TIGRA— An Architectural Style for Enterprise Application

Integration
Wolfgang Emmerich Ernst Ellmer Henry Fieglein
Dept. of Computer Science Zuhlke Engineering GmbH DG Bank
University College London Dusseldorfer Strasse 40a Am Platz der Republik
Gower St, London WC1E 6BT, UK 65760 Eschborn, Germany 60325 Frankfurt, Germany
W.Emmerich@cs.ucl.ac.uk ee@zuehlke.com henry _fieglein@dgbank.de
Abstract ous front-office systems to input trade data as they complete

We report on experience that we made in the Trading room transactions on the stock exchange or directly with other
InteGRation Architecture project (ERA) at alarge German traders. The front-office systems execute on different hard-
bank. TIGRA developed a distributed system architecture ware platforms in offices in New York, Tokyo, Hong Kong,
for integrating different financial front-office trading systems London and Frankfurt. Front-office systems for the different
with middle- and back-office applications. We generalize the financial products have been procured from specialized ven-
experience by proposing an architectural style that can bedors. Once completed, every transaction has to be processed
re-used for similar enterprise application integration tasks. by middle and back-office systems in the headquarters of the
The TiGRA style is based on a separation of data represen-bank. These systems perform the settlement of transactions,
tation using domain-specific XML languages from transport analyze the risk that the bank has engaged in, and monitor
of those data with an appropriate middleware. We show how the performance of individual traders. Some back office sys-
Markup languages, particularly the eXtensible Markup Lan- tems have been written in Cobol and execute on mainframes
guage (XML) and eXtensible Stylesheet Language Transfor- and others are written in C++ for Unix machines.

mations (XSLT), can be used to solve semantic data integra-_l_h onstruction of het ous distributed tems is
tion problems. We discuss that the strengths of middleware . € construction of heterogeneous distributed syste
simplified by distribution middleware systems, such as mes-

and markup languages are complementary and indicate the . ; . i
synergies yielded by deploying middleware and markup in sage queues, object-oriented middleware or transaction mon-
the TIGRA style itors [5]. These systems resolve hardware, operating system

and programming language heterogeneity and provide prim-

1 Introduction itives, such as message transfer, object requests and transac-
An increasing number of distributed systems are not built tions that can be used for communication across distributed
from scratch but rather integrate existing applications or hosts.

commercial off-the-shelf (COTS) applications. These appli-
cations may not have been built to be integrated; they are
often procured from different vendors and they are likely to
be rather heterogeneous. The heterogeneity may exhibit it-
self in the use of different programming languages, avail-
ability on different hardware and operating system platforms
and the use of different representations for the exchange o
data. Heterogeneity, scalability and fault-tolerance require-
ments also lead to distributed deployment of applications.
Yet, IT departments of large organizations are often expected
to provide an integrated computing facility to their users.

Object-oriented middleware uses common data representa-
tions for data conversions between different data formats for
atomic data types (e.g. EBCDIC characters into Unicode).
The middleware does not, however, go far enough in resolv-
ing semantic data heterogeneity. The integration of enter-
fprise applications in general, and financial trading systems
in particular, often demandsemantic conversionsetween
different data formats. Some systems, may for example,
identify counter-parties (the customers of the bank) by name,
while others use an account code. When a trade data repre-
sentation has to be transmitted from one system to another,
We describe an example of such a heterogeneous and disa semantic transformation of the counter-party identification
tributed system in the financial domain. We have been in- has to take place.

volved in building a new distributed software architecture for

a financial trading system. In this setting, traders use vari- The latest generation of markup language standards, most

notably XML [2] support the definition of data structures
through document type definitions (DTDs). These DTDs are,
in fact, grammars for special purpose markup languages. Al-
though they were initially meant to represent structured doc-
uments on the world-wide-web, they are increasingly used as
data representation mechanisms for complex structured data.
These structured data can then be transformed using transfor-

mations that can be specified as eXtensible Stylesheet Laninternet also in foreign exchanges, the batch window that
guage Transformations [3], a standard related to XML. was used when no exchanges were open has disappeared.
Moreover, in the future traders will expect near real-time
integration with middle-office systems, such as market and
currency risk management systems so that risk increase or
mitigation can be factored in when quoting a security or
derivative price. In order to meet these demands all inter-
faces would have to be changed.

The main contribution of this paper is the discussion of expe-
rience that we made in tha@RA enterprise application inte-
gration project, where we used both middleware and markup
to achieve integration of distributed and heterogeneous ap-
plications. While several interest groups have defined XML
markup languages for particular domains, the novel contribu-
tion of TIGRA is the strict separation of data representation Finally, the quality of trading data was a problem. Because
in XML from transport of those XML data with an appropri- it was expensive to automate all interfaces that were needed,
ate middleware. We discuss how we developedRA and less frequently used interfaces were operated manually (by
aim to present our experience in a reusable way by formu- clerical staff reading from one screen and typing data into a
lating an architectural style. As part of the presentation of user interface of another application). This caused obvious
the architectural style, we describe the class of requirements‘transmission errors” that had to be detected by periodic rec-
that led to the adoption of the style in order to enable readersonciliation of front-office and back-office data. Again due to
to identify similarities with integration problems they may lack of automated interfaces, reconciliation was commonly
face. We conclude by indicating further needs for software done manually by comparing print-outs.

ngineering and w ngineering r rch. e . R
engineering and web engineering researc To overcome the above difficulties provided the motivation

In Section 2, we describe the need for enterprise integrationfor our financial institution to invest in a systematic enter-
that our financial institution has in common with many other prise application integration architecture. When discussing
organizations. We then describe our process for developingthe project results at trade shows, we were repeatedly ap-
a new architecture for enterprise application integration in proached by organizations from the financial, telecommuni-
Section 3. In Section 4, we discuss the non-functional re- cations and transport domain that told us about very similar
guirements that guided the development oA and show problems. We therefore believe that thesRA solution to

how markup languages, and in particular XML, are used in enterprise application integration may be of wider interest to
this trading architecture to resolve semantic differences be-the scientific community at large.

tween different trade data representations. We also discus
in that section how we use middleware in order to control
the reliable trade data transport between front, middle and
back office systems. In Section 5 we outline the experience
that we made with the [GRA architecture. We conclude by
indicating research directions for software architectures in
Section 6.

2 The Problem

Before we started thel&RA project, our financial institution
performed application integration in a rather ad-hoc man-
ner. The IT department for trading had to implement, main-
tain and integrate about 120 different applications. Due to a
lack of an enterprise application integration approach, most
of these applications had two or more direct interfaces with The business requirements elicitation served two purposes.
other applications. There is, and probably never will be, a The obvious one was an outline of the high-level require-
common trading data format that every application supports. ments for the TGRA project. The more subtle objective was
Therefore each interface was unique, which lead to large in- to obtain buy-in for the architecture project from the different
terface development costs: developing an interface requireddivisions of the bank that were affected by the architecture
between three and ten person years of effort and took be-development. The stakeholder analysis and their subsequent
tween one and three years. Neither the development costsnvolvement ensured that the stakeholders felt they had a say
nor the time that was needed to integrate new applicationsin how the applications that they run are going to be inte-
were acceptable any longer. grated in the future and thus they were willing to contribute
to the funding of TGRA.

% Architecting Process

The TIGRA project used an incremental and iterative archi-
tecture development process in order to mitigate risks and be
able to demonstrate benefits to key decision makers early on.
We now discuss our experience with this process in a little
more detail.

Requirements Analysis: In our experience software archi-
tectures are determined by requirements. In fact, they are
often determined by global or non-functional requirements
that stakeholders expect from their system. It was therefore
natural to start the IGRA project with a thorough require-
ments analysis exercise.

Before TiGRA, interfaces were executed in overnight
batches, which meant that trading data entered in a front-The business requirements themselves are not directly op-
office system only became available in middle- and back- erationalizable, but provided fertile ground to elaborate
office systems during the next day. With stock exchangesthe system requirements. We paid particular attention on
opening longer hours and clients expecting to trade over thenon-functional requirements, such as openness, standards-

compliance, security, scalability, availability and perfor- 4 The TIGRA Architectural Style

mance that directly influenced the shape ofRA. Requirements:

The TIGRA software architecture is determined by a num-
ber of non-functional requirements. We describe the re-
guirements in some detail here as the similarity of our re-

|n-hotuse Idevelc;fptmhenthan _pct)ssmltt_a. ltt V\;]as Ide(_amed Iqeciséwirements and requirements the reader may have determine
sarytorely on ofi-tne-shell integration technologies as MUCh \p oipar the reader can re-use the A style.

as possible. The business requirements identified a need to
avoid vendor tie-in and instead demanded the use of openScalability: TIGRA has to bescalable In particular, it
standards so as to remain as vendor independent as possibléas to cope with the transaction load of the entire securities
and derivatives trading department of our financial institu-
. i .) tion. The load is lower than in the retail sector and based on
m|dFIIeware ;tapdards and their |mpllementat|on. Th|s was past experience, we estimated a maximum of 100,000 trans-
gf:rlf:\(laegitbg \I/?Zil:lsng'\I'/EZdt(;;?r:et?\ir;{ar::;?:?:rr?irl?;?zlzlr':r?erﬁf: actions per day for the lifetime of the architecture. The peak
: daily transaction load is reached when exchanges in both Eu-

selvles \;\.”th canhQ£datte prodlf[cis. _We a;ch|evecrj] this dur:jng aln rope and the US east coast are open and we estimated a peak
explorative architecture prototyping stage, where we devel- &4 4 4000 tions per second.

oped prototypes that demonstrated the required goals for a
simple interface between a bond trading and a settlementPerformance: A main aim of TIGRA is to overcome the
system. Altogether, we developed six prototypes, evaluating delays of batch processing. In the finance industry, this re-
a transaction monitor product, object request brokers and aquirement is sometimes also referred toseraight through
message-oriented middleware. Moreover, we explored theprocessingSTP). It means that trading data are exchanged
use of a proprietary message broker that supports semantigvhenever the trading occurs rather than only at the end of the
data transformation as well as the use of XML and XSLT. trading day. We elicited the requirement that the elapsed real
The development of these prototypes each took two to eighttime should be below 10 seconds from when trade process-
weeks. ing is completed by the front-office system until it has been
delivered at all back-office systems.

Explorative Architecture Prototyping: The business re-
quirements determined that@rA should perform as little

These goals meant thati@RA had to identify relevant

Middleware selection: We analyzed each of these proto-
types against the requirements. Some requirements (e.g. seReliability: It is of highest importance that trade details
curity, standards compliance, openness) were assessed anarereliably sentfrom front-office to middle- and back-office
lytically, while performance and scalability was analyzed by systems. They must not be lost or otherwise modified while
benchmarking and stress testing. The fact that prototypesthey are exchanged.I3RA, therefore, has to guarantee the
were available for quantitative measurements allowed us todelivery of a trade at all intended destinations. Moreover,
gain confidence in our selection. We will reason about the traders have to be able to use front-office systems to quote
selection further in the next section. prices and complete trades regardless of the state of middle-

.) . . and back-office system components. This means trakA
Pilot development. The project then developed a pilot ap- has to de-couple front-office systems from middle- and back-
plication of the architecture, where a bond trading system

is integrated with a market risk management system, a rec—om-Ce system and avoid using blocking forms of communi-
e . ’ 7 cation between front-, middle- and back-office systems.

onciliation service and a trade settlement system. The pi-
lot was developed in six months and is in production now. Availability: The components and connectors aGRA
Developing the pilot proved to be invaluable for convincing have to be available throughout the trading day. Moreover,
other divisions in the bank about the benefits that can be de-some of the integrated systems are still batch-systems, which
rived from a systematic enterprise application integration ap- means that TGRA also has to be able to deliver trade data
proach. over-night after trading has been completed. However, it is
possible to shut down trading systems for maintenance and

: . upgrades during bank holidays and weekends. This means
in the bank and has become the standard any for further N that availability requirements are not as strict as for safety-

tegrauon_prOJects. The t_)ank hf”‘S planned to develop 13 N critical systems, such as power plant controllers or in some
terfaces in 2001, a previously insurmountable undertaking. health care applications, but yet they demand thag re-

The te_am that developed the stylg ar!d the pilot IS how acting mains operational non-stop for at least six days a week.
as an internal consultancy organization that trains and men-

tors staff from other IT divisions to use and adopt the style. Security: The financial institution operates a strict secu-

We are currently developing training material on the use of rity regime with a very tightly controlled fire wall between

TIGRA and start-up kits to assist staff from other IT divisions public networks and its own private network. TheGRA

to instantiate the GRA style. project assumes that this firewall protects security against at-
tacks from outside the bank. HowevenGRA has to im-
plement measures for ensuring security against attacks from

Large scale deployment: TIGRA is now generally accepted

users that are authorized to use the private network. ThisAn essential requirement is that the trading data that orig-
involves three concerns. Firstly/@RA has toauthenticate inates in a front-office system has to reach those middle-
usersand associate security credentials, such as access rightand back office systems that have to process the data fur
and privileges with users. Based on the security credentials,ther. Trade data is usually not sent to all middle- and back-
TIGRA has then tacontrol accesdo the services that it im- office systems. Trades that do not involve any risk, for exam-
plements. In particular, it has to be avoided that some rogueple, do not have to be sent to the risk management system.
program, written by e.g. a contractor, sends false trade dataHence, the architecture has to manage the routing of trades
to the back-office for settlement. Finally, auditors of the from front-office to middle- and back-office systems. This
bank want to be notified of security relevant incidents and routing is performed by thRouterbased on trade details.
TIGRA therefore has to gather audit log of security rele-
vant events.

The purpose ofmapping componenis to perform seman-

tic data conversion between the native formats that front-,
Changeability: The trading IT department is faced with middle- and back-office components support in order to re-
constantchange Changes originate in, for example, new solve data heterogeneity.|d@RA defines a common seman-
derivative contracts that are invented by financial institution tic data representation for financial trading data and while
on a very regular basis. From past experience, new contractsn transit through the architecture, any trade is represented
are defined at least once a month and then trading systenin that common representation. This reduces the need from
components have to be adapted to support dealing in thoseO(n?) (with n being the number of components) @n)
products. To support this change it was found necessary thaimapping components.

TIGRA implements and leverages battandardsin the fi- nitiall thouaht of buildi dint tina th .
nancial industry, but also domain-independent standards so ually, we thougnt of burlding and Integrating the mapping

: components using object-oriented middleware, such as an
that components can be exchanged if necessary. implementation of the CORBA standard [13]. That would,

Use of COTS: The financial industry heavily relies @0OTS however, require modelling the complete trade data format
componentshat are procured from specialized vendors and in the interface definition language (IDL) of the middle-
prefers to buy rather than build componentsGAA has to ware and in principle, IDLs are expressive enough for that
integrate these components and has to resolve heterogeneitpurpose. The data structures of trading data are, however,
and distribution. Firstly, components are executed on dis- large and complex. When complex and large data struc-
tributed machines. The machines are often rather heterogetures were to be transmitted between conversion components
neous and in our particular case, we have components ex-using middleware there would be a run-time performance
ecuting under the Windows-NT, Solaris, VMS and OS/390 penalty to be paid if the data structures needed to be mar-
operating systems. Moreover, the way that trading data areshalled and unmarshalled [4]. Because of the need for in-
exported and imported among these components varies sig€orporating new security and derivative products, the trad-
nificantly. Some components just define a file format from ing data structures are not stable. When using a middleware
which TIGRA has to read changes, others publish a databaseDL, this means that any architectural components, such as
schema and iGRA can interface using ODBC or JDBC. Yet the client and stubs server stubs that are derived from the
other components have socket-based APIs, define messagibL would need to be changed, too. This implies that when-
formats that are to be read and written from and to messageever one front-office system introduces a new product, every
gueues or even have an object request broker interface. Incomponent of the architecture needs to be re-compiled and
any case, different programming languages are needed. the version and configuration management demands make
this impractical. The incompatibility of the different IDLs is
another argument against this approach. If we used a partic-
ular IDL, say OMG/IDL we would lock the entire trade data
representation into CORBA and it would become next to im-
possible to change the middleware to, say a message queue.
Finally, the business analysts, who know how to implement
semantic mappings would never be able to build mappings
Pecause they need to be implemented in a programming lan-
guage.

Overview of TIGRA Style
Figure 1 shows an overview of the@RA style and the data
flow between the different architectural components. Rect-
angles in the figure show components and arrows denote
trading data that is sent from one component to another. We
have to assume that the different front-, middle- and back-
office systems cannot be modified, but rather have to be inte-
grated using their heterogeneous interfaces. Input and outpu
adapters achieve this integration. Aatput adapteobtains
data from a component and converts them into a common se-We therefore decided that using middleware primitives to ex-
mantic representation. Aimput adapterprovides data to a press the complex trading data structures was not a viable op-
component in its native representation. Thus, both input andtion. It became théeitmotif of the TIGRA style to separate
output adapters wrap [9] existing or COTS applications and semantic trade data integration from trade data transport as
hide the complexities of interfacing with them. Adapters use strictly as possible. IGRA uses XML and related technolo-
data mapping components for semantic data conversion. gies for achieving trade data integration and it uses object
middleware for achieving reliable, scalable and secure trade

Front- | = |jm=====--------- mmmmmm oo : Bk
Office o FO;ToXML XMLToBO; F)l Office
System :
= © Output Adapter; | /, Input Adapter; ! System,
Front- pagefeejegefeejejfeejeiey piylptiviaioiututioiotytuivh - IS
Office p| FOToXML Router H» XMLTOMO; : » Office
Sys.t“emz + Output Adapter, | I Input Adapter, ! Sysltfem2
Front- e W S - o
Office p| FO,ToXML XMLToBO, iyl Office
System, i System,

1 Output Adapter,; ' Input Adapter,

Figure 1: Overview of Trading Architecture

IELEMENT Instrument (Security | Future | Option)>

data transport. We, therefore, discuss these two aspects Ofi EvENT inatrumentL i (Instrument+)>

the TIGRA architectural style separately now. <IELEMENT Future (Security,Maturity)>
<IELEMENT Option (Security,_ Maturity, StrikePrice,
Data Integration Using XML and XSLT Optatiribute?)>

. . . - <IATTLIST Option
The use of XML is motivated by the availability of standards “side (Put|call) #REQUIRED
for financial trading data and by the evolving tool support. ~ Cover (Covered|Uncovered) #IMPLIED
X . Type (Customer|Firm) #IMPLIED
Moreover, vendors of front office systems are starting to pro- openClose (Open|Close) #MPLIED

vide XML based interfaces to their systems, which will fur- >

ther simplify future integration. <IELEMENT Security ((Symbol|RelatedSym),SymbolSfx?,
) . SecuritylD?,SecurityExchange?,Issuer?,SecurityDesc?)>
TIGRA defines a common trade data representation. The rep- ATTLIST Secur
. . . . <!
resentation has been developed starting from international™',,c EAICDICHOICORPICPICPPICSIFHAIFHLIFNIFORIGN|
financial standards, most notably the XML version of the SS%/;IISELTITAIADFLLAQ%WSA%FSI\/FIETTIh(/)ILFJ#Ill\I{gg"EIPSIRPI
Fixprotocol (FixML) [7] and the Financial Products Markup ISLITD| IWAR[ZOOIFUTIOPT)
Language (FpML) [8]. The Fixprotocol was defined to sup- ELEMENT Svmbol (4PCDATA
port electronic exchange of securities information and is SIELEMENT molnedeon o ConTAY
therefore well suited for representing standard products, sch:EtEmgm gymbplslig g&PPCCDD//:TT:P
. . . . <! t
as bonds, equities and options, which are traded on inter-Zxrr)sy seoryn. ¢ >
national exchanges. FpML has recently been proposed for IDSource (1/2/3]4/5/6|7) #REQUIRED
derivatives that are generally not traded at an exchange but
that banks trade directly “over-the-counter”. Jointly the two <:Etgmgm ISecurityExchemge (#PCDATQ;CDATA)
<! ssuer >
markup Ianguages_ cover the 90% of the spectrum of prod- _ g, event securitydesc (#PCDATA)>
ucts traded at our financial institution. However, several cus- <:Etgmgm I\S/Ia_t;ri;y_ (M?;éhggzr&?y?k
. . . <! trikePrice >
tomizations of the F'XMIT star}dard are necessary because the, e emenT optattribute (#PCDATA)>
Fix consortium of American investment banks did not cater
for specialties and recent developments in the European mar-
ket. FixML, for example, does not include a currency code
for the Euro and various new Eastern European currencies.
Figure 2 shows a small excerpt of the FixML DTD that we g trade, which is an instance of the DTD in Figure 2.
use. For reasons of clarity, the FIX protocol attribute tags are
omitted. We would now like to highlight some more general obser-

) vations about using XML to structure data. The ability to
An XML DTD defines the syntax of a markup language.- define data structures by way of a DTD, or in the future by
EMENTdefinitions are similar to productions in context free using XML schemas [6], enables us to use a general-purpose
grammars and define the other elements that can be includegi " parser to validate the correctness of data against its
in an element. The DTD in Figure 2, for example, defines yha gefinition. This proves invaluable as data quality is-
that aninstrument can either contain 8ecurity , aFu- sues can be detected very early. We also note that the avail-
ture or anOption . The ATTLIST definition declares the gpjjity of markup language definitions is not restricted to the
attributes that an element can have together with their typesginancial domain, but that there is a wealth of languages de-

and possibly default values. It defines, for example that an fineq across different application domains. This enables the
Option element has to have an attribug@le that deter- TIGRA style to be reused in different settings, too.
mines whether the option is a buy or sell option. Figure 3

shows an excerpt of the data representation for a very simpleThe architecture has to implement mappings between the

Figure 2: Excerpt of FixML DTD for Securities Data

2xml ion="1.0" ing="1SO- -1"?: - .
P OCTYRE EaL SYoTErT honenda 1> versa. XSLT defines a rule-based language that can specify

<E:=>i)’\(/|MLEMessage> how source treg elements are translated into target elemgnts.
<Header> It supports projection (omitting tree elements), traversing
trees in a particular order and the like. Our prototyping stage
found XSLT programming support to be sufficient and the
available Xalan XSLT processor to be stable and sophisti-
cated enough for mission critical use. Figure 4 shows an
XSLT sample taken from thel&RA instantiation that is cur-

</Header>
<ApplicationMessage>
<Allocation AllocTransType="0">
<AllocID>564548</AllocID>
<RefAlloclD>0</RefAllocID>
<Side Value="2"/>

<Instrument>

<Security Type="CS">
<Symbol>WKN</Symbol>
<SecuritylD 1DSource="1">352058</SecuritylD>
<Issuer/>
<SecurityDesc>DGBK 4.96DEO3EU</SecurityDesc>
</Security>

</Instrument>

<Shares>1000000.00000000</Shares>

<AvgPx>99.52000000</AvgPx>

<Currency Value="EUR"/>

<TradeDate>20000414</TradeDate>

<TransactTime>11:01:11</TransactTime>

<Settlement>

<FutureSettimnt>
<FutSettDate>20000118</FutSettDate>
</FutureSettimnt>

</Settlement>

<NetMoney>1001691.80327869</NetMoney>

<Text>mit Boni</Text>

<AccruedinterestRate>0.64918033</AccruedinterestRate>

<AllocationGroupList NoAllocs="1">
<AllocationGroup>
<AllocAccount>9802352058</AllocAccount>
<AllocShares>1000000.00000000</AllocShares>
<BrokerOfCredit/>
<ClientID>KRGEN H BG204</ClientID>
<Commission CommType="2">0.10000000</Commission>
<AllocNetMoney>1001691.80327869</AllocNetMoney>
<AccruedInterestAmt/>

</AllocationGroup>

</AllocationGroupList>

</Allocation>
</ApplicationMessage>
</FIXMLMessage>
</FIXML>

Figure 3: A Bond Trade in FixML

rently in production.

<xsl:template name="insertSecurity">
<xsl:param name="DealType"/>
<xsl:param name="SecurityType"/>
<Security>
<xsl:attribute name="Type">
<xsl:value-of select="$SecurityType"/>
</xsl:attribute>
<xsl:if test="$DealType = 'SEC™>
<xsl:call-template name="insertSecurityDetails">
<xsl:with-param name="WKN"
select="string(OLK_CLASS_SEC/OLK_SEC_CODE)"/>
<xsl:with-param name="SecLabel"
select="string(OLK_CLASS_SEC/OLK_SEC_LABEL)"/>
</xsl:call-template>
</xsl:if>
<xslif test="starts-with($DealType,’REPO")">
<xsl:call-template name="insertSecurityDetails">
<xsl:with-param name="WKN"
select="string(OLK_CLASS_REPO/OLK_REPO_SEC_CODE)"/>
<xsl:with-param name="SecLabel"
select="string(OLK_CLASS_REPO/OLK_REPO_SEC_LABEL)"/>
</xsl:call-template>
<[xsl:if>
</Security>
</xsl:template>

<xsl:template name="insertSecurityDetails">
<xsl:param name="WKN"/>
<xsl:param name="SecLabel"/>

<SecuritylD>
<l-- IDSource has to be one of 1,2,3,45,6,7 -->
<xsl:attribute name="IDSource">1</xsl:attribute>
<xsl:value-of select="$WKN"/>
</SecuritylD>
<Issuer/>
<SecurityDesc>
<xsl:value-of select="$SecLabel$"/>
</SecurityDesc>
</xsl:template>

proprietary formats that front, middle and back office sys-
tems produce or expect and the standardized XML based for-
mat shown above. At the time of writing this paper, front-,
middle- or back-office system do not support export or im-
port of well-formed XML. However, in our experience it The figure shows two named templatesertSecurity

is not difficult to create application-specific DTDs in such and insertSecurityDetails The insertSecurity

a way that application specific formats can be transformed template creates th&ecurity —element of a FixML Bond

into a marked up representation and vice versa by very Trade and then calls thiesertSecurityDetails tem-
simple scripts that exchange appropriate markup tags withplate. It passes two paramet&wNand SecLabel , whose
application-specific delimiters, such as commas in commavalues it obtains from the input tree by following different
separated files. Thus, the first stage of any output adapteipath expressions, depending on whether the security is a
is to read the native data representation of the componentbond or a repo (i.e. a bond loan). The second template then
and produce a marked up version in an application-specificinserts theSecuritylD element, an emptigsuer element
markup language. Then we can use primitives that have beerand aSecurityDesc element.

built for transforming an XML documents from one markup
language into another.

Figure 4: Transforming Trades with XSLT

We have managed to express 80-90% of the transformation
concerns in XSLT. We, however, also found various needs for
TIGRA uses eXtensible Stylesheet Language Transforma-using paradigms other than XSLT template-based tree trans-
tions (XSLT) [3] to translate application-specific markup formations. These were, for example complex computations
languages into the standard FixML/FpML notation and vice of attribute values for calculating accrued interest of a bond,

transforming one date representation into the other, or table-This large number of available middleware approaches and

based mappings of account identifications. The ability to ‘es-

the even bigger number of vendors offering middleware

cape’ to Java and Javascript for defining application-specific products leads to a package selection problem [1]. Our ap-

XSLT extension functions proved very important.

<xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmins:Ixslt="http://xml.apache.org/xslt"
xmins:TermsAndConditions="PriceParameter"
extension-element-prefixes="TermsAndConditions">

<Ixslt:component prefix="TermsAndConditions"
functions="getAccruedinterestAmount ..."
<Ixslt:script lang="javascript">
function getAccruedinterestAmount(nominal,rate){
accruedAmount = nominal * rate * 0.01,
return " + (accruedAmount);

>

}
</Ixslt:script>
</Ixslt:component>

<xsl:template name="insertAccruedinterestAmount">

<xsl:param name="NominalAmount"/>

<xsl:param name="AccruedRate"/>

<xsl:value-of select="
TermsAndConditions:getAccruedinterestAmount(
$NominalAmount, $AccruedRate)"/>

</xsl:template>

Figure 5: XSLT Extension Function in JavaScript

proach for selecting a middleware for this architecture is
based on the non-functional requirements for the architec-
ture that we discussed above.

In order to select a suitable middleware approach we com-
pared message-oriented middleware, transaction-oriented
middleware and object-oriented middleware first analytically
and then using prototypes. Several interesting results arose
from that comparison. The degree of standardization is
far higher for CORBA products than for message-oriented
and transaction-oriented middleware. Message-oriented and
transaction-oriented middleware is more difficult to use and
to administer than object-oriented middleware, mainly be-
cause of the need to hand-code marshalling. As aresult, a hy-
brid approach was pursued and middleware that implements
the CORBA standard was selected with the constraint that
the middleware had to implement the Object Transaction ser-
vice in order to be able to execute sequences of operations in
an atomic manner [11]. Then transactions can be used to re-
liably forward trade data to the Router and also for the broad-
cast of Routing information to input adapters. To implement
the security requirements, we employ the CORBA Security
service Level 1, which is well supported by several CORBA
products. It provides us with primitives to define credentials

Figure 5 shows as an example how Javascript is used in arfor principals and to authenticate principals in order to estab-

XSLT stylesheet in order to define and apply the extension
functiongetAccruedinterestAmount

XML has originally been defined by the W3C as the
next generation Markup Language for the World-Wide-Web.
Hence, it is assumed that XML data is distributed using the
HTTP protocol. However, the HTTP protocol is very inflex-
ible as it supports only point-to-point connections and only

put and get operations between them. Also there are no relia

bility guarantees for delivery of XML data over HTTP, which

renders the protocol unusable for reliable software architec-

lish a security association. It also allows us to set up access
rights for principals so that we can prevent non-authorized
use in TIGRA instantiations. The most difficult issue with
CORBA was reliable trade delivery in a non-synchronous
fashion. We could not use CORBAs synchronous object
request primitive as this would have delayed the execution
of front-office systems. Moreover, object request do not di-
rectly support the multicast representation that is needed in

TIGRA.

The Router of the TGRA architectural style implements a

tures, such as the one for the financial trading system. Toselective and reliable multicast of trade data represented in

obtain the necessary qualities of service to meet our non-

functional requirements, IGRA uses middleware rather than
HTTP for data transport.

Object Middleware for Data Transport
There are many different middleware approaches, such a

message gueues, object request brokers and transaction mo

itors. Most of them can be employed to achieve reliable

transfer between distributed system components. Messageg

ueues temporarily buffer messages for temporarily unavail- ; 2 . : -
d P y 9 P y hdata information is needed for making routing decisions and

able system components. Object-oriented middleware, suc
as OMG/CORBA implementations, Java/RMI or Microsoft’s

COM, transmit structured data within operation parameters

and notify requesters if a failures occur. Transaction moni-

S

XML. The Router can only determine the group of receiver
components dynamically based on the value of attributes and
entities in the XML trade data representation (e.g. $ke
curity Type attribute). In principle, this would require the
Router to understand the XML representation, but this is un-
r%esirable for reasons of both maintenance and efficiency; the
outer should not have to be changed when a DTD changes
nd also we should not waste time parsing the XML string
uring routing. Fortunately, only a limited amount of trade

we hold these data redundantly in both the XML trade rep-
resentation and in a CORBA data type, that we refer to as
Routable

tors use the two-phase commit protocol to achieve consensugven with the selection of CORBA as the middleware and
between distributed components about the success of a transthe aim to use CORBAservices for transactions and security,

action.

a number of design options remained open for the router.

These are: reason. The time between the creation of a trade at a front-
office and the back-office might well exceed several hours. It
e use of the CORBA Event Service as basis of the Router could sometimes even exceed a night. The messaging service
implementation; would need to keep call-back objects for all those trades in
order to wait for acknowledgement of the receipt of the trade
e use of the CORBA Messaging Service for asyn- objects in all middle and back-office systems. We would
chronous Trade data delivery; and expect that there will be a substantial overhead involved in
managing these call-back objects in a fault-tolerant and re-
liable way. Moreover, there are no stable implementations
of the messaging service as yet and implementing the Mes-
o o saging service is beyond what can reasonably be achieved
The CORBA Event serviceis specified in Chapter 4of [11] py 3 pank as it requires modifications of the core of an ob-
and is available for most CORBA implementations. The ject request broker, such as the IDL compiler. The trading

CORBA Event service supports asynchronous one-way mul- grchjtecture therefore does not use the Messaging service.
ticast of event data from one supplier to multiple receivers.

Moreover, it achieves a de-coupling of event producers from The CORBA Notification service was adopted by the
event consumers. The Event service is relevantGRRE, as OMG Telecommunication Task Force [12] and overcomes
the trade data that needs to be multicast from one front officetheé shortcomings of the Event Service. There are various
System to mu|t|p|e middle- and back-office Systems can be implementation of the Notification service available. The

e use of the CORBA Notification Service as basis of the
Router implementation.

regarded as typed events. FurthermoresRA aims at de- Notification Service is based on the Event Service, and adds
coupling trade data senders and receivers and that could b&apabilities to determine reliability of event communication,
achieved with the Event service, too. event prioritization, event expiry and event filtering. This

) makes the service very suitable for the implementation of
The Event service supports both push- and pull-type com-rade data transport. In particular, it is possible to treat all
munication. The communication pattern in the trading ar- Output Adapters as event suppliers, all Input Adapters as

chitecture will use the push rather than the pull approach. oyent consumers and the Router as an Event Channel.
The Event service supports both typed and non-typed event

communications. In the trading architecture event communi- AS shown in Figure 6, the trade data is processed and con-
cation will be typed (using thRoutable interface) and the ~ Verted by Output Adapters into the standardized XML rep-

event types will express those parts of the trading data struc-resentation and then passed into an Event Channel for dis-
tures that are of concern for the routing of event data. The tribution. The Event Channel knows the input adapters and
Event service is, however, not suitable for the trading archi- applies filtering to each event so as to make sure that ev-
tecture as it does not support the specification of quality of €ry event is sent to that subset of Input Adapters that have
service attributes, such as reliability of data delivery. More- t0 receive the event. It is also shown that additional event
over, it does not support event filtering, which is necessary channels may be used to further de-couple the conversion

to charge the service with routing of trading dataiGRa process performed by the Adapter from a receiving middle
therefore does not use the Event service. or back office system. The Input Adapters may also contact

. o o receiving back and middle office systems without involving
The CORBA Messaging serviceis specified in [10] and g Event Channel. This is appropriate if the legacy interface

supports guaranteed delivery of asynchronous object re-tq the middle or back office system already contains a queu-
guests in CORBA. It will be incorporated into the CORBA ing mechanism.

3.0 standard and is not yet available in any product.

])]] Figure 7 shows in more detail how an output adapter uses
Call back objects in the messaging service support asyn-ihe interfaces of the Notification service. To initialize itself,
chronous object requests. Messaging capable IDL compilersjt gptains aTypedSupplierAdmin object for Routable
will generate these call back objects declarations for asyn- gyent types from dypedEventChannel and it then estab-
chronous operations in IDL. CORBA implementations are |ishes the qualities of service attribute for that channel, ask-
expected to invoke call back objects transparently for the ap-jng the channel to retain its connections upon failure and to
plication programmer when the server object finishes the re- 5 arantee delivery of event data. Whenever event data needs
quest to deliver results. The Messaging and Event Servicesyg pe forwarded through the Notification service, the output
have in common that they support asynchronous delivery of ygapter converts the data into the standard XML represen-
request parameters. They are different in that firstly, the Mes-i5tion and then invokepush _structured _events from
saging service supports peer-to-peer communication, whileheTypedProxyPushConsumer object. This will guarantee
the Event service supports multicasts and secondly the Eve”HeIivery of the event to affypedPushConsumersObjects

service supports one-directional communication, while the {hat are currently registered with the event channel.
Messaging service supports bi-directional communication.

. .)) Thus, by determining persistent event and connection relia-
The Messaging service, however, is unsuitable for another

Front- | je=======-=------ [aiaieieieiebaiaieieieiuiatuinie Back.
Office | FOiToXML XMLToBO,; Office
Syst
ySems | Output Adapter; \ ' Input Adapter; System,
Front- vIIIIIIZZIZZIZIZZ o mm e m Middle
Office |{ FOTOXML | XMLToMO, Office
System, 1 Output Adapter; 1 ' Input Adapter, Sysltfemz
Front- I Back-
Office P FOnTOXML XM LTOBOn Office
System v System
SR 1 Output Adapter,; ! Input Adapter, Y My
Figure 6: Use of CORBA Notification Service
: MurexOutput : TypedEventChannel |: TypedSupplier || : TypedProxyPu|| :QoSAdmin : XMLMapper
Admin shConsumer
1: get_supplier_admin ‘ ‘
/U EventReliability=Persistent &
2: get_consumer(Routable) t(.‘G,;;:rtwnectlonRellz:1b|l|ty=PerS|s
3: set_gos(|
T 4: murex2xml()
5: push_structured_events|() /U

Figure 7: Output Adapter Interacting with Notification Service

bility, an implementation of the trading architecture can dele- The TIGRA leitmotif of addressing data integration and re-
gate guaranteed delivery to a Notification service implemen- liable transport separately proved highly successful. Not
tation. By using the filtering mechanism supported by the only has it enabled us to address semantic data integration
Notification service, each input adapter can ensure that onlyby transforming XML documents using XSL, but it also has
relevant events are passed on to the middle and back officeallowed us to keep the skill set down. XSL stylesheets that
system. The Notification service supports the administration perform the mapping are now happily written by business an-
of these filters with a constraint language. alysts, who would have not been able to implement CORBA

5 Experience With TIGRA objects.

Our experience with the IGRA architectural style has been We have managed to implement a pilot project using the
largely positive. We stress tested the pilot implementation TIGRA style in about six months, both within budget and
before it went into production and we were easily able to on time. We have thus shown that the architecture has been
scale the system up to 25 trades per second (i.e. 2.5 timesuccessful and can reduce cost of enterprise application inte-
the required peak throughput) by using replicated mappergration. The pilot project further produced a re-usable sup-
objects on a cluster of Sparc Ultra Enterprise Servers. Evenport framework with common classes for Web-based user in-
higher scalability could have been achieved by adding fur- terfaces, database access and for building input and output
ther replicated mappers and router objects. We have achieveddapters. Re-use of this framework and the general experi-
an elapsed real-time for the multicast of a trade, i.e. the ence we made in this project will further decrease the effort
time between an output adapter taking the trade and all in-that future TGRA instantiations will demand.

put adapters forwarding the trade to their receivers, of about
950 milliseconds. The time is actually an order of magnitude
faster than was required, which surprised us, as we initially
thought that XSL stylesheet transformations are rather inef-
ficient.

6 Research Directions
We now review the implications of our findings for the re-
search agenda on software architecture.

The combination of markup languages and middleware is

largely successful, though further work will be needed to struction of input and output adapters. Andreas Heyde and
achieve tighter integration. The use of middleware enabled Michael Koch implemented the Web-based user interfaces.
us to isolate functional concerns in the mapping components.

In particular it would be desirable to be able to see XML REFERENCES
data structures through an IDL interface and vice versa. This [1] M. Ryan A. Finkelstein and G. Spanoudakis. Software
would have allowed us to avoid encoding data redundantly Package Requirements and ProcurementPrirc. of

in Routable . the 8" Int. Workshop on Software Specification and
Design, Schloss Velen, Germapgges 141-146. IEEE

Non-functional requirements determine most of the choices Computer Saciety Press, 1996.

during the selection and design of the architecture. The
strong demand for scalability, reliability and high availability [2] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
drove the development of the architecture and the selection Extensible Markup Language. Recommendation
of packages that were deployed in the architecture. We need http://iwww.w3.0rg/TR/1998/REC-xmI-19980210,

to better understand the relationship between non-functional World Wide Web Consortium, March 1998.
requirements and software architectures. Moreover, we need [3] J. Clark and S. Deach, Extensible Stylesheet

o nd sy w0 ety oo e 08 U SIS S
: y and p q http://www.w3.0rg/TR/1998/WD-xs|-19980818,

ments were largely estimates based on past experience put .)
the stability of the TGRA architecture at risk if those esti- World Wide Web Consortium, August 1998,

mates are wrong. [4] W. Emmerich. Engineering Distributed Objectslohn

7 Conclusion Wiley & Sons, April 2000.

We have now used thelTRA style that we introduced in this [5] W. Emmerich. Software Engineering and Middleware:

paper in the trading department of a different bank for a sim- A Roadmap. In A. Finkelstein, editoFuture of Soft-

ilar enterprise application integration project. In this project, ware Engineeringpages 117-129. ACM Press, June

we have exchanged the middleware but otherwise employed 2000.

the same architectural style. Instead of CORBA, we used . . .

a Java Messaging Service (JMS) for reliable trade delivery [6] David C. F.aII3|de. XML _Schema. Technical
; Report http://mww.w3.org/TR/xmlschema-0/, World

and Enterprise Java Beans (EJB) for scalable deployment of Wide Web Consortium. April 2000

mapping components. This leads to suggest that the style is ' '

actually quite general and can be employed not only in one [7] Fix Protocol. FIXML - A Markup Lan-

but in many different institutions. guage for the FIX Application Message Layer.

The strength of middleware and markup languages are com- http://www.fixprotocol.org, 1999.

plementary. Based on the experience with this trading ar- [8] FpML. Introducing FpML: A New Standard for e-
chitecture, we expect this combination to be used in future commerce. http://www.fpml.org, 1999.

distributed systems where complex data structures need to . .)
be transmitted between distributed off-the-shelf components [°] ; MtOWbr?Y[andt_R. LZJahaV'bTrlngfsdenotEI SVSF BA:
and semantic transformations have to be performed. Such ar- ystems integration Lsing Listribute Jectsiiey,

chitectures will use middleware for achieving reliable trans- 1995.
port of data between multiple distributed system compo- [10] Object Management Group. CORBA
nents. They will leverage markup languages to express the Messaging — Revised Joint Submission.

structure of data so that semantic data transformations canbe ftp://ftp.omg.org/pub/docs/orbos/98-03-11.pdf, MAR
expressed at appropriate levels of abstraction using standards ~ 1998.

d perf d usi ff-the-shelf technology.
and performed using orrtne-shett fechinology. [11] Object Management GroupCORBAservices: Com-

Acknowledgements mon Object Services Specification, Revised Edition
We would like to thank all members of thel@rA team. 492 Old Connecticut Path, Framingham, MA 01701,
Jurgen Bichler drove the initiative for a “new trading ar- USA, December 1998.

chitecture”, lead the initial research, obtained the funding
and provided the atmosphere in which our ideas could ma-))
ture. Walter Schwarz evaluated CORBA Notifications and Old Connecticut Path, Framingham, MA 01701, USA,
developed the Router. Stefan Walther conducted the business January 1998.

analysis and wrote most of the semantic transformations in[13] Object Management Groupthe Common Object Re-
XSLT style sheets. Frank Wagner provided the environment quest Broker: Architecture and Specification Revision

for testing many of the TIGRA components. Rolf Khling 2.2 492 Old Connecticut Path, Framingham, MA
implemented a reusable set of classes to simplify the con- 01701, USA, February 1998.

[12] Object Management GrougNotification Service 492

