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ABSTRACT 
Object-oriented frameworks are a popular mechanism for 
building and evolving large applications and software 
product lines.  This paper describes an alternative approach 
to software construction, Java Layers (JL), and evaluates JL 
and frameworks in terms of flexibility, ease of use, and 
support for evolution.  Our experiment compares Schmidt’s 
ACE framework against a set of ACE design patterns that 
have been implemented in JL.  We show how problems of 
framework evolution and overfeaturing can be avoided 
using JL’s component model, and we demonstrate that JL 
scales better than frameworks as the number of possible 
application features increases.  Finally, we describe how 
constrained parametric polymorphism and a small number 
of language features can support JL’s model of loosely 
coupled components and stepwise program refinement. 
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1 INTRODUCTION 
Surveys show that nearly three quarters of all large 
software projects are cancelled, over budget, or late [20].  
To address this problem, various methods of reusing code 
and reducing design complexity have been proposed.  In 
terms of reusing both code and design to build large 
applications, object-oriented frameworks [2,17,27] repre-
sent the current state of the art when using general-purpose 
programming languages.  Frameworks are starter kits that 
use abstract classes to provide partially implemented 
applications.  Different applications can be created from a 
single framework by providing different implementations 
of these abstract classes, so frameworks are ideal for 
supporting software product lines, which are families of 
related software products. 

This paper introduces a language-based alternative to 
frameworks called Java Layers (JL).  JL [12] is an 
extension of Java that supports a layered software 

component model. Like frameworks, JL can be used to 
provide partially implemented applications.  Unlike 
frameworks, starter kits in JL consist of a set of 
components, or layers, that are then composed to generate 
applications.  The key idea behind the JL component model 
is that each layer encapsulates exactly one design feature, 
which is a high-level requirement that defines some 
application attribute or capability.  This one-feature-per 
layer property maximizes code reuse since each feature is 
implemented only once.  This property also facilitates the 
composition of layers, making it easy to include or exclude 
individual features.  Finally, this property preserves 
modularity in terms of both code and design. 

To compare JL against object oriented frameworks, we use 
JL to re-engineer the Adaptive Communication 
Environment (ACE), an object oriented framework 
developed in C++ by Schmidt and colleagues [28].  ACE is 
a well-documented, well-engineered framework that has 
been used in dozens of commercial and academic 
applications.  Thus, ACE represents proven and mature 
framework technology and provides a standard against 
which new technologies can be measured.  In this paper, we 
compare application development in ACE and in JL using 
the following qualitative measures:   

Usability – How easy is it to develop applications? 
Application Flexibility – How easy is to customize 

applications? 
Starter Kit Flexibility – How easy is it to evolve the 

starter kit?  
Contributions 
This paper makes the following contributions. 

1. We present the first experimental comparison of JL’s 
component model against a large, mature, object-
oriented framework (ACE). 

2. Compared to frameworks, we describe how JL 
employs simpler, more precise interfaces that reduce 
memory overhead, runtime overhead, and code 
complexity.  We also show how JL provides better 
support for evolution, and how JL avoids the 
framework problem of overfeaturing. 

3. We briefly describe JL’s novel features, which 
enhance usability and efficiency, and how these 
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features can be integrated into Java.   

This paper proceeds as follows.  Section 2 explains the JL 
component model, and Section 3 describes the foundation 
of the JL language.  Section 4 provides context by 
sketching the ACE architecture and its key design patterns.  
Section 5 then uses ACE to compare JL against 
frameworks.  In Section 6, we describe novel JL features 
that simplify component-based programming.  Finally, we 
present related work and conclusions. 

2 THE JL COMPONENT MODEL 
JL is based on the GenVoca software component model [7].  
This component model encourages a programming 
methodology of stepwise refinement in which types are 
built incrementally in layers.  Stepwise refinement is 
important because it allows design features to be mixed and 
matched, allowing applications to be flexibly and precisely 
customized. 

Another advantage of stepwise refinement is that it solves 
the feature combinatorics problem [10].  For a domain with 
n optional features, the feature combinatorics problem 
occurs when all valid feature combinations must be 
predefined or in some way materialized in advance.  In the 
worst case, n! concrete programs would have to be 
instantiated.  With stepwise refinement, only those feature 
combinations that are needed are materialized. 

The key to stepwise refinement is the use of components, 
called layers, that encapsulate the complete implementation 
of a single design feature.  This encapsulation often 
includes code that would be packaged separately using 
today’s programming language technologies.  For example, 
a layer in JL can contain Java code for multiple methods or 
even multiple classes, as we briefly describe in our 
discussion of deep conformance in Section 6.      

Once layers have been defined, the features that they 
encapsulate can be composed if the layers have compatible 
interfaces.  Layers export an interface and import zero or 
more interfaces.  New types are defined by matching the 
exported interface of one layer to the imported interface of 
another layer.   

To see how layer composition works, consider interface 
TransportIfc, which declares methods send() and  
recv():   

interface TransportIfc { 
  send(Data d); 
  recv(Data d); 
} 

Assume that three layers use this interface: The TCP layer 
provides data transport using TCP; the Secure layer 
provides data encryption/decryption; and the KeepAlive 
layer automatically exchanges liveness notifications 
between communicating peers.  Assume that all three 
layers export the TransportIfc interface and that 

Secure and KeepAlive also import TransportIfc.  The 
declaration below of variable trans uses a new type 
defined by composing these three layers: 

  KeepAlive<Secure<TCP>> trans; 

We say that the type of trans, which implements a secure 
TCP transport with the automatic keep-alive feature, is 
generated in the above composition.  This generated type 
implements TransportIfc because that is the interface 
exported by the leftmost, or top, layer in the composition 
stack.   

 

 

 

Figure 1 - Transport Layer Composition 

Layers in a composition can be thought of as stacked 
virtual machines that perform feature-specific processing  
(see Figure 1).  Though we haven’t shown method 
implementations, we can walk through a hypothetical 
invocation of the send() method to illustrate this idea of 
virtual machines.  When trans.send() is invoked, the 
KeepAlive layer at the top of the stack gets control first.  
KeepAlive’s send() simply calls the Secure layer’s 
send().  The Secure layer then encrypts the message and 
invokes the TCP layer’s send() to transmit the encrypted 
data.  The ordering of layers is important in this scheme—if 
the KeepAlive and Secure layers were reversed, then 
liveness messages would be sent in the clear rather than 
encrypted.    

To demonstrate the flexibility of stepwise refinement, we 
could now create a new layer, UDP, which also exports 
TransportIfc and is analogous to the above TCP layer.  
This new layer could be composed with the Secure layer 
to create a secure UDP transport type.  In this way, features 
are easily selected and composed to create new types.  

3 JL’S FOUNDATION 
We now introduce JL, which implements the component 
model just presented.  Since layers can be viewed as type 
parameters in compositions, constrained parametric 
polymorphism [11] is a natural implementation choice for 
our component model.  In this section, we describe the 
parametric implementation of Java that serves as JL’s 
foundation.  Language features built on top of this 
foundation, some of which can be applied as standalone 
features outside of JL, are described in Section 6.   

Layer composition in Java Layers is based on the use of 
mixins [3,25].  Mixins are types whose supertypes are 
parameterized.  Mixins are not supported in standard Java, 
but are available in some languages that support 
parameterized polymorphism such as C++ [32].  In this 

KeepAlive 
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TCP
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section, we describe how mixins support reuse and how 
they serve as a basis for JL. 

Mixins are useful because they allow multiple classes to be 
specialized in the same manner, with the specializing code 
residing in a single class definition.  For example, suppose 
we wish to extend three unrelated classes–Car, Box and 
House—to be "lockable" by adding two methods, lock() 
and unlock().  Without mixins, we would define 
subclasses of Car, Box, and House that each extended their 
respective superclasses with the lock() and unlock() 
methods.  The lock code would be replicated in three 
places.  With mixins, we would instead write a single class 
called Lockable that could extend any superclass, and we 
would instantiate the Lockable class to extend Car, Box, 
and House.  The lock() and unlock() methods would 
only be defined once. In JL syntax, the Lockable mixin 
would be defined as follows: 

class Lockable<T> extends T {  

 public lock(){…} 

 public unlock(){…} } 

We base JL’s implementation on a parametrically 
polymorphic Java with mixin support.  Adding parametric 
polymorphism to Java is both feasible and desirable, and a 
number of good solutions have been proposed [1,4,14,22, 
24].  The best fit for JL is an extension that supports 
constrained parametric polymorphism and mixins [1].  To 
simplify our discussion, we assume such an extended Java 
exists and we discuss JL in terms of it.  This separates the 
problem of integrating parameterized polymorphism into 
Java from the problem of supporting JL’s programming 
model, allowing us to concentrate on the latter. 

Programming with mixins, however, does have a number of 
drawbacks.  We defer a deeper discussion of mixins until 
Sections 5 and 6, where we describe additional JL language 
features that enhance support for our component model.              

JL Syntax   
We now describe JL syntax that is compatible with most 
proposals for parameterizing Java, though the current JL 
implementation [12] uses a different notation.  Layers in JL 
are simply Java types, so we will use the terms classes and 
layers interchangeably in this paper.   

Continuing our Transport example from Section 2, we 
sketch three layer definitions below:  

 class TCP implements TransportIfc {…} 

 class Secure<T implements TransportIfc>  

   extends T {…} 

 class KeepAlive<T implements TransportIfc> 

   extends T {…} 

The TCP class is a standard, non-parameterized class.  The 
Secure and KeepAlive classes are mixins that inherit 
from their type parameter, T.  In both classes, type 

parameter T is constrained by TransportIfc—any 
instantiation of either Secure or KeepAlive requires an 
actual type parameter that implements the TransportIfc 
interface.  JL also supports parameterized interfaces, F-
bounded polymorphism [10], and class constraints on type 
parameters using the extends clause.  Instantiations of 
parametric types take the conventional form: 

 KeepAlive<Secure<TCP>> trans; 

 class TP extends KeepAlive<Secure<TCP>> {} 

The first statement above declares a variable, trans, with 
an instantiated type.  We also say that JL composes or 
generates this type.  The second statement is an idiom used 
to name an instantiated type, TP in this case.  In both 
statements, the use of mixins generates a new class 
hierarchy with parent TCP, child Secure and grandchild 
KeepAlive.  The second statement also creates the class 
TP as a subclass of KeepAlive. 

Aside from its support for mixins, we see from this brief 
description that JL is built upon a fairly standard 
implementation of constrained parametric polymorphism 
for Java.  We now introduce the ACE framework and then 
our experiment that re-engineers ACE using mixins.                      

4 ACE FRAMEWORK 
Schmidt and colleagues developed the Adaptive 
Communication Environment (ACE) [27,28] as a C++ 
framework for constructing client/server applications.  
ACE implements a core set of concurrency and distribution 
design patterns that provides an infrastructure for building 
customized applications.  In general, C++ applications built 
using ACE require less effort to develop and exhibit greater 
flexibility, reliability and portability than C++ applications 
built using ad-hoc methods.   

ACE is implemented in three broad layers [33].  The 
System Adaptation layer provides operating system 
portability.  The System Services layer provides an object-
oriented interface to the Adaptation layer.  The Distributed 
Design Patterns layer implements collaborations useful in 
distributed applications.  In this section, we briefly describe 
some of the services and design patterns essential to 
building client/server applications using ACE.   

System Services 
ACE provides a Timer interface and a set of concrete 
classes that allow applications to create, schedule, cancel, 
and expire timers.  Timers can be reoccurring and can be 
stored in specialized data structures for efficient access.  
ACE also provides Message Queues modeled after those 
found in UNIX System V [31].    

Task 
The ACE Task (see Figure 2) is a design pattern for 
asynchronous processing.  In its simplest form, an ACE 
Task is an object-oriented encapsulation of zero or more 
threads that perform application-specific work.  A Task 



 4

also contains a Message Queue to store client requests for 
later processing by the Task’s worker threads.  

 

 

Figure 2 - ACE Task Object 

The Task interface includes methods to initialize, activate 
and terminate a Task.  Worker threads execute a virtual 
call-back method whose implementation is supplied by the 
user through subclassing.  Tasks communicate by queuing 
requests on each other’s Message Queues. 

Reactor 
The ACE Reactor [30] implements a design pattern for 
concurrent event dispatching among multiple clients.  
Clients, who implement the Event Handler interface, 
register interest in particular events monitored by the 
Reactor.  When an event occurs, the Reactor issues a 
callback to the appropriate method in registered client 
objects.  Figure 3 shows that Reactors can monitor multiple 
event sources, including timers, I/O ports, operating system 
signals, and application level notifications. 

 

 

 

 

 

Figure 3 - ACE Reactor and Client Objects 

The Reactor interface supports static methods that provide 
access to a default Reactor instance, as well as methods to 
create and manage multiple Reactors.  Other methods allow 
clients to register, cancel, suspend and resume interest in 
events of all types. 

Acceptor/Connector       
The ACE Acceptor/Connector [29] design pattern 
decouples session establishment and initialization from 
application processing in a distributed environment.  The 
pattern also abstracts the underlying transport stream so 
that different types of streams, such as TCP, Unix sockets, 
and pipes, can be substituted for one another.  Acceptors 
and Connectors are factory classes [21] that come in 
complementary pairs:  Acceptors handle the passive side of 
session initiation and Connectors handle the active side.  
These factory classes orchestrate a session initiation 
protocol by creating and invoking the other classes that 
participate in the collaboration.   

Collaborators in the Acceptor subpattern are the Acceptor 
factory itself, a concrete stream-acceptor, a Service 
Handler, and a Reactor.  Similarly, collaborators in the 

Connector subpattern are the Connector factory, a concrete 
stream-connector, a Service Handler, and a Reactor.  
Service Handlers are ACE Tasks that implement the Event 
Handler interface and have a stream field.  Concrete 
acceptors and connectors provide passive and active 
session initiation for specific types of transport streams. 

The three-phase Acceptor protocol is illustrated in Figure 4.  
Each Reactor notification is preceded by an appropriate 
event registration (not shown).  The Acceptor factory 
directs the first two phases of the protocol, the connection 
initialization and service initialization phases.  The 
Acceptor has no role in the third phase in which the Service 
Handler communicates independently with its peer, using 
the Reactor as needed.  The three-phase Connector protocol 
is defined similarly.  Both protocols can be customized by 
overriding methods that implement each phase.    

 

        

  

 

 

Figure 4 - Acceptor Collaboration 

5 COMPARING JL AND FRAMEWORKS 
Both JL and frameworks rely on interfaces defined during 
domain analysis to guide the development process.  Both 
approaches provide starter kits of partially assembled 
applications, but they differ in the way in which 
applications are created. Frameworks provide partially 
assembled applications that use interfaces to define 
variation points; programmers then create applications by 
supplying concrete classes at all variation points.  JL uses 
interfaces to define groups of interchangeable components 
that programmers then compose to build complete 
applications.  In this section, we compare these two 
approaches using the three measures described in the 
Introduction:  usability, application flexibility, and starter 
kit flexibility. 

To compare JL against frameworks, we used JL to re-
engineer a subset of ACE that captures the sophistication of 
the original.  Thus, we implemented the primary design 
patterns found in ACE necessary for building ACE-style 
client-server applications, but we typically did not 
implement all of the features in an ACE class. The result is 
a few thousand lines of JL code that delivers a deep slice 
through ACE's layered architecture, from the application 
interface down to the network protocols.  While our system 
does not come close to replicating all the function of ACE's 
125K lines of code, missing functionality can be added by 
writing additional layers that are conceptually identical to 
those we have already written.   
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For the purpose of comparing development techniques, a 
complete and exact replication of ACE is not necessary.  
For example, our implementation uses the standard Java 
sockets library, which does not support a multiple port I/O 
call like Unix select() [31].  We simulate this capability by 
using a thread for each port, which is clearly undesirable in 
real-world applications, but sufficient for studying the 
structure of JL applications built using ACE design 
patterns.       

We also ignore differences between JL and ACE that stem 
from disparities between Java and C++.  For instance, 
many ACE classes explicitly declare synchronization 
parameters and methods to manage concurrency.  In JL, 
this function is largely handled by Java’s built-in 
multithreading support.  Similarly, small differences in 
function, such as support for tracing and inspection during 
debugging, are also factored out of the comparison.     

All of the services and design patterns described in Section 
4 have been implemented in JL.  Throughout this paper, all 
ACE C++ classes are prefixed with “ACE_.”  JL classes and 
interfaces have unprefixed names, though all JL interfaces 
carry the “Ifc” suffix.   

ACE and JL Implementations 
To provide a concrete basis for comparing JL and ACE, we 
now discuss the details of the two implementations.  We 
focus on the Timer and Task design patterns, which are 
representative of how all ACE patterns are implemented in 
JL:  We start with an ACE interface, decompose it into 
several smaller JL interfaces, and then implement these 
interfaces in single-feature JL layers.  ACE code is 
described, but not shown, due to its conventional nature.  

Timer 
In ACE, the C++ class ACE_Timer_Queue_T defines the 
complete Timer public interface.  The interface includes 
methods to schedule, cancel and expire timers; to retrieve 
and remove the next timer; to calculate the time until the 
next timer pop; to manage time skew; and to set the time-
of-day source.  Protected methods are also defined.  Classes 
that implement this interface support all methods.     

By contrast, the base JL timer interface, TimerIfc, (not 
shown) declares only four schedule() methods.  Figure 5 
shows the structure of the basic JL timer class, 
TimerExtensible, that implements this interface and 
takes two type parameters.  The first type parameter 
requires a subclass of TimerAbstract that implements the 
TimerIfc.  This type parameter is mixed in as the 
superclass.  The second type parameter implements the 
TimerSortedMapIfc interface, which provides a 
container for timer objects.   Timer1 illustrates a simple 
use of TimerExtensible appropriate for applications that 
only schedule timers.   

In JL, advanced timer features are encapsulated in their 
own parameterized classes for easy composition.  Figure 6 
shows the TimerCancelByTime class that supports timer 
cancellation.  This class inherits from its type parameter, T, 
which is constrained to implement TimerIfc.  All 
instantiations of TimerCancelByTime implement 
interfaces TimerIfc and TimerCancelByTimeIfc.  
Features that support query, expiration and other optional 
operations are defined in a similar way using mixins and 
constrained type parameters.  Timer2 illustrates a timer 
that supports both cancellation and query (not shown). 

Task 
In ACE, the C++ template class ACE_Task defines the 
complete Task public interface.  The interface includes 
public methods to activate and manage threads; to initial-
ize, read, write and manage a Message Queue; and to 
manage Tasks in the context of a Module.  ACE Modules 
are bi-directional message streams made up of pairs of 
Tasks. 

The JL Task interface is defined in TaskIfc and declares 
only thread activation methods.  As with Timers, auxiliary 
interfaces are defined to support optional features.  For 
example, the TaskQueueIfc interface supports Message 
Queue operations and the TaskInterruptIfc interface 
supports the interruption of threads.  Again, features are 
mixed and matched to customize Tasks as needed. 

class TimerExtensible<T extends TimerAbstract implements TimerIfc,   

                      U implements TimerSortedMapIfc> extends T {…} 

class Timer1 extends TimerExtensible<TimerAbstract, TimerTreeMap> {} 

Figure 5 – Simple JL Timer 

class TimerCancelByTime<T extends TimerAbstract implements TimerIfc> 

  extends T implements TimerCancelByTimeIfc {…} 

class Timer2 extends  

  TimerCancelByTime< TimerExtensible<TimerAbstract, TimerQueryId<TimerTreeMap>> > {} 

Figure 6 – Complex JL Timer 
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Interfaces 
To understand the differences between JL and ACE, it is 
crucial to understand how interfaces are used in the two 
approaches.  JL’s TimerIfc interface is narrow because it 
contains four methods and supports only the most 
rudimentary features used by almost all applications that 
require timers.  Other narrow interfaces are used to declare 
optional features whose implementations can be composed.  

By contrast, ACE Timers use a one-size-fits-all approach 
and implement all possible features in every Timer class.  
Thus, the wide ACE_Timer_Queue_T interface supports a 
large number of features, many of which are not needed in 
most applications.  For example, the interface declares 20 
methods, some exposing functors and iterators that are not 
commonly used.  In the Analysis Section, we argue that 
wide interfaces do not stem from poor design, but rather 
represent an unavoidable technology-based tradeoff.           

To summarize, ACE uses a small number of wide 
interfaces, while JL uses a larger number of narrow 
interfaces.  For each ACE interface used in our experiment, 
Table 1 shows the number of declared methods, the number 
of narrow JL interfaces produced, and the average number 
of methods in the JL interfaces.1     

 Timer Queue Task Reactor Acc. Conn. 

ACE 
Width 20 24 15 66 5 5 

No. of JL 
Interfaces 13 13 10 27 3 4 

Avg. JL 
Width 1.5 1.8 1.5 2.4 1.7 1.3 

Table 1 - ACE and JL Interfaces   

Comparison 
In this section, we compare ACE and JL using the three 
measures described in the Introduction. 

Usability 
How easy and effective is software development using the 
two approaches?  We answer this question by comparing 
interface usage in JL and ACE.              

ACE’s wide interfaces are more complex and therefore 
harder to use than JL’s narrow interfaces.  Wide interfaces 
not only require users to learn more methods, but the 
methods themselves sometimes take more parameters.  For 
example, the ACE_Task constructor takes a Message 
Queue parameter, thereby forcing all Task users to 
understand something about queuing.  In JL, the Message 
Queue type does not appear in Tasks that do not implement 
the Message Queue feature. 

                                                        
1 Factoring out differences between C++ and Java. 

The use of narrow, less complex interfaces in JL also leads 
to smaller executables.  We saw how JL Timer classes 
could easily be constructed with the exact set of features 
required by an application and no more.  ACE Timers, on 
the other hand, have uniformly large executables because 
of the width of the interface that they must support.    

JL’s narrow interfaces can also lead to lower execution 
overhead.  For example, JL Tasks that don’t implement 
TaskQueueIfc avoid the overhead of allocating and 
initializing a Message Queue, costs incurred by every ACE 
Task.   

JL’s ability to precisely customize code to its application 
environment leads to simpler interfaces and smaller, faster 
implementations.  All these characteristics increase the 
likelihood that JL code will meet the needs of application 
programmers and, as a consequence, be used.  

In terms of maintenance, there is a tradeoff between the 
number and size of interfaces.  An excessive number of 
small interfaces in JL could be just as unmanageable as 
excessively large interfaces in frameworks.  In our 
experiment, however, we found that reasonable interface 
design avoids the worst-case management problems in both 
JL and ACE.   

Finally, while frameworks apparently give programmers 
more functionality by providing partially assembled 
applications, JL can do the same by delivering predefined 
or canned layer compositions.  These canned compositions 
can even be packaged as frameworks.     

Application Flexibility 
To what extent do ACE and JL allow applications to be 
constructed with precisely the desired set of features?   

The use of wide interfaces in ACE means that any 
implementation of a service, such as the Timer service, 
must support all possible methods.  In addition, 
applications that use these services do not have the ability 
to pick and choose optional features, though new 
optimization techniques may remove unused code from the 
application after the fact [35].  

On the other hand, the use of narrow interfaces in JL allows 
each optional feature to be implemented in its own class.  
These optional features can then be composed to yield a 
great variety of customized types for use in applications.  
Table 1, for example, shows that any of 27 separately 
implemented Reactor features can be used to generate a 
Reactor.  This yields 227 possible feature combinations, 
even if we assume no duplicates and a total ordering among 
features.  In JL, we compose optional features on demand 
rather than in advance, allowing JL to avoid the feature 
combinatorics problem described in Section 2.  

Starter Kit Flexibility 
This section compares the ability of JL and frameworks to 
support changes to their starter kits.  We first consider how 
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the two approaches support evolving client needs.  We then 
discuss the more specific issue of adding features to the 
starter kit. 

Evolving Client Needs 
A well-designed framework strikes a balance between what 
to include in the framework and what to exclude.  The 
framework will ideally include all code that is common 
across many applications.  If the framework includes too 
many features, the interface becomes overly complex and 
the framework becomes less usable.  If the framework 
omits commonly needed code, multiple applications will 
have to implement the missing features independently.  
These problems are commonly referred to as overfeaturing 
and code replication, respectively [15]. 

As well designed as ACE is, it still exhibits overfeaturing 
and code replication.  For instance, ACE_Reactor includes 
methods that support the singleton design pattern [21], 
which is useful in applications that require only one 
Reactor, but which is confusing in applications that use 
multiple Reactors.  Thus, what is appropriate for one 
application may appear to be overfeaturing to another.  On 
the other hand, ACE does not support authentication, 
authorization or data privacy.  Unless the ACE framework 
is updated, each application requiring security must 
independently develop its own network security solution 
outside of the framework.   

The problems of overfeaturing and code replication are 
rooted in the fundamental and somewhat rigid distinction 
that all frameworks make between framework code and 
application code [5].  Deciding what to include in a 
framework is always a compromise based on domain 
knowledge and the requirements of future users, both of 
which are likely to change over time.   

By contrast, JL promotes code reuse with its ability to 
selectively mix and match features.  JL classes are grouped 
according to the interfaces they implement.  Adding a new 
capability to a set of starter kit classes usually has minimal 
impact because of the loose coupling between classes and 
the orthogonal nature of feature implementations.  Adding 
new starter kit classes is no different than adding 
application classes.    

Adding Features to the Starter Kit 
Suppose that a framework needs a new feature that requires 
changes to its core classes.  One approach is to modify 
existing framework classes while maintaining backward 
compatibility as much as possible. This approach is not 
feasible if currently supported applications are intolerant of 
changes in their binary representation.  Applications that 
store objects persistently or that are conservatively 
managed for safety reasons often fall into this category.  
This need to maintain compatibility between separately 
evolving framework and application code is known as the 
framework evolution problem [15]. 

 

 

   

 

Figure 7 – Framework Evolution 

An alternate approach is to implement the new feature in 
new framework classes.  Unfortunately, this approach 
spawns a new class hierarchy that is parallel to the existing 
one, creating a potentially large amount of nearly identical 
new code to maintain.  Figure 7 illustrates how a new 
subtree is created when changes for class B are instead 
implemented in a new class named b.  Class b is a subclass 
or a copy of class B.  If child C of B needs to support the 
new feature, it does so through its proxy class, c, in the new 
subtree.        

In JL, evolution can be implemented using the same two 
approaches available to frameworks.  If changing an 
existing class is not desirable, a new class can be created, 
typically using inheritance, to incorporate the changes.  The 
loose coupling of JL classes, however, means that the 
original class is typically not part of a predefined hierarchy, 
so no parallel subtree is spawned.  There is no 
compatibility problem because applications can be 
generated using either the new or old classes. 

Changes in the Domain Analysis 
If new features require the refactoring of important 
interfaces, then JL and frameworks are equally susceptible 
to disruption because they both rely on good domain 
analysis to define interfaces appropriately.  

Analysis 
In this section, we explain how mixins are the key to JL’s 
power and flexibility.  First, mixins allow code to be varied 
in a new way.  In addition to the techniques that support 
code variation in ACE—subclassing, type parameters and 
runtime initialization parameters—JL allows a class’s 
supertype to be varied using mixins.  In previous work [5], 
we proposed that frameworks themselves could be 
implemented more flexibly using a layered component 
technology.   

Second, mixins allow features to be mixed and matched so 
that new types can be built in a stepwise manner.  In JL, we 
precisely widen interfaces to support the exact feature set 
that an application requires by encapsulating features in 
their own classes and composing them.  JL uses mixins to 
solve the feature combinatorics problem without resorting 
to wider than necessary interfaces.  In JL, unused feature 
combinations are never materialized.   

Mixins work because they defer the specification of 
parent/child relationships from definition time to 
composition time.  This late binding promotes JL’s 
stepwise refinement model that in turn encourages 

A 

B 

C D 

b 

c d 

Original Tree New 
Subtree 
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interfaces to be smaller, less complex, and feature-specific.  
ACE, and frameworks in general, use non-parameterized 
inheritance to lock in parent/child relationships and create 
application skeletons.  This rigidity forces the use of wide 
interfaces to avoid the combinatorial explosion in the 
number of classes that would result from materializing all 
feature combinations in advance.  

There are, however, a number of drawbacks to using 
mixins in JL.  First, deep class hierarchies generated by 
mixins can increase runtime overhead.  Second, superclass 
initialization is not straightforward because a mixin’s 
superclass is not known when the mixin is defined.  Third, 
compositional flexibility leads to questions of 
compositional correctness, especially when nested types are 
used.  Finally, defining recursive types can be tricky 
because expressing the type of a mixin composition from 
within the mixins themselves is not straightforward.  In the 
next section, we describe JL language features that are 
designed to address these limitations of mixins. 

6 JL’S NOVEL FEATURES 
This section briefly describes JL’s novel linguistic and 
compiler support for domain-independent, stepwise 
program refinement.  We introduce language features built 
upon the foundation of parametric polymorphism 
introduced in Section 3.  The features, described in more 
detail elsewhere [12,13], are designed to enhance the 
usability and efficiency of programming with mixins. 

Deep Conformance 
In Java, subtyping is shallow because subtypes are not 
required to implement or extend types nested within their 
supertypes.  For example, consider class C that implements 
an interface containing nested interfaces.  Class C is a 
subtype of the interface whether or not it implements the 
nested interfaces.  In a layering technology such as JL, 
composition is easier when the structure of components is 
predictable and regular, so JL supports deep conformance.  
Deep conformance also allows a single layer (mixin) to 
refine multiple classes if those classes are nested within a 
lexically enclosing class.  

JL introduces the deeply modifier on implements and 
extends clauses to force the deep public structure of types 
to be respected during type checking.  The implementation 
is based on the general notions of deep subtyping and deep 
interface conformance [12,13,25] and could augment Java 
in a useful way independent of JL.   

Virtual Typing 
Virtual typing [34] is the automatic adaptation of types 
through inheritance.  Using virtual types, inheritance causes 
specialized types to automatically replace more general 
types.  For example, if class C uses virtual type V in its 
definition, then subclass C’ of C could cause all 
occurrences of V in C to be changed to V’, where V’ is 
some subtype of V.  Virtual typing leads to better static type 

checking and less manual typecasting because precise 
subtypes are used in place of more general supertypes.  In 
JL, virtual typing allows an instantiated type to be used 
within the mixins that are composed to define that type.         

JL supports the This virtual type, which typically gets 
bound to the class type of “this” when used in mixins.  This 
can only be used in parametric types, so it can be treated as 
an implicit type parameter to all parametric types.  This 
integrates a restricted form of virtual typing into a 
parametrically polymorphic language and, as such, has 
general application.  The code below shows how virtual 
typing is used in JL:   

class ReactorSingle<T implements ReactorIfc> 

 extends T  

 {private static This _inst; 

  public static This instance(){  

   if (_inst == null) _inst = new This(); 

   return _inst;} }  

The mixin above implements the singleton Reactor, which 
is useful in applications that require only one Reactor 
instance.  The code shows how the This virtual type is used 
to reference subclasses before they are created.  The above 
mixin is used in the following composition:   

class MyReactor extends 

 ReactorSync<ReactorSingle<ReactorBase>>> {} 

In the MyReactor class above, all occurrences of This in 
any layer are replaced by MyReactor (assume 
ReactorSync is a mixin).  This illustrates how the 
parametric types used in a composition can refer to the type 
ultimately generated by the composition. 

Semantic Checking 
By deferring the specification of parent/child type 
relationships from definition time to composition time, 
mixins offer great flexibility.  With this flexibility comes 
the increased likelihood that syntactically correct 
compositions will be semantically meaningless.  For 
example, the TP type in our Transport example in Section 3 
could have been defined using three KeepAlive and four 
Secure layers, in any order, and still be type correct. 

JL supports semantic restrictions on parametric type 
compositions that go beyond syntactic type checking.  JL 
associates an ordered attribute space with each 
composition.  Attributes are identifiers chosen by the 
programmer to reflect some semantic characteristic.  Class 
definitions use a provides clause to add attributes to the 
space and a requires clause to test attributes.  Using 
regular expression pattern matching and a count operator, 
attributes can be tested for presence, absence, ordering and 
cardinality. 

JL’s semantic checking mechanism provides a simple, 
manual way to restrict feature compositions that are known 
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to be invalid, but it cannot guarantee compositional 
correctness, much less program correctness.  For example, 
consider the class definition of TimerCancelByTime in 
Figure 6.  Augmenting this definition with the “requires 
unique” semantic check limits the class to at most one 
occurrence per Timer specification.  This restriction reflects 
the fact that adding the same cancel method more than once 
serves no purpose.  This semantic check, however, makes 
no claim that the cancel method will work correctly.            

Constructor Propagation 
Since the superclass of a mixin is not known at mixin 
definition time, mixin composition can fail in an attempt to 
invoke an unavailable superclass constructor.  JL supports 
constructor propagation as a way to automatically adjust 
constructor signatures at composition time so that all 
superclasses can be properly initialized.   

Only constructors marked with the propagate modifier 
have their parameters propagated and their signatures 
adjusted.  Propagation proceeds in child class C with parent 
class P as follows:  Each propagated constructor in C is 
replaced by a collection of clones of itself, the number of 
clones equaling the number of propagated constructors in 
P.  Each clone in the collection is uniquely associated with 
a propagated constructor in P.  Propagation then occurs in 
two phases.  First, the signatures of the clone constructors 
are augmented with the parameters of their associated 
constructors from P.  Second, a call to the associated 
constructor in P is inserted into each clone constructor.   

Constructor propagation allows each class in a mixin-
generated hierarchy to call its superclass’s constructors 
with the required parameters.  Judicious use of constructor 
propagation avoids an explosion in the number of 
constructors.  For example, consider the TaskQueue mixin, 
which adds a message queue to a Task: 

TaskQueue<TaskBase> 

Assume both classes in the above composition have one 
constructor specified with the propagate keyword.  
TaskBase’s constructor takes a ThreadMgrIfc parameter 
and TaskQueue’s constructor takes a MsgQueueWaitIfc 
parameter.  A constructor for the instantiated type will be 
generated that takes both parameters, allowing objects of 
this type to be completely initialized upon allocation.     

Optimization 
JL’s programming methodology of stepwise refinement can 
create deep hierarchies of small classes.  The use of many 
small classes increases load time, especially when a 
network is involved; it also requires more memory in the 
Java Virtual Machine.  Stepwise refinement can also result 
in methods that often call superclass methods with the same 
signature, as we saw with the send() method in Section 2.  
When compared to an unlayered implementation, stepwise 
refinement often introduces the runtime overhead of extra 

method dispatches.   

JL’s class flattening optimization is designed to address 
these inefficiencies.  Calls to superclass methods with the 
same signature are aggressively inlined and the whole class 
hierarchy is then collapsed into a single class.  As long as 
certain constraints are satisfied, this optimization can be 
applied to the code of arbitrary class hierarchies. 

7 RELATED WORK 
JL derives its compositional power from the use of 
supertype parameterization (mixins) [3].  To implement its 
component model, JL also draws upon recent research into 
generic extensions of Java [1,4,14,22,24,34].    

JL’s This virtual type combines aspects of both Bruce’s 
ThisType [9] and Thorup’s general virtual types [34].  Both 
of these approaches require changes to Java’s type system 
and, in the Thorup proposal, increased dynamic type 
checking.  JL’s This, though less expressive, avoids these 
complications by limiting its use to parameterized types.            

JL is based on Batory’s GenVoca research [6,7,25,26].  JL 
refines the GenVoca model by incorporating layer 
initialization and the semantic checking of compositions.  
JL continues research into mixin programming, which 
began with VanHilst’s [36] work using C++ mixins and 
was later extended with the idea of mixin layers [25,26].  
JL’s contribution is its novel features that enhance the 
usability and efficiency of programming with mixins.       

Object-oriented frameworks [2,17,27], especially when 
used with design patterns [21], are a popular way to build 
large applications and software product lines.  A number of 
framework problems have been documented [15,16], 
including those described in this paper. 

Aspect-oriented programming (AOP) [19] defines aspects 
as encapsulations of code that crosscut multiple units of 
implementation (classes, methods, etc.).  In JL, a mixin can 
refine multiple classes only if these classes are lexically en-
closed inside a common class.  In AOP, a new program-
ming construct, the aspect, can refine the code in an 
arbitrary group of classes.  Gauging the value of this addi-
tional flexibility is the subject of continuing research [18].         

8 CONCLUSION 
This paper has introduced the Java Layers language and has 
compared JL against frameworks using ACE.  We have 
shown how JL’s method of stepwise refinement provides 
significant advantages in terms of flexibility, usability, and 
reusability.  JL breaks the static binding among framework 
classes and delivers instead a collection of composable 
classes.  These classes can be combined in different ways 
to meet the needs of particular applications.  Mixins 
provide the required compositional flexibility, while other 
language features enhance usability and efficiency.      

Our preliminary experiment with one real-world framework 
reinforces our belief that new language-based technologies 
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will lead to better-engineered software.  Many more 
experiments are needed, however, to validate whether JL 
has the right mix of language features and whether 
programmers will actually use this technology.  We are 
currently enhancing our compiler so that we, and possibly 
others, can begin a new round of experimentation using JL.   
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