned off all non- 
function aspects and reinspected the matching function calls 
in the directory to make sure no mistakes had been made. 
’ b o ,  he realized that a variable he had been pulling out, 
NRMX was not related to regions and those changes needed 
to be undone. Rather than start over, he checked out a clean 
version of the system, created an a9pect for NRMX for it, and 
used these matches to show what code should be reinserted 

8Methods of locating information on a paper map are also redundant. 
For example, in looking for a park, a person could either go to the index 
and look-up the grid coordinates for the park, or look at the map itself, 
methodically searching for green areas representing parks until the desired 
park is found. 

. 

into the modified code. Three, in a directory with a small 
number of matching files, he postponed the biggest file with 
the most matches until last. This departure from the normal 
left-to-right walk over the directories later led him to ques- 
tion if he’d already done a particular file, despite having a 
simple metric to remind him which file had been skipped. 

The first two departures from routine behavior are some- 
what analogous to his routine behavior, using aspect symbols 
on the map as places to revisit in a geographically contigu- 
ous order. The last also used a symbol to adjust the visi- 
tation, but the symbol-a large region-was an affordance 
symbolically unrelated to the change and hence more prone 
to confusion. Together, these exceptional behaviors point to 
the power of the metaphor and importance of using symbols 
related to the change to ensure completeness in the task. 
4.4 Discussion 
Appropriateness of the Map Metaphor. The appropriate- 
ness of the map metaphor can be gauged by map-like and 
successful use of features, and more generally by behaviors 
and language use that are consistent with the use of maps. 

Not surprisingly, the subject had no trouble with the ba- 
sic symbols adopted by AB. There was no confusion that the 
enclosed regions in the view (what we’ve called file strips) 
denoted the files in the current directory, and the subject used 
the colored lines of pixels within a file strip to denote cross- 
cutting aspects. He used, without confusion, double-clicking 
of aspect symbols to generate an inset for detailed inspection. 

More interesting is the use of the aspect symbols as an 
enumeration of places that required change-relating sym- 
bols to tasks as well as to things-and to organize these 
changes in a spatially continuous route (left-to-right, top-to- 
bottom) through the view. His repetitive zooming and fold- 
ing behaviors are consistent with idiomatic map use, in that 
map users constantly manipulate maps to make all the in- 
formation of interest accessible without becoming ungainly. 
Indeed, he deviated from this folding behavior for some 
smaller directories, where visibility was less of an issue. 

Although the subject did not-and could not-memorize 
the colors of all 128 aspects, the symbol content of color 
nonetheless assisted the change. About two hours into the 
study he said, “Green is NR” while looking at a file in the 
Nebulous view, and double-clicked on the green line to ex- 
amine it more closely. A little later, he gestured at a bunch of 
highlights in Nebulous and said, “These are all RANGE.” He 
also made a point of coloring similar objects the same color, 
although inconsistently, perhaps because i t  required an addi- 
tional command. A color is connected not only to an aspect, 
but to a particular task. “Look at all thar green. There’s four 
new aspects right there, baby. That’s NR” Thus, the recog- 
nition of symbols triggered the recall of subtasks,.reducing 
the chance that they would be forgotten. 

Patterns of color across file strips also served as task trig- 
gers. Swirling the mouse arrow around two adjacent strips 
that looked similar in length and coloring, the subject said, “ I  
knew I could delete all that because this file matches pretty 

271 



well with the one I just edited. All the colors are the ex- 
act same here.” This recognition was dependent on numer- 
ous spatial and color cues. It also depended on the proximal 
placement of the files to ease recognition; the chance of such 
placement is increased by folding irrelevant files under. 

Because he was using colored line symbols to denote 
places requiring change, the presence and lack of these sym- 
bols were used as a progress indicator (including being done) 
and in estimation. “ I  want all this to be white” he said early 
in the task. In the first interview he said, “The way that I 
think of this tool, if there’s colol; then I still have more to 
do, from looking at Nebulous.” The number of files and the 
particular highlight colors were also important. When start- 
ing Nebulous in a new directory he said “Oh, there’s a lot 
offiles. Somebody shoot me.” Then after folding “Hey  it all 
fit. These all take NR” and then ironically, “This is great,” 
expressing that he had a lot of work to 

Despite these behaviors, the subject said that having more 
than two colors (representing match, no match) was not es- 
sential. “I didn’t really see what colors things were, except 
for things that showed up a lot, I would accidentally mem- 
orize what colors they were. So, I would. ..see a j l e  and I’d 
say, that guy’s got NET in it. That guy’s got NR in it. ’Cause 
those guys showed up a lot .... I t  wasn’t super helpful be- 
cause I was gonna have to pull those things out no matter 
what color they were anyway.” We judge this in part to be 
an artifact of the particular task and how the subject chose to 
use symbols to guide it; if AB had made it easier to map the 
aspects onto a smaller number of colors (say, one for each of 
the seven subtasks) a different choice might have been made. 

The subject frequently spoke in spatial terms. We judge 
that most of these would have been used regardless of the 
tools used (“Where does NELEM get defined?”) to the extent 
that file system and program organizations already manifest 
the region concept of maps (which is a good thing, in our 
view, for software evolution and for relating what is stored 
on disk to what is displayed in Nebulous). Other language 
wa3 more clearly related to the map metaphor of AB. While 
working, he pointed to the upper left comer of Nebulous, 
saying, “Start here,” and another time, “We’re making it over 
to the right side of the screen.” He also said “...I’ve got the 
marker dealy on where I clicked in so I know what file was 
the last one I did anyway.” This language indicates some 
notion of a left-to-right tour across the map, with the cursor 
keeping track of his place. In an interview the subject said, 
“Nebulous gives me a good look from far away”, and “ I t  

eEstimation and assessments of progress are useful in planning breaks in 
a long-running task so that they do not cause a disproportionate loss of the 
context (memay) that the programmer has developed IO draw upon during 
the change. For example, at Noon, the subject asserted that he would take 
a lunch break as soon as the current directory was done. In fact, he did an 
additional directory because the change was quite small (“Oh look’ There’s 
only onefile here. We‘ll do fe04, too, hen.”), enabling him to reuse that 
context and preserve a sense of momentum. After finishing fe04, a quick 
check of the next directory, fe05, suggested that it was quite large, so he 
decided to break for lunch. 

gives me an idea of how far along I am, too.” The use of 
these phrases suggests that the map metaphor is appropriate 
because it was natural for the subject to speak in terms that 
people may use when using geographic maps. 

The failures of two un-map-like features of AB also point 
to the value of the map metaphor. One, occasionally a por- 
tion of a file strip was not shown in Nebulous because the 
file it contained was especially long. This caused the subject 
to overlook some hidden highlights once, despite the scroll 
bar’s cue (the scroll bar is omitted altogether if the file fits). 
We also observed this problem in a separate study [17]. A 
zoom-to-fit button might make file-strip fitting eaqy enough 
that this problem could usually be side-stepped. WO, the 
non-alphabetical ordering of file strips led the subject to in- 
dulge in a time-consuming search to find a particular file in 
the view. Although two files might have no a priori adja- 
cency to dictate their proximal placement, the consistent lo- 
cation cues provided by maps are nonetheless a common and 
powerful way for humans to find things. Directory listing 
commands like Is that produce their results alphabetically 
by default reinforce this cue. 

Scalability. The program used in this experiment was sim- 
ply too big to view in AB all at once. Even directories of 90 
files (125 files was the largest) produced a full-width view 
after adjusting the width and folding under unmatched files. 
Loading all directories would have incurred a significant per- 
formance cost, spreading out the activity in time and stress- 
ing recall, with no added visibility to offset the loss. 

The directory, however, appeared to be a natural unit of 
work for the task. The files of a directory were (sometimes 
loosely) grouped into a subsystem. Thus, the definition of a 
function and all of its uses might appear in one directory. The 
coherent functionality of a subsystem made it likelier that the 
purpose files served were consistent throughout a directory, 
resulting in repetitive changes in a narrow time frame and 
hence becoming easier to recall and perfom as work pro- 
gressed through the directory. Also, the directory was a nat- 
ural unit for validating changes. After finishing a directory, 
the subject often performed some visual checks on the direc- 
tory using AB (e.g., revisiting remaining highlights), and- 
taking advantage of the Makefile that appeared in each 
directory-typically recompiled after finishing a directory. 
Because the changes had been performed relatively recently, 
any problems were generally easy to diagnose and repair. In 
this respect, the subject’s chunked use of AB is not unlike 
using an atlas, which copes with scale by providing a col- 
lection of related maps with a shared index. The use of a 
common aspect index was crucial to the chunked application 
of AB; retyping the 128 aspects discovered in the course of 
the change waq not an option. 

These behaviors would not have been precluded if the 
whole program had been loaded into AB. The hierarchical 
display of subdirectories provides cues than can remind the 
programmer to perform subsystem validation, and demand- 

272 



driven computation could improve performance. The point 
is that (a) invisibility is countered not just by the global dis- 
play, but also by the global index, and (b) scalability could be 
better managed by providing more explicit atlas support- 
perhaps filing directories under “tabs”, currently a popular 
way to pack more function into tools. 

Other Tools. The compiler played a key role in directory 
validation, finding syntax errors and inconsistent declara- 
tions. As these capabilities are outside of AB’s scope, the 
compiler was a critical, complementary tool for this task. 

The subject made limited use of other tools providing 
matching functionality, and most of these were early in the 
study. In the closing interview, the subject said “...looking 
in some of the directories with grep, I’d see all this output 
from grep for like an aspect, and that was just one of the 
128 aspects, and I’d. ..look at that and say, this is impossible, 
and I’d just get discouraged, but I’d say, well, I’ve gotta do 
it. So, I brought up ... Aspect Emacs and Nebulous, and when 
I brought up Nebulous, I see the whole thing, from...a little 
further back, [and think] I can ab it, it’s not so scary.” 

Yet he said that a tool like grep is superior when “All I 
want to know is, is it there, right? Just [type] grep, then 
a name, then a star. And if anything comes up, then I have 
the information that I wanted. And that will always be the 
fastest way to find out that information.” He also noted that 
auxiliary or preliminary aspect searches were best done with 
grep, even when AB was already up and running, “be- 
cause I didn’t have IO turn off the aspects,” to clearly see the 
search’s results. He was unsure that the features provided by 
hierarchical indexes would have overcome this advantage. 

Another question is whether tools unavailable to the sub- 
ject might have proved useful. A tool like Lackwit (imple- 
mented for C programs) could in principle infer the de facto 
type of the region number and provide a graphical display of 
the relationships across functions [ 121. However, Lackwit, 
like AB, must be bootstrapped with an initial set of variables 
that are of the appropriate type. Likewise, this identification 
is complicated by the passing of the literal 1 instead of NR 
in some places, interrupting the transitivity of the inference. 
Of course, once such an analysis is complete, the viewing 
and editing of the inferred types and their uses throughout 
the program could benefit from a view baed on the map 
metaphor. 

4.5 Completeness and Consistency 
The introduction of bugs-incompleteness or inconsis- 

tency of the change-were rare; such mistakes were caught 
by the compiler, the subject himself, or by the subject’s part- 
ner. The subject’s change process enhanced completeness 
and consistency, and was molded by AB’s expression of the 
map metaphor. The subject almost always worked from left- 
to-right, top-to-bottom in both Nebulous and Emacs, using 
the cursor as a cue of his location and progress in the task. 
However, the subject had to remember to add new aspects- 
there were some close calls-which the subject eased later 

in the study by placing the browser so that it5 bottom was 
not covered by any window. Explicit completeness and con- 
sistency actions, like backtracking over a subset of matches 
upon completion of a directory, were enabled by AB’s traver- 
sal and aspect-disabling features. 

Errors were more frequent early in the study. Compil- 
ing the first modified directory produced a number of syn- 
tax errors because matching ENDDO’S had not been deleted 
properly and because uses had been edited but not their dec- 
larations (which were in a separate include file). Updating 
the declarations was a one-time activity, but to avoid future 
problems in deleting loops, the subject decided, “I think the 
first thing I’m going to do now is to delete the ENDDO at 
the end,” that is, to delete matching ENDDO’S immediately 
rather than continuing to make other changes in the file while 
scrolling down to the (supposedly) appropriate ENDDO. Such 
problems and the subsequent decision show the tension be- 
tween removing the feature (an aspect) and preserving the 
integrity of the current procedure (a module). In short, the 
completeness and consistency of the aspect change were in 
tension with the consistency of the module. AB addresses 
this tension in part by using location to denote module prop- 
erties and using colored symbols to denote aspect proper- 
ties. A slight change in the subject’s editing process reduced 
the module consistency problem, but at the expense of ex- 
tra scrolling in the file and potentially losing his place in 
the change of the aspects. For the subject, this no doubt in- 
creased the importance of being able to make the view “all 
white” (or all files folded under) to show that aspect change 
was complete. 

5 Related Work 
RIG1 is a reverse engineering tool for capturing the mod- 

ule structure or architecture of a system [9]. It extracts an 
initial structural view of a program based on its hierarchi- 
cal structure, function calls, and variable references. Boxes 
represent modules of any kind and edges show relationships 
like reference; nesting shows membership. A programmer 
can then customize the view to manage detail and capture 
conceptual relationships; graph layouts may be customized 
to achieve a more informative view. 

Reflexion modelling (RM) provides a mechanism for 
recording, displaying, exploring, and iteratively refining 
a task-specific box-and-arrow conceptual view of a sys- 
tem [ 113. It provides a regular expression mechanism for 
specifying component membership and a lightweight, robust 
source model extraction tool [lo] for inferring a wide array 
of relationships among the components. 

In both, spatial relationships present and organize infor- 
mation, but the tools do not complete the metaphor with 
map features like cursors, indexes, and folding. Neither is 
suited to capturing fine-grained crosscutting, although either 
in principle might. If given the capability to dynamically re- 
flect changes to the software they are modelling, either could 
be extended with the map metaphor to more directly plan 

273 



and carry out evolutionary changes. Conversely, AB does 
not show relationships via edge connections. 

6 Conclusion 
The crosscutting changes that arise in the evolution of 

large software systems are costly, because the dispersal of 
related code creates a tension between managing the code in 
a single view and ensuring the integrity of the modules in 
which the crosscutting code is embedded. 

Tools like grep and Seesoft provide basic technology to 
counter these problems, but are an incomplete solution to 
the difficulties of large-scale software evolution. The tech- 
nology of maps, a highly evolved mechanism for managing 
scale when coping with dispersed but spatially related enti- 
ties, suggests a way to augment and integrate such software 
technologies for their application to software evolution. 

We implemented Aspect Browser to demonstrate the ap- 
plicability of the map metaphor to issues in software evolu- 
tion, and performed a case study to determine how the map 
metaphor influenced and aided software evolution. Using 
AB, the programmer was successful in making a complex 
change-removing a crosscutting feature-from a 500,OOO 
line system. The programmer's behaviors were analogous to 
a map user's-such as the use of symbols to mark places 
requiring change and visiting the places via a tour of the 
symbols on the map. Moreover, the processes and strategies 
that he developed around AB-such as left-to-right, edge-to- 
edge tours of the map to ensure completeness and combining 
highlighting and hiding to focus attention-were successful 
in minimizing the introduction of bugs and produced a run- 
ning system with a minimum of debugging. 

The problems the programmer encountered point to addi- 
tional ways the map metaphor could be applied, such as the 
inclusion of atlas features to improve scalability. Future stud- 
ies can provide additional insight into the appropriateness of 
the map metaphor and how it might better assist software 
evolution. 
Acknowledgments. An early version of Nebulous was im- 
plemented by Eric Lundberg. Gregor Kiczales suggested 
the idea of highlighting in program text to show cross- 
cutting. We are grateful to our anonymous subject as 
well as Andrew McCulloch and his group for welcom- 
ing us into their lab. We also thank the anonymous re- 
viewers, Michael Copenhafer, and Wesley Leong for their 
detailed, constructive comments on the original submis- 
sion. Aspect Browser is available on the internet from 
http://www.cs.ucsd.edu/users/wgg/Software. 

References 

[l]  A. V. Aho. Pattern matching in strings. In R. V. Book, editor, 
Formal Language Theory: Perspectives and Open Problems, 
pages 33-347. Academic Press, New York, 1980. 

[2] L. A. Belady and M. M. Lehman. A model of large pro- 
gram development. IBM Systems Journal, 15(3):225-252, 

1976. Reprinted in M. M. Lehman, L. A. Belady, editors, Pro- 
gram Evolution: Processes of Software Change, Ch. 8, APIC 
Studies in Data Processing No. 27. Academic Press, London, 
1985. 
R. W. Bowdidge and W. G. Griswold. How software tools or- 
ganize programmer behavior during the task of data encapsu- 
lation. Empirical Sofiware Engineering, 2(3):221-267, April 
1997. 

S. G. Eick, J. L. Steffen, and Jr. E. E. Sumner. Seesoft-a tool 
for visualizing line-oriented software statistics. IEEE Trans- 
actions on Software Engineering, 18(11):957-968, November 
1992. ' 

Y. Kat0 W. G. Griswold and J. J. Yuan. Experimental study 
on scalability of tools utilizing information transparency. In 
International Conference on Software, Zoo0 IFIP World Com- 
puter Congress, pages 877-882, August 2000. 
G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, 
J. M. Loingtier, and J. Irwin. Aspect-oriented programming. 
In 1 Ith European Conjerence on Object-Oriented Program- 
ming, pages 220-242. Springer-Verlag, June 1997. 

A. M. MacEachren. How Maps Work: Represenrotion, Visu- 
alization, and Design. Guilford Press, New York, 1995. 
N. Miyake. Constructive interaction and the iterative process 
of understanding. Cognitive Science, 10(2):151-177, 1986. 

[9] H. A. Muller, S. R. Xlley, M. A. Orgun, B. D. Come, and 
N. H. Madhavji. A reverse engineering environment based on 
spatial and visual software interconnection models. In Pro- 
ceedings of the SIGSOFT '92 Fifth Symposium on Sofrware 
Development Environments, pages 88-98, December 1992. 

[lo] G. C. Murphy and D. Notkin. Lightweight source model ex- 
traction. In ACM SIGSOFT '95 Symposium on the Founda- 
tiom of Sofrware Engineering, pages 116-127, October 1995. 

[ 111 G. C. Murphy, D. Notkin, and K. Sullivan. Software reflexion 
models: bridging the gap between source and high-level mod- 
els. In ACM SIGSOFT '95 Symposium on the Foundruions of 
Sofiware Engineering, pages 18-28, October 1995. 

[12] R. O'Callahan and D. Jackson. Lackwit: A program un- 
derstanding tool based on type inference. In Proceedings of 
the I9rh International Conference on Software Engineering, 
pages 338-348, May 1997. 

[ 131 J. Preece. Human Computer Interaction. Addison-Wesley 
Publishing Company, Menlo Park Califomia, 1994. 

1141 A. H. Robinson, J. L. Morrison, P. C. Muehrcke, A. J. Kimer- 
ling, and S. C. Guptill. Elements of Cartography. Wiley, New 
York, 6th edition, 1995. 

[ 151 M. B. Rosson and J. M. Carroll. Active programming strate- 
gies in reuse. In ECOOP '93, 7th European Conference on 
Object-Oriented Programming, pages 4-20, 1993. 

[ 161 R. K. E n .  Case Study Research: Design and Methods. Sage 
Publications, Newbury Park, CA, 1989. 

[17] J. J. Yuan. Using the map metaphor to assist cross-cutting 
software changes. Masters Thesis, University of Califomia, 
San Diego, Department of Computer Science and Engineer- 
ing, April 1000. 

274 

http://www.cs.ucsd.edu/users/wgg/Software

