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Abstract

In requirements elicitation, different stakeholders often
hold different views of how a proposed system should be-
have, resulting in inconsistencies between their descrip-
tions. Consensus may not be needed for every detail, but it
can be hard to determine whether a particular disagreement
affects the critical properties of the system. In this paper,
we describe the�bel framework for merging and reason-
ing about multiple, inconsistent state machine models.�bel
permits the analyst to choose how to combine information
from the multiple viewpoints, where each viewpoint is de-
scribed using an underlying multi-valued logic. The differ-
ent values of our logics typically represent different levels of
agreement. Our multi-valued model checker,�chek, allows
us to check the merged model against properties expressed
in a temporal logic. The resulting framework can be used
as an exploration tool to support requirements negotiation,
by determining what properties are preserved for various
combinations of inconsistent viewpoints.

1 Introduction

Requirements Engineering (RE) is significantly compli-
cated by the inconsistent and incomplete nature of the in-
formation available early in the software lifecycle. Dif-
ferent stakeholders often use different vocabularies, talk
about different aspects of the problem, have different ways
of structuring their descriptions, and may have conflicting
goals. For these reasons, information gathered from differ-
ent stakeholders can be difficult to consolidate. It can be
hard just to distinguish which things the various stakehold-
ers agree about, and which things they disagree about.

Viewpoints-based approaches have been proposed as a
way of managing inconsistent and incomplete information
gathered from multiple sources [10]. These approaches sep-
arate the descriptions provided by different stakeholders,
and concentrate on identifying and resolving conflicts be-

tween them. A key advantage to the use of viewpoints is that
inconsistencies between viewpoints can be tolerated [9].
The work on viewpoints has inspired a number of tools
for managing inconsistent descriptions during requirements
modeling (e.g. [11, 18, 20]).

Given an inconsistent set of viewpoints, it would be use-
ful to determine how the inconsistencies affect critical sys-
tem properties. Some inconsistencies may be of little con-
sequence, and do not need to be resolved, while others may
be the result of fundamental disagreements about how a
system should behave. For example, if the stakeholders’
descriptions are modeled as state machines, they may dis-
agree about the details of some states and transitions, with-
out affecting the values of global temporal properties. If the
models were consistent and complete, they could be verified
using model-checking[6]. Unfortunately, existing model
checkers are based on classical logic, and so cannot cope
with inconsistent (and incomplete) models.

Reasoning based on classical logic cannot solve the
problem because the presence of a single contradiction re-
sults in trivialization—anything follows from A ^ :A, and
so all inconsistencies are treated as equally bad. Further-
more, we cannot rely on reasoning about the properties of
individual viewpoints and comparing the results, because
these properties may change depending on how the view-
points are combined. Worse still, we may not even be able
to expressglobal properties over individual viewpoints, be-
cause each viewpoint is only a partial model of the sys-
tem. Hence, faced with an inconsistent set of viewpoints,
if we want to perform automated reasoning, we must ei-
ther remove information until consistency is achieved again,
or adopt a non-classical, paraconsistentlogic. The prob-
lem with the former approach is that we may be forced to
make premature decisions about which information to dis-
card [12].

Paraconsistent logics permit some contradictions to be
true, without the resulting trivialization of classical logic.
For example, multi-valued logics use additional truth val-
ues to represent different types of contradiction. Multi-



valued logics are particularly interesting, as they can han-
dle both inconsistency and incompleteness. For example,
Belnap proposed a simple 4-valued logic for incrementally
adding information to a database without enforcing consis-
tency [3]. Belnap observed that for any given proposition,
A, there are four cases: we have been told nothing aboutA;
we have been toldA is TRUE; we have been told A is FALSE;
or we have been told both A is TRUE and A is FALSE. His
logic therefore adds the values BOTH and NEITHER to the
usual TRUE and FALSE.

In this paper, we present the �bel1 (Multi-Valued Belief
Exploration Logics) framework for merging and reasoning
about inconsistent viewpoints. The framework uses a fam-
ily of multi-valued logics, called Quasi-Booleanlogics, to
support reasoning over inconsistent models. Each logic has
a number of different truth values between TRUE and FALSE,
representing different types (or levels) of disagreement and
uncertainty. The framework includes a multi-valued model
checker, �chek, for reasoning about the temporal properties
of inconsistent state machine models.

The framework is intended as a way of exploring in-
consistencies. Hence, we do not restrict the analyst to
any particular way of merging information from multiple
viewpoints, or any particular way of handling disagreement.
Rather, we provide tools for defining suitable multi-valued
logics and for defining different types of interconnection be-
tween viewpoints. For example, viewpoints may describe
different features of the same system, give different descrip-
tions of the same functionality, or specify individual pro-
cesses that need to be composed in parallel. We also pro-
vide guidance on how to choose suitable analysis strategies
for a given set of viewpoints.

The paper is organized as follows. Section 2 surveys re-
cent work on specifying and reasoning in the presence of
inconsistency in software engineering. Section 3 give an
overview of the �bel framework. Section 4 gives a formal
foundation for multi-valued reasoning. Section 5 describes
the modeling process, showing how we merge viewpoints,
and analyze them using the model checker �chek. Section
6 demonstrates the framework with a telephony example.
Section 7 presents our conclusions.

2 Reasoning in the Presence of Inconsistency

In software engineering, it has long been recognized
that tolerating inconsistent descriptions can facilitate flex-
ible collaborative working. For example, Schwanke and
Kaiser [19] argue that attempting to enforce total consis-
tency during incremental development can be difficult, and
it is therefore preferable to allow inconsistencies to oc-
cur, and to resolve them periodically. Narayanaswamy and

1pronounced “Ki-bel”

Goldman [16] describe an incremental inconsistency han-
dling solution based on announcing and interleaving “pro-
posed changes”, while Balzer [2] introduced the notion of
“pollution markers” to flag portions of program code that
contain inconsistencies. Inconsistency has also been stud-
ied in the context of process modeling. Cugola [7] argues
that process improvement can be achieved by allowing de-
viations from the prescribed process, and by providing sup-
port for dealing with the resulting inconsistencies.

Tools that provide explicit support for identifying, track-
ing and resolving inconsistencies during requirements mod-
eling are emerging [9, 11, 18, 20]. In particular, the View-
Points framework [10] exploits the natural structure of the
modeling process to collect information in coherent, but
overlapping chunks. Because viewpoints can overlap, there
is the potential for inconsistency. However, inconsisten-
cies between viewpoints can be dealt with separately from
the task of describing and elaborating each viewpoint. It
is this toleration of inconsistency that distinguishes view-
points from other problem structuring techniques.

While these tools focus on detecting and managing in-
consistency, none support formal reasoning over inconsis-
tent descriptions. This is because formal reasoning systems
based on classical logic cannot cope with inconsistency;
the presence of a single contradiction results in trivializa-
tion. To address this problem, a number of different types
of paraconsistent logics have been proposed [17, 12]. For
example, relevance logics use an alternative form of entail-
ment that requires there to be a “relevant” connection be-
tween the antecedents and the consequents. Non-truth func-
tional logics use a weak form of negation so that proof rules
such as disjunctive syllogism fail, i.e. (A_B;:B) 0 A.
Multi-valued logics use additional truth values to represent
intermediate values between TRUE and FALSE.

The development of paraconsistent logics has been
driven largely by the need for automated reasoning systems
that do not give spurious answers if their databases become
inconsistent [3]. They are also of interest in mathematics as
a way of addressing paradoxes in semantics and set theory.

In software engineering, there are two obvious appli-
cations of paraconsistent logics: to reason about informa-
tion drawn from multiple sources during requirements elic-
itation, and to reason about evolving specifications where
changes may introduce inconsistencies. However, there
have been relatively few attempts to explore these ap-
plications. Two notable exceptions are Hunter and Nu-
seibeh [13], who use a Quasi-Classical (QC) logic to reason
about evolving specifications, and Menzies et al. [15], who
use a paraconsistent form of abductive inference to reason
about information from multiple viewpoints.

In this paper we describe a new application of paracon-
sistent logic, to reason about the properties of state machine
models constructed by combining information from incon-



sistent viewpoints. We use multi-valued logics to provide
paraconsistency, and adapt existing model checking tech-
niques for our automated reasoning system.

3 Framework Overview

The �bel framework provides a flexible approach to
merging and reasoning about inconsistent state machine
models using multi-valued logics. The framework provides
the following components:
� A basic viewpoint model, or �view, which is a state

machine model, extended for the multi-valued case.
� Interconnection primitives for defining how to com-

bine �views into a merged model. These handle dif-
ferences in vocabulary across the �views and support
a range of different types of interaction between them.

� A set of merge templates, to guide the choice of multi-
valued logic and interconnection primitives for differ-
ent types of analysis.

� Multi-valued logics for reasoning over �views.
� A multi-valued model checker, �chek [5], for verify-

ing the temporal properties of �views.
Multi-valued logics are useful for merging information

from inconsistent viewpoints because they allow us to ex-
plicitly represent different levels of agreement. For exam-
ple, if we keep the usual boolean values TRUE and FALSE to
mean ‘a unanimous yes’ and ‘a unanimous no’, we can add any
number of intermediate values to represent different kinds
of disagreement. Examples include ‘a majority said yes’, ‘4
yeses and 1 no’, ‘nobody knows’, ‘the designated expert said no,
everyone else said yes’. By adding these explicitly as values
in the logic, we can reason about the level of agreement for
any arbitrary proposition.

The choice of values to use in the logic depends on
how we wish to combine information from individual view-
points. There are a number of dimensions to this choice:
� Do we wish to preserve information about how many

viewpoints gave each different response (i.e. so ‘4
trues, 1 false’ is distinct from ‘3 trues, 2 falses’)?

� Do we wish to preserve information about who said
what (i.e. so that ‘A said true, B said false’ is distinct
from ‘A said false, B said true’)?

� Do we wish to allow viewpoints to say ‘don’t know’ for
some propositions?

� Do we wish to designate some viewpoints as authori-
ties, so that their answers count more?

Because it may be useful to explore different ways of com-
bining information from multiple viewpoints during re-
quirements modeling, we do not commit ourselves to any
particular multi-valued logic. Rather, our framework uses
a family of logics, and each viewpoint has a specific logic
associated with it. When we merge viewpoints, the type of
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Figure 1. The process model.

merge determines the logic that will be chosen for the result-
ing viewpoint. In practice, we expect that a small number
of merge types will be useful.

Our analysis process is shown in Figure 1. We take a
set of source �views and merge them using a set of inter-
connection primitives and a merge template chosen by the
analyst. The resulting merged �view can then be model
checked against a set of properties expressed in �CTL,
our multi-valued temporal logic, an extension of CTL. The
model checker returns the value(s) from the logic that each
property takes in the initial state(s). We use the same multi-
valued state machine notation for both the source �views
and the merged �view. This enables us to run the model
checker on individual �views, as well as the merged ones,
and to perform further merges on an already merged �view.

The next section explains our multi-valued logics, while
Section 5 describes the merge process.

4 Multi-Valued Reasoning

4.1 Quasi-Boolean Multi-Valued Logics

Our approach to modeling makes use of an entire fam-
ily of multi-valued logics. In order to ensure that reasoning
in our logics makes intuitive sense, we restrict ourselves to
logics where the axiomatization is as close to classical logic
as possible. For example, we wish to keep useful proper-
ties such as associativity, idempotency, distributivity, and
De Morgan’s laws. However laws relating to incomplete-
ness and inconsistency, such as the law of excluded middle
(a_:a=>) and the law of non-contradiction (a^:a=?),
may be discarded.

We achieve this by defining each logic using a lattice of
truth values, and define the logical operators in terms of lat-
tice operations. Lattices are useful in this respect because
they guarantee most of the properties we need. For example,
a lattice by definition includes a unique least upper bound
(a join) and a unique greatest lower bound (a meet) for each
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Figure 2. The logic 4val as a lattice, together
with the truth tables for disjunction, _, and
negation, :.

pair of elements. By defining disjunction as join, and con-
junction as meet in the lattice, we ensure that a disjunction
and a conjunction of each pair of values exists and is unique
in the logic. Furthermore, these operations are commuta-
tive, associative and idempotent in a lattice. To see how
the corresponding truth tables can be constructed from the
lattice, consider the 4-valued logic 4val shown in Figure 2.
The truth table for disjunction was constructed by taking
the join for each pair of values. The table for conjunction is
formed similarly using the meet. By specifying the lattice,
we avoid having to give the tables.

As well as conjunction and disjunction, we need to spec-
ify negation so that most of its expected properties hold:
each element must have a negation which is a value in the
lattice, such that ::a = a, and negation satisfies De Mor-
gan’s laws. The family of multi-valued logics that have
these properties (but not necessarily the laws of excluded
middle and non-contradiction) are called quasi-boolean
logics [4]. Rather than providing a formal definition here 2,
we note that symmetry of the lattice diagram across its hor-
izontal axis is a sufficient condition for a quasi-boolean
logic, where the negation of each element is defined to be its
image through horizontal symmetry. Finally, we still have
to choose a negation for values that fall on the axis of sym-
metry. For example, in Figure 2 we chose to make TF and
FT negations of each other; we could equally have chosen
to make them their own negations, which would have given
us a different logic.

In summary, we restrict ourselves to quasi-boolean log-
ics, and specify them as horizontally-symmetric lattices of
truth values, together with a definition of negation. Note
that classical 2-valued boolean logic is included in this fam-
ily as a 2-valued lattice — we refer to it as 2val.

4.2 Some Example Multi-Valued Logics

When merging two viewpoints, each with its own logic,
we could simply take the product of their lattices as the
logic for the merged viewpoint. A product of two lattices
is a lattice where each element is a pair (a; b) made up of an

2A complete treatment can be found in [5].
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Figure 3. Some logics for combining view-
points: (a) 2val�2val; (b) 3val; (c) 3val�3val;
(d) an abstraction of c; (e) 2val�2val�2val; (f)
an abstraction of e

element, a, from the first lattice and and element b from the
second lattice3. The lattices of figures 3(a), 3(c), and 3(e)
are products. Products are interesting because these are ex-
actly the lattices that preserve all information about the in-
dividual logics. Products can be taken of more than two lat-
tices (e.g. Figure 3(e) is the product of three lattices), but the
number of values in the resulting logic grows exponentially.
For this reason, an abstraction of the product is often more
useful. The lattices on the right of Figure 3 are abstractions
of those on the left. Each discards some information—for
example, 3(f) only retains information about majority votes.

The choice of whether to use the product, or an abstrac-
tion of the product depends on the reasoning we wish to per-
form. Consider the logic 4val in Figure 3(a), which can be
used to merge two viewpoints based on 2val. Because it is
the product, 4val preserves all information about who said
what, allowing us to make precise inferences about what
the two viewpoints would agree on. For example, if the
first viewpoint said “x is TRUE” and “y is FALSE”, while our
second viewpoint said the opposite, then in the merge we
obtain x=TF and y=FT. We can then infer that x_ y=TT.
In other words, the viewpoints still agree that at least one
of x or y is true, even though they disagree about the actual
values of x and y.

In contrast, in 3val (Figure 3(b)), all disagreements are
treated as MAYBE — we discard the distinction between TF

3Formally, the product of two lattices L1, L2, is a lattice L1�L2 with
elements (a; b), such that the lattice ordering v holds between two pairs
iff it holds for each component separately, i.e.

(a; b) v (a0
; b

0) , a v a
0 ^ b v b

0



and FT. We can still reason about what is agreed and dis-
agreed, except that we will obtain more MAYBE answers
than we should. For example, if we have the same values for
x and y as above, then in the merged model, y=x= MAYBE.
In this logic, x_y=MAYBE, whereas we saw above that the
viewpoints actually agree that x_y =TRUE. Despite this
information loss, this type of merge is useful when product
lattices become too large.

4.3 �views

We formalize our viewpoints as �views. �views are state
machine models, extended with a multi-valued logic. Con-
ventionally, a state machine model consists of a set of states,
a set of transitions between states, and a set of variables
whose values vary from state to state. We extend this by as-
sociating each �view with a specific Quasi-Boolean logic.
‘Boolean’ variables now range over the values of the logic,
rather than just being TRUE or FALSE.

Transitions between states also range over the values of
the logic. In a conventional state machine model, all tran-
sitions are implicitly TRUE, because FALSE transitions (i.e.
transitions that cannot occur) are simply omitted from the
notation. If we extend this to the multi-valued case, we can
assign any value of the logic to each transition. This allows
us to model cases where stakeholders disagree over which
transitions can occur. To avoid clutter, we adopt the conven-
tion that FALSE transitions4 are omitted from our diagrams.

For model checking purposes, we also need to define an
initial state. In a conventional state machine model, there is
one initial state. Because stakeholders may disagree on the
initial state, we allow a �view to have a setof initial states.

Formally, a �view is a Kripke structure [6], extended
for the multi-valued case. It can be defined as a tuple
(L; S; S0; R; I; A) where:
� L is a quasi-boolean logic defined by a lattice with el-

ements L and a negation operator :;
� S is a set of states, each with a unique label;
� S0 � S is a (non-empty) set of initial states;
� R : S � S ! L is a total function assigning a truth

value from the logic, L to each possible transition be-
tween states (including the transition from each state
to itself). Each state must have at least one non-FALSE

transition out of it;
� A is a set of atomic propositions, or variables;
� I : A � S ! L is a total function giving a truth value

to each variable in each state.
Note that if the logic L is a two-valued boolean logic, then
a �view reduces to a standard Kripke structure.

By adopting Kripke structures as our underlying formal-
ism, we gain generality and analytical power but lose some

4In this paper we use TRUE and FALSE to refer to the top of the lattice,
>, and the bottom of the lattice, ?, respectively.

expressive power. However, many standard state-machine
specification languages can be translated into Kripke struc-
tures (e.g. SCR [1]), and we plan to eventually adopt a
richer specification language as a front end to our frame-
work. Also, �views do not have an explicit representation
of time, although we plan to add this in the future.

5 Merging and Analyzing �views

5.1 Signature and Value Maps

Given a set of �views, we can imagine a number of dif-
ferent relationships between the behaviours they describe:
� They may be parallel devices that interact through

shared data or shared events.
� They may be projectionsof the overall state space of

a system—each view describes some of the states and
some of the transitions, leaving other parts undefined.

� They may be competing versionsof a system, differing
over some of the variables or transitions, where each
view claims to describe all the possible behaviours of
the system.

� They may be featuresthat add new behaviours and/or
modify existing behaviours of a system.

All of these are supported in our framework. Combinations
of these are also possible: versions of parallel devices; pro-
jections of a feature; and so on.

Furthermore, an analyst may want to explore different
ways of combining the same set of �views. We support this
flexibility by allowing the analyst to choose which logic to
use for the merged view, how to unify the vocabularies of
the source views, and how to map truth values of the source
�views onto truth values of the merged �view.

The first step in merging a set of �views is to define a sig-
nature mapthat unifies their vocabularies. Rather than as-
suming that the �views share the same vocabulary, we allow
each �view to preserve its local namespace, and allow the
analyst to determine which states and variables should be
unified across the source �views. The analyst may choose
to rename states and variables in the merged �view, or may
keep some of the names from the source �views. Fig-
ure 4(c) shows an example signature map.

A signature map must have the following properties:
1. Type information is preserved—state names can only

be mapped to state names, and variable names can only
be mapped to variable names.

2. Every state in the source �views must map to a state
in the merged �view. However, not all variables need
to be mapped—variables can be ‘private’ to the source
�views, and not appear in the merged �view.

3. A name in a source �view may map to more than one
name in the merged �view. This allows us to duplicate
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Figure 4. (a)-(b) Sample �views; (c) a signa-
ture map used to unify the vocabularies; (d) a
value map; (e) result of the merge.

a variable (or state) and treat the instances differently.
This is useful for �views that are at different levels of
granularity, where a single state in one �view corre-
sponds to several states in another �view.

4. Two different names from the same source �view can-
not be mapped to the same name in the merged �view.

The next step is to define how the truth values of the
source �views are combined. A value mapis a total func-
tion mapping each tuple of truth values in the source �views
to a truth value of the merged �view. In many cases the cho-
sen logic for the merged �view has a ‘natural’ value map.
For example, each lattice in Figure 3 was designed with a
specific value map in mind, and the elements of the lattice
were labeled accordingly. In general, we expect there to be
a small number of commonly-used logics and value maps.

The final step is to extend the value map to handle gaps
in the available information during a merge. For example, if
we have a state, s, from one source �view, and a variable, a,
from another, we may not be able to determine what value a
should take in s. Value maps are defined over tuples of val-

ues from the source �views. We may get undefined entries
in a tuple in six different cases as follows:

When querying the value of variable x in state s:
UNDEF1: The �view knows about s, but not x.
UNDEF2: The �view knows about x, but not s.
UNDEF3: The �view knows about neither s nor x.
For the value of a transition from state s1 to state s2:
UNDEF4: The �view knows about s1 but not s2.
UNDEF5: The �view knows about s2 but not s1.
UNDEF6: The �view knows about neither s1 nor s2.
These are not values from the logics—they represent cases
where we do not know which value applies. We allow the
analyst to choose how to handle each of these cases, by
extending the value map appropriately, and provide guid-
ance for each choice. For example, the value map in Fig-
ure 4(d) treats all six cases in the same way. Alternatively,
we could map UNDEF4 to FALSE and UNDEF5 and UNDEF6
to MAYBE, to indicate a viewpoint that insists there can be
no additional transitions from the states it describes, but
does not care about transitions from states that other peo-
ple describe.

5.2 Model Checking Merged Viewpoints

We have developed a symbolic multi-valued �CTL
model checker, �chek [5], for analysing �views. The model
checker takes as input a �view, including the definition of
its quasi-boolean logic, and a temporal logic property ex-
pressed in �CTL, and returns a tuple of values from the
logic representing the values that the �CTL property takes
in each initial state of the �view.

The language �CTL for expressing properties is based
on Computational Tree Logic(CTL), a branching-time tem-
poral logic used in model checkers such as SMV [14]. Prop-
erties expressed in CTL are evaluated on a tree of infi-
nite computations produced from a finite-state machine ex-
pressed as a Kripke structure. CTL is defined as follows:

1. Every atomic proposition a 2 A is a CTL formula.
2. If ' and  are CTL formulæ, then so are :', ' ^  ,
' _  , EX', AX', EF', AF', E['U ], A['U ],
EG('), AG(').

The logic connectives :, ^ and _ have the usual meanings.
The temporal quantifiers have two components: A and E
quantify over paths, while X , F , U and G indicate “next
state”, “eventually (future)”, “until”, and “always (glob-
ally)”, respectively. Hence, AX' is TRUE in state s if '
is TRUE in the next state on all paths from s. E['U ] is
TRUE in state s if there existsa path from s on which ' is
TRUE at every step until  becomes TRUE.
�CTL is a multi-valued extension of CTL that gives a

semantics to CTL operators over a �view. �CTL has the
same operators as CTL, with the quantifiers redefined for
the multi-valued case. [5] gives the full semantics of �CTL.



The model checker �chek allows us to verify properties
of our �views. For example, given the �view of Figure 4(e),
we can check the value of AX(a = FF) (roughly: “a is
FALSE in the next state on all paths (from the initial state)”).
�chek returns the value TF, indicating that this property is
TRUE in Alice’s �view and FALSE in Bob’s. Similarly, for
EF (a=TT_a=FF) (roughly: “you can reach a state where
they agree on the value of a”), �chek returns TT. Note that
this question cannot be expressed in Alice or Bob’s individ-
ual �views.

Interpreting the results returned by the model checker
on a merged �view requires some knowledge of the type
of merge that was used. For example, the value map in
Figure 4(d) represents a specific choice about the relation-
ship between the viewpoints: if only one person can answer
the question, we take that person’s answer as undisputed.
Thus, the property AG(y=TT) is FF for the �view in Fig-
ure 4(e), but the value map does not allow us to distinguish
whether this is because the property is FALSE in each indi-
vidual �view, or because it is FALSE in one and UNDEFin
the other. If we really need to know which is the case, then a
different type of merge that distinguishes these possibilities
would be needed.

5.3 Method Guidance

The �bel framework provides a great deal of flexibil-
ity for merging and analyzing viewpoints, because there are
many possible relationships between viewpoints that an an-
alyst may wish to explore. Choosing a good merge strategy
is not easy—the analyst must decide what roles the individ-
ual viewpoints play in the overall system, how their vocab-
ularies overlap, and what logics to use. The choices affect
the kind of analysis that is possible and the interpretation of
the results. We provide guidance in three ways.

First, we maintain a library of useful logics. In most situ-
ations, an appropriate logic can be selected from the library
for each merge operation.

Second, we define a set of merge templates based on
the roles that the individual viewpoints play in the overall
system description. For example, a featureadds new be-
haviours and/or modifies existing behaviours of a system.
In the �bel framework, we model features as �views, but
add information about how they are to be merged. We de-
clare that some of the states of the �view belong to the sys-
tem, and some belong only to the feature. The latter are
handled differently during merges—we do not unify them
with other states in a signature map, and do not permit them
to have external transitions(transitions to states described
in other �views). This treatment of external transitions is
achieved by giving appropriate values to UNDEF4, UNDEF5,
UNDEF6, described earlier.

Finally, we identify and prove properties for different
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Figure 5. (a) version 1 of callee; (b) version 2
of callee.

merge templates. For example, if we merge two logics onto
3val such that only TRUE values of individual viewpoints are
mapped into T, only FALSE values of individual viewpoints
are mapped into F, and all others are mapped into M, then, if
the model-checker returns T (respectively, F) for a property
on the merged model, this property is TRUE (respectively,
FALSE) on the individual models.

6 Example

We now demonstrate how the �bel framework can be
used to reason about inconsistencies in a model of a simple
telephone system5. We separately specify two features, and
two different versions of the same feature, and merge these
specifications to reason about which properties they agree
on, and which are disputed.

6.1 Different Versions of a Feature

Figure 5 shows two different versions of the feature for
receiving a call (the “callee feature”). The two models are
expressed as �views, each using the classical two-valued
logic, 2val. In this example, we assume that each state has
a TRUE transition back to itself, and don’t explicitly draw
these. callee1 describes a phone that allows you to replace
the receiver during an incoming call without getting discon-
nected. callee2 assumes that replacing the receiver always

5This example is adapted from [9].
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Figure 6. A possible merge of the �views of
Figure 5.

disconnects the call. Note that they disagree about the tran-
sitions out of the connected state, and they disagree about the
value of the variable CONNECTED. Without some analysis, it
is hard to tell what these disagreements affect, and hence
whether they matter in the overall design.

Having described a feature, we may wish to:
� reason about it in isolation;

� merge it with one or more other features to reason
about feature interaction;

� merge it with the base system model to reason about
the system behaviour;

� merge it with a model of the environment to check that
it captures the intended requirements;

Or some combination of the above. The �bel framework
supports all of these; we will illustrate the first two here.

Obviously, we can reason about each feature separately
using �chek. More interestingly, we can merge the two ver-
sions of the feature (even though they are inconsistent) to
reason about the properties they share and the properties
they disagree about. We do this using a template for merg-
ing multiple version �views as follows:

1. Choose a logic for the merged viewpoint. Because
we wish to maintain traceability between versions and
properties, we select the product lattice 4val. How-
ever, we re-label the truth values TF as V1 and FT as
V2, as they correspond to ‘only TRUE in callee1’, and
‘only TRUE in callee2’, respectively.

2. Choose a signature map. The owners of the �views
appearto have used the same vocabulary, so we will
try simply mapping together items that share the same
name, and preserve these names in the merged �view.

3. Choose a value map. We use the value map for the
product 2val�2val, shown in Figure 4(d). The tem-
plate for merging versions treats all external transitions
as FALSE—each version denies the existence of transi-
tions other than those it describes.
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Figure 7. The �view for caller.

The resulting merged �view is shown in Figure 6. Note that
the value of CONNECTED is disputed in the ringing state, and
that the versions disagree about two of the transitions.

We can now model check this �view. Example proper-
ties include: “If you are connected, you can hang up”:

AG(CONNECTED ! EX(:OFFHOOK)) (1)

“If connected, hanging up always disconnects you”:
AG(CONNECTED ! AX(:OFFHOOK ! :CONNECTED)) (2)

“A connection does not start until you pick up the phone” 6:

AG(:CONNECTED ! A[:CONNECTEDW OFFHOOK]) (3)

“If no caller is selected, you cannot be connected”:
AG(:CALLER SEL ! :CONNECTED) (4)

�chek returns T for property (1), meaning that both ver-
sions agree on its value. It returns V2 for (2) and (3) mean-
ing that only callee2 has these properties. The disagreement
over (3) in particular indicates that the two versions use a
different meaning for CONNECTED—the definition in callee1
would not work with typical billing systems! Finally, it re-
turns T for (4). This is interesting because property (4) is not
expressible in callee1. That is, callee1 can have this prop-
erty, as long as it accepts the definitions given in callee2 for
the missing variables.

6.2 Merging Features

Figure 7 shows an �view for making a call (the “caller”
feature). It shares some states with the callee model and in-
troduces some new states. We can merge this with each of
our versions of callee to study the feature interaction[21].
Alternatively, we could combine caller with the merged
model of both callees, to combine elements of all three. For
example, we may wish to extend callee1 with the extra vari-
able defined by callee2, and then combine this with caller.
We can achieve this by merging the �views of Figures 6
and 7 as follows:

6We used the “weak until” operator A[xWy] for this property, defined
as A[xWy] = :E[:yU(:x ^ :y)] [8].



Caller-Callee Signature Map
Caller Callee Merged

idle idle idle

dialtone dialtone dialtone

connected connected connected

– ringing ringing

busytone – busytone

ringtone – ringtone

OFFHOOK OFFHOOK OFFHOOK

CALLEE SEL CALLER SEL LINE SEL

CALLEE FREE – CALLEE FREE

CONNECTED CONNECTED CONNECTED

Caller-Callee Value Map
Caller Callee Merged

T T T
T V1 T
T V2 TF
T F TF
F T FT
F V1 FT
F V2 F
F F F

Figure 8. Vocabulary map and value map for
merging callee with caller.

1. We choose a logic for the merged viewpoint. Because
we are only interested in feature interactions between
caller and callee1, we can adopt 4val.

2. We choose a signature map. As before, we choose
to map together the names that are common to both
�views. We also map CALLEE SEL and CALLER SEL to-
gether, as they both refer to the selection of the remote
party for a call, and use the new name LINE SEL for this
variable. The full signature map is given in Figure 8.

3. We use the value map shown in Figure 8. To se-
lect only the behaviours of callee1 from the combined
model, we treat V1 as though it were T, and V2 as F in
defining the map. The template for merging features
determines how we treat external transitions: UNDEF
transitions concerning the shared states idle, dialtone and
connected are treated as TRUE, while UNDEF transitions
concerning the private states ringing, busytone and ringtone

are treated as FALSE.
The resulting merged �view is shown in Figure 9.

We can verify the merged model against the same proper-
ties as before, although we need to translate them according
to the vocabulary changes we made in the merge. �chek
returns T, F, F and T for properties (1), (2), (3) and (4),
respectively. The values of F are interesting, because they
indicate feature interaction. Properties (2) and (3) hold in
the caller �view but not in the callee1 �view. We would
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Figure 9. Caller merged with the combined
callee �view.

therefore expect them to take the value TF in the merged
model. The fact that they take the value F indicates that we
have ‘broken’ caller by adding callee1 to it—some of its
properties are no longer TRUE when the features interact.

We can also verify new properties that are not expressible
in either caller or callee1 individually. For example:
“If you make a call, the phone cannot ring without returning
to idle first”:

AG((ringtone _ busytone)! A[:ringingW idle]) (5)

�chek returns F for this property. This confirms that we
have found an undesirable feature interaction. It looks likely
that we could resolve the problem by keeping the two con-

nected states separate in the merged model, to distinguish be-
tween being connected as a caller and connected as a callee.
The �bel framework supports exploration of such possibili-
ties by allowing us to construct such alternative merges and
to verify whether the desired properties hold for them.

7 Conclusions

The ability to reason about inconsistent and incomplete
models is often needed when modeling requirements. How-
ever, this cannot be done effectively using classical logic.
Multi-valued logics allow such reasoning, although no sin-
gle multi-valued logic is sufficient to represent the many
different ways in which multiple descriptions of the system
may be inter-related. Any framework for combining incon-
sistent models of a system to reason about them needs to
be flexible enough to support different types of merge and
different forms of analysis.



In this paper we described the �bel framework for rea-
soning about a set of inconsistent state machines using
multi-valued logic. The framework includes support for
specifying appropriate multi-valued logics as quasi-boolean
lattices, vocabulary maps for explicitly unifying the name-
spaces of the individual descriptions, and value maps for
mapping tuples of values of individual lattices onto values
of a combined lattice. System properties can then be spec-
ified in �CTL and analyzed using our multi-valued model-
checker �chek.

The framework provides flexibility in the choice of the
logic and the type of the merge, and thus can serve as an ef-
fective exploration tool for reasoning about different combi-
nations of information from multiple viewpoints. Although
the framework is very flexible, we have found that most of
the interesting merges of viewpoints fall into one of a small
number of categories, and we have defined merge templates
to provide guidance in using these merge types.

In order to make the framework truly useful, we plan to
continue our work in defining the library of templates and
proving properties about them. We also plan to explore the
implications of different approaches for treating undefined
values during merges, and believe that viewpoint invariants
may provide a powerful means of expressing these. Further,
we plan to explore the issues related to merging models at
different levels of abstraction.

Further work on the model-checker is also required. At
present, it only handles synchronous parallelism. We are
planning to extend it to reasoning about asynchronous par-
allelism and real-time.
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