
TIGRA– An Architectural Style for Enterprise Application
Integration

Wolfgang Emmerich
Dept. of Computer Science
University College London

Gower St, London WC1E 6BT, UK
W.Emmerich@cs.ucl.ac.uk

Ernst Ellmer
Zühlke Engineering GmbH
Düsseldorfer Strasse 40a

65760 Eschborn, Germany
ee@zuehlke.com

Henry Fieglein
DG Bank

Am Platz der Republik
60325 Frankfurt, Germany
henry fieglein@dgbank.de

Abstract
We report on experience that we made in the Trading room
InteGRation Architecture project (TIGRA) at a large German
bank. TIGRA developed a distributed system architecture
for integrating different financial front-office trading systems
with middle- and back-office applications. We generalize the
experience by proposing an architectural style that can be
re-used for similar enterprise application integration tasks.
The TIGRA style is based on a separation of data represen-
tation using domain-specific XML languages from transport
of those data with an appropriate middleware. We show how
Markup languages, particularly the eXtensible Markup Lan-
guage (XML) and eXtensible Stylesheet Language Transfor-
mations (XSLT), can be used to solve semantic data integra-
tion problems. We discuss that the strengths of middleware
and markup languages are complementary and indicate the
synergies yielded by deploying middleware and markup in
the TIGRA style.

1 Introduction
An increasing number of distributed systems are not built
from scratch but rather integrate existing applications or
commercial off-the-shelf (COTS) applications. These appli-
cations may not have been built to be integrated; they are
often procured from different vendors and they are likely to
be rather heterogeneous. The heterogeneity may exhibit it-
self in the use of different programming languages, avail-
ability on different hardware and operating system platforms
and the use of different representations for the exchange of
data. Heterogeneity, scalability and fault-tolerance require-
ments also lead to distributed deployment of applications.
Yet, IT departments of large organizations are often expected
to provide an integrated computing facility to their users.

We describe an example of such a heterogeneous and dis-
tributed system in the financial domain. We have been in-
volved in building a new distributed software architecture for
a financial trading system. In this setting, traders use vari-

ous front-office systems to input trade data as they complete
transactions on the stock exchange or directly with other
traders. The front-office systems execute on different hard-
ware platforms in offices in New York, Tokyo, Hong Kong,
London and Frankfurt. Front-office systems for the different
financial products have been procured from specialized ven-
dors. Once completed, every transaction has to be processed
by middle and back-office systems in the headquarters of the
bank. These systems perform the settlement of transactions,
analyze the risk that the bank has engaged in, and monitor
the performance of individual traders. Some back office sys-
tems have been written in Cobol and execute on mainframes
and others are written in C++ for Unix machines.

The construction of heterogeneous distributed systems is
simplified by distribution middleware systems, such as mes-
sage queues, object-oriented middleware or transaction mon-
itors [5]. These systems resolve hardware, operating system
and programming language heterogeneity and provide prim-
itives, such as message transfer, object requests and transac-
tions that can be used for communication across distributed
hosts.

Object-oriented middleware uses common data representa-
tions for data conversions between different data formats for
atomic data types (e.g. EBCDIC characters into Unicode).
The middleware does not, however, go far enough in resolv-
ing semantic data heterogeneity. The integration of enter-
prise applications in general, and financial trading systems
in particular, often demandssemantic conversionsbetween
different data formats. Some systems, may for example,
identify counter-parties (the customers of the bank) by name,
while others use an account code. When a trade data repre-
sentation has to be transmitted from one system to another,
a semantic transformation of the counter-party identification
has to take place.

The latest generation of markup language standards, most
notably XML [2] support the definition of data structures
through document type definitions (DTDs). These DTDs are,
in fact, grammars for special purpose markup languages. Al-
though they were initially meant to represent structured doc-
uments on the world-wide-web, they are increasingly used as
data representation mechanisms for complex structured data.
These structured data can then be transformed using transfor-

mations that can be specified as eXtensible Stylesheet Lan-
guage Transformations [3], a standard related to XML.

The main contribution of this paper is the discussion of expe-
rience that we made in the TIGRA enterprise application inte-
gration project, where we used both middleware and markup
to achieve integration of distributed and heterogeneous ap-
plications. While several interest groups have defined XML
markup languages for particular domains, the novel contribu-
tion of TIGRA is the strict separation of data representation
in XML from transport of those XML data with an appropri-
ate middleware. We discuss how we developed TIGRA and
aim to present our experience in a reusable way by formu-
lating an architectural style. As part of the presentation of
the architectural style, we describe the class of requirements
that led to the adoption of the style in order to enable readers
to identify similarities with integration problems they may
face. We conclude by indicating further needs for software
engineering and web engineering research.

In Section 2, we describe the need for enterprise integration
that our financial institution has in common with many other
organizations. We then describe our process for developing
a new architecture for enterprise application integration in
Section 3. In Section 4, we discuss the non-functional re-
quirements that guided the development of TIGRA and show
how markup languages, and in particular XML, are used in
this trading architecture to resolve semantic differences be-
tween different trade data representations. We also discuss
in that section how we use middleware in order to control
the reliable trade data transport between front, middle and
back office systems. In Section 5 we outline the experience
that we made with the TIGRA architecture. We conclude by
indicating research directions for software architectures in
Section 6.

2 The Problem
Before we started the TIGRA project, our financial institution
performed application integration in a rather ad-hoc man-
ner. The IT department for trading had to implement, main-
tain and integrate about 120 different applications. Due to a
lack of an enterprise application integration approach, most
of these applications had two or more direct interfaces with
other applications. There is, and probably never will be, a
common trading data format that every application supports.
Therefore each interface was unique, which lead to large in-
terface development costs: developing an interface required
between three and ten person years of effort and took be-
tween one and three years. Neither the development costs
nor the time that was needed to integrate new applications
were acceptable any longer.

Before TIGRA, interfaces were executed in overnight
batches, which meant that trading data entered in a front-
office system only became available in middle- and back-
office systems during the next day. With stock exchanges
opening longer hours and clients expecting to trade over the

Internet also in foreign exchanges, the batch window that
was used when no exchanges were open has disappeared.
Moreover, in the future traders will expect near real-time
integration with middle-office systems, such as market and
currency risk management systems so that risk increase or
mitigation can be factored in when quoting a security or
derivative price. In order to meet these demands all inter-
faces would have to be changed.

Finally, the quality of trading data was a problem. Because
it was expensive to automate all interfaces that were needed,
less frequently used interfaces were operated manually (by
clerical staff reading from one screen and typing data into a
user interface of another application). This caused obvious
“transmission errors” that had to be detected by periodic rec-
onciliation of front-office and back-office data. Again due to
lack of automated interfaces, reconciliation was commonly
done manually by comparing print-outs.

To overcome the above difficulties provided the motivation
for our financial institution to invest in a systematic enter-
prise application integration architecture. When discussing
the project results at trade shows, we were repeatedly ap-
proached by organizations from the financial, telecommuni-
cations and transport domain that told us about very similar
problems. We therefore believe that the TIGRA solution to
enterprise application integration may be of wider interest to
the scientific community at large.

3 Architecting Process
The TIGRA project used an incremental and iterative archi-
tecture development process in order to mitigate risks and be
able to demonstrate benefits to key decision makers early on.
We now discuss our experience with this process in a little
more detail.

Requirements Analysis: In our experience software archi-
tectures are determined by requirements. In fact, they are
often determined by global or non-functional requirements
that stakeholders expect from their system. It was therefore
natural to start the TIGRA project with a thorough require-
ments analysis exercise.

The business requirements elicitation served two purposes.
The obvious one was an outline of the high-level require-
ments for the TIGRA project. The more subtle objective was
to obtain buy-in for the architecture project from the different
divisions of the bank that were affected by the architecture
development. The stakeholder analysis and their subsequent
involvement ensured that the stakeholders felt they had a say
in how the applications that they run are going to be inte-
grated in the future and thus they were willing to contribute
to the funding of TIGRA.

The business requirements themselves are not directly op-
erationalizable, but provided fertile ground to elaborate
the system requirements. We paid particular attention on
non-functional requirements, such as openness, standards-

compliance, security, scalability, availability and perfor-
mance that directly influenced the shape of TIGRA.

Explorative Architecture Prototyping: The business re-
quirements determined that TIGRA should perform as little
in-house development as possible. It was deemed neces-
sary to rely on off-the-shelf integration technologies as much
as possible. The business requirements identified a need to
avoid vendor tie-in and instead demanded the use of open
standards so as to remain as vendor independent as possible.

These goals meant that TIGRA had to identify relevant
middleware standards and their implementation. This was
achieved by inviting vendor presentations and organizing ref-
erence site visits. The team then had to familiarize them-
selves with candidate products. We achieved this during an
explorative architecture prototyping stage, where we devel-
oped prototypes that demonstrated the required goals for a
simple interface between a bond trading and a settlement
system. Altogether, we developed six prototypes, evaluating
a transaction monitor product, object request brokers and a
message-oriented middleware. Moreover, we explored the
use of a proprietary message broker that supports semantic
data transformation as well as the use of XML and XSLT.
The development of these prototypes each took two to eight
weeks.

Middleware selection: We analyzed each of these proto-
types against the requirements. Some requirements (e.g. se-
curity, standards compliance, openness) were assessed ana-
lytically, while performance and scalability was analyzed by
benchmarking and stress testing. The fact that prototypes
were available for quantitative measurements allowed us to
gain confidence in our selection. We will reason about the
selection further in the next section.

Pilot development: The project then developed a pilot ap-
plication of the architecture, where a bond trading system
is integrated with a market risk management system, a rec-
onciliation service and a trade settlement system. The pi-
lot was developed in six months and is in production now.
Developing the pilot proved to be invaluable for convincing
other divisions in the bank about the benefits that can be de-
rived from a systematic enterprise application integration ap-
proach.

Large scale deployment: TIGRA is now generally accepted
in the bank and has become the standard any for further in-
tegration projects. The bank has planned to develop 13 in-
terfaces in 2001, a previously insurmountable undertaking.
The team that developed the style and the pilot is now acting
as an internal consultancy organization that trains and men-
tors staff from other IT divisions to use and adopt the style.
We are currently developing training material on the use of
TIGRA and start-up kits to assist staff from other IT divisions
to instantiate the TIGRA style.

4 The TIGRA Architectural Style
Requirements:
The TIGRA software architecture is determined by a num-
ber of non-functional requirements. We describe the re-
quirements in some detail here as the similarity of our re-
quirements and requirements the reader may have determine
whether the reader can re-use the TIGRA style.

Scalability: TIGRA has to bescalable. In particular, it
has to cope with the transaction load of the entire securities
and derivatives trading department of our financial institu-
tion. The load is lower than in the retail sector and based on
past experience, we estimated a maximum of 100,000 trans-
actions per day for the lifetime of the architecture. The peak
daily transaction load is reached when exchanges in both Eu-
rope and the US east coast are open and we estimated a peak
of 10 transactions per second.

Performance: A main aim of TIGRA is to overcome the
delays of batch processing. In the finance industry, this re-
quirement is sometimes also referred to asstraight through
processing(STP). It means that trading data are exchanged
whenever the trading occurs rather than only at the end of the
trading day. We elicited the requirement that the elapsed real
time should be below 10 seconds from when trade process-
ing is completed by the front-office system until it has been
delivered at all back-office systems.

Reliability: It is of highest importance that trade details
arereliably sentfrom front-office to middle- and back-office
systems. They must not be lost or otherwise modified while
they are exchanged. TIGRA, therefore, has to guarantee the
delivery of a trade at all intended destinations. Moreover,
traders have to be able to use front-office systems to quote
prices and complete trades regardless of the state of middle-
and back-office system components. This means that TIGRA

has to de-couple front-office systems from middle- and back-
office system and avoid using blocking forms of communi-
cation between front-, middle- and back-office systems.

Availability: The components and connectors of TIGRA

have to be available throughout the trading day. Moreover,
some of the integrated systems are still batch-systems, which
means that TIGRA also has to be able to deliver trade data
over-night after trading has been completed. However, it is
possible to shut down trading systems for maintenance and
upgrades during bank holidays and weekends. This means
that availability requirements are not as strict as for safety-
critical systems, such as power plant controllers or in some
health care applications, but yet they demand that TIGRA re-
mains operational non-stop for at least six days a week.

Security: The financial institution operates a strict secu-
rity regime with a very tightly controlled fire wall between
public networks and its own private network. The TIGRA

project assumes that this firewall protects security against at-
tacks from outside the bank. However, TIGRA has to im-
plement measures for ensuring security against attacks from

users that are authorized to use the private network. This
involves three concerns. Firstly, TIGRA has toauthenticate
usersand associate security credentials, such as access rights
and privileges with users. Based on the security credentials,
TIGRA has then tocontrol accessto the services that it im-
plements. In particular, it has to be avoided that some rogue
program, written by e.g. a contractor, sends false trade data
to the back-office for settlement. Finally, auditors of the
bank want to be notified of security relevant incidents and
TIGRA therefore has to gather anaudit logof security rele-
vant events.

Changeability: The trading IT department is faced with
constantchange. Changes originate in, for example, new
derivative contracts that are invented by financial institution
on a very regular basis. From past experience, new contracts
are defined at least once a month and then trading system
components have to be adapted to support dealing in those
products. To support this change it was found necessary that
TIGRA implements and leverages bothstandardsin the fi-
nancial industry, but also domain-independent standards so
that components can be exchanged if necessary.

Use of COTS: The financial industry heavily relies onCOTS
componentsthat are procured from specialized vendors and
prefers to buy rather than build components. TIGRA has to
integrate these components and has to resolve heterogeneity
and distribution. Firstly, components are executed on dis-
tributed machines. The machines are often rather heteroge-
neous and in our particular case, we have components ex-
ecuting under the Windows-NT, Solaris, VMS and OS/390
operating systems. Moreover, the way that trading data are
exported and imported among these components varies sig-
nificantly. Some components just define a file format from
which TIGRA has to read changes, others publish a database
schema and TIGRA can interface using ODBC or JDBC. Yet
other components have socket-based APIs, define message
formats that are to be read and written from and to message
queues or even have an object request broker interface. In
any case, different programming languages are needed.

Overview of TIGRA Style
Figure 1 shows an overview of the TIGRA style and the data
flow between the different architectural components. Rect-
angles in the figure show components and arrows denote
trading data that is sent from one component to another. We
have to assume that the different front-, middle- and back-
office systems cannot be modified, but rather have to be inte-
grated using their heterogeneous interfaces. Input and output
adapters achieve this integration. Anoutput adapterobtains
data from a component and converts them into a common se-
mantic representation. Aninput adapterprovides data to a
component in its native representation. Thus, both input and
output adapters wrap [9] existing or COTS applications and
hide the complexities of interfacing with them. Adapters use
data mapping components for semantic data conversion.

An essential requirement is that the trading data that orig-
inates in a front-office system has to reach those middle-
and back office systems that have to process the data fur-
ther. Trade data is usually not sent to all middle- and back-
office systems. Trades that do not involve any risk, for exam-
ple, do not have to be sent to the risk management system.
Hence, the architecture has to manage the routing of trades
from front-office to middle- and back-office systems. This
routing is performed by theRouterbased on trade details.

The purpose ofmapping componentsis to perform seman-
tic data conversion between the native formats that front-,
middle- and back-office components support in order to re-
solve data heterogeneity. TIGRA defines a common seman-
tic data representation for financial trading data and while
in transit through the architecture, any trade is represented
in that common representation. This reduces the need from
O(n2) (with n being the number of components) toO(n)
mapping components.

Initially, we thought of building and integrating the mapping
components using object-oriented middleware, such as an
implementation of the CORBA standard [13]. That would,
however, require modelling the complete trade data format
in the interface definition language (IDL) of the middle-
ware and in principle, IDLs are expressive enough for that
purpose. The data structures of trading data are, however,
large and complex. When complex and large data struc-
tures were to be transmitted between conversion components
using middleware there would be a run-time performance
penalty to be paid if the data structures needed to be mar-
shalled and unmarshalled [4]. Because of the need for in-
corporating new security and derivative products, the trad-
ing data structures are not stable. When using a middleware
IDL, this means that any architectural components, such as
the client and stubs server stubs that are derived from the
IDL would need to be changed, too. This implies that when-
ever one front-office system introduces a new product, every
component of the architecture needs to be re-compiled and
the version and configuration management demands make
this impractical. The incompatibility of the different IDLs is
another argument against this approach. If we used a partic-
ular IDL, say OMG/IDL we would lock the entire trade data
representation into CORBA and it would become next to im-
possible to change the middleware to, say a message queue.
Finally, the business analysts, who know how to implement
semantic mappings would never be able to build mappings
because they need to be implemented in a programming lan-
guage.

We therefore decided that using middleware primitives to ex-
press the complex trading data structures was not a viable op-
tion. It became theleitmotif of the TIGRA style to separate
semantic trade data integration from trade data transport as
strictly as possible. TIGRA uses XML and related technolo-
gies for achieving trade data integration and it uses object
middleware for achieving reliable, scalable and secure trade

Input Adapter2

Input Adaptern

Output Adapter1

Output Adapter2

Output Adaptern

Front-
Office

System1

Front-
Office

System2

Front-
Office

Systemn

...

FO1ToXML

Router

Back-
Office

System1

Middle-
Office

System2

Back-
Office

Systemn

...

XMLToBO1

FO2ToXML XMLToMO2

FOnToXML XMLToBOn

Input Adapter1

Figure 1: Overview of Trading Architecture

data transport. We, therefore, discuss these two aspects of
the TIGRA architectural style separately now.

Data Integration Using XML and XSLT
The use of XML is motivated by the availability of standards
for financial trading data and by the evolving tool support.
Moreover, vendors of front office systems are starting to pro-
vide XML based interfaces to their systems, which will fur-
ther simplify future integration.

TIGRA defines a common trade data representation. The rep-
resentation has been developed starting from international
financial standards, most notably the XML version of the
Fixprotocol (FixML) [7] and the Financial Products Markup
Language (FpML) [8]. The Fixprotocol was defined to sup-
port electronic exchange of securities information and is
therefore well suited for representing standard products, such
as bonds, equities and options, which are traded on inter-
national exchanges. FpML has recently been proposed for
derivatives that are generally not traded at an exchange but
that banks trade directly “over-the-counter”. Jointly the two
markup languages cover the 90% of the spectrum of prod-
ucts traded at our financial institution. However, several cus-
tomizations of the FixML standard are necessary because the
Fix consortium of American investment banks did not cater
for specialties and recent developments in the European mar-
ket. FixML, for example, does not include a currency code
for the Euro and various new Eastern European currencies.
Figure 2 shows a small excerpt of the FixML DTD that we
use. For reasons of clarity, the FIX protocol attribute tags are
omitted.

An XML DTD defines the syntax of a markup language.EL-

EMENTdefinitions are similar to productions in context free
grammars and define the other elements that can be included
in an element. The DTD in Figure 2, for example, defines
that anInstrument can either contain aSecurity , a Fu-

ture or anOption . The ATTLIST definition declares the
attributes that an element can have together with their types
and possibly default values. It defines, for example that an
Option element has to have an attributeSide that deter-
mines whether the option is a buy or sell option. Figure 3
shows an excerpt of the data representation for a very simple

<!ELEMENT Instrument (Security | Future | Option)>
<!ELEMENT InstrumentList (Instrument+)>
<!ELEMENT Future (Security,Maturity)>
<!ELEMENT Option (Security, Maturity, StrikePrice,

OptAttribute?)>
<!ATTLIST Option

Side (Put|Call) #REQUIRED
Cover (Covered|Uncovered) #IMPLIED
Type (Customer|Firm) #IMPLIED
OpenClose (Open|Close) #IMPLIED

>

<!ELEMENT Security ((Symbol|RelatedSym),SymbolSfx?,
SecurityID?,SecurityExchange?,Issuer?,SecurityDesc?)>

<!ATTLIST Security
Type (BA|CD|CMO|CORP|CP|CPP|CS|FHA|FHL|FN|FOR|GN|

GOVT|IET|MF|MIO|MPO|MPP|MPT|MUNI|NONE|PS|RP|
RVRP|SL|TD|USTB|WAR|ZOO|FUT|OPT) "CS"

>

<!ELEMENT Symbol (#PCDATA)>
<!ELEMENT RelatedSym (#PCDATA)>
<!ELEMENT SymbolSfx (#PCDATA)>
<!ELEMENT SecurityID (#PCDATA)>
<!ATTLIST SecurityID

IDSource (1|2|3|4|5|6|7) #REQUIRED
>

<!ELEMENT SecurityExchange (#PCDATA)>
<!ELEMENT Issuer (#PCDATA)>
<!ELEMENT SecurityDesc (#PCDATA)>
<!ELEMENT Maturity (MonthYear,Day?)>
<!ELEMENT StrikePrice (#PCDATA)>
<!ELEMENT OptAttribute (#PCDATA)>

Figure 2: Excerpt of FixML DTD for Securities Data

bond trade, which is an instance of the DTD in Figure 2.

We would now like to highlight some more general obser-
vations about using XML to structure data. The ability to
define data structures by way of a DTD, or in the future by
using XML schemas [6], enables us to use a general-purpose
XML parser to validate the correctness of data against its
type definition. This proves invaluable as data quality is-
sues can be detected very early. We also note that the avail-
ability of markup language definitions is not restricted to the
financial domain, but that there is a wealth of languages de-
fined across different application domains. This enables the
TIGRA style to be reused in different settings, too.

The architecture has to implement mappings between the

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE FIXML SYSTEM "fixmlmain.dtd" []>
<FIXML>

<FIXMLMessage>
<Header>

...
</Header>
<ApplicationMessage>

<Allocation AllocTransType="0">
<AllocID>564548</AllocID>
<RefAllocID>0</RefAllocID>
<Side Value="2"/>
<Instrument>

<Security Type="CS">
<Symbol>WKN</Symbol>
<SecurityID IDSource="1">352058</SecurityID>
<Issuer/>
<SecurityDesc>DGBK 4.96DE03EU</SecurityDesc>

</Security>
</Instrument>
<Shares>1000000.00000000</Shares>
<AvgPx>99.52000000</AvgPx>
<Currency Value="EUR"/>
<TradeDate>20000414</TradeDate>
<TransactTime>11:01:11</TransactTime>
<Settlement>

<FutureSettlmnt>
<FutSettDate>20000118</FutSettDate>

</FutureSettlmnt>
</Settlement>
<NetMoney>1001691.80327869</NetMoney>
<Text>mit Boni</Text>
<AccruedInterestRate>0.64918033</AccruedInterestRate>
<AllocationGroupList NoAllocs="1">

<AllocationGroup>
<AllocAccount>9802352058</AllocAccount>
<AllocShares>1000000.00000000</AllocShares>
<BrokerOfCredit/>
<ClientID>KRGEN H BG204</ClientID>
<Commission CommType="2">0.10000000</Commission>
<AllocNetMoney>1001691.80327869</AllocNetMoney>
<AccruedInterestAmt/>

</AllocationGroup>
</AllocationGroupList>

</Allocation>
</ApplicationMessage>

</FIXMLMessage>
</FIXML>

Figure 3: A Bond Trade in FixML

proprietary formats that front, middle and back office sys-
tems produce or expect and the standardized XML based for-
mat shown above. At the time of writing this paper, front-,
middle- or back-office system do not support export or im-
port of well-formed XML. However, in our experience it
is not difficult to create application-specific DTDs in such
a way that application specific formats can be transformed
into a marked up representation and vice versa by very
simple scripts that exchange appropriate markup tags with
application-specific delimiters, such as commas in comma
separated files. Thus, the first stage of any output adapter
is to read the native data representation of the component
and produce a marked up version in an application-specific
markup language. Then we can use primitives that have been
built for transforming an XML documents from one markup
language into another.

TIGRA uses eXtensible Stylesheet Language Transforma-
tions (XSLT) [3] to translate application-specific markup
languages into the standard FixML/FpML notation and vice

versa. XSLT defines a rule-based language that can specify
how source tree elements are translated into target elements.
It supports projection (omitting tree elements), traversing
trees in a particular order and the like. Our prototyping stage
found XSLT programming support to be sufficient and the
available Xalan XSLT processor to be stable and sophisti-
cated enough for mission critical use. Figure 4 shows an
XSLT sample taken from the TIGRA instantiation that is cur-
rently in production.

<xsl:template name="insertSecurity">
<xsl:param name="DealType"/>
<xsl:param name="SecurityType"/>
<Security>

<xsl:attribute name="Type">
<xsl:value-of select="$SecurityType"/>

</xsl:attribute>
<xsl:if test="$DealType = ’SEC’">

<xsl:call-template name="insertSecurityDetails">
<xsl:with-param name="WKN"

select="string(OLK_CLASS_SEC/OLK_SEC_CODE)"/>
<xsl:with-param name="SecLabel"

select="string(OLK_CLASS_SEC/OLK_SEC_LABEL)"/>
</xsl:call-template>

</xsl:if>
<xsl:if test="starts-with($DealType,’REPO’)">

<xsl:call-template name="insertSecurityDetails">
<xsl:with-param name="WKN"

select="string(OLK_CLASS_REPO/OLK_REPO_SEC_CODE)"/>
<xsl:with-param name="SecLabel"

select="string(OLK_CLASS_REPO/OLK_REPO_SEC_LABEL)"/>
</xsl:call-template>

</xsl:if>
</Security>
</xsl:template>

<xsl:template name="insertSecurityDetails">
<xsl:param name="WKN"/>
<xsl:param name="SecLabel"/>
...
<SecurityID>

<!-- IDSource has to be one of 1,2,3,4,5,6,7 -->
<xsl:attribute name="IDSource">1</xsl:attribute>

<xsl:value-of select="$WKN"/>
</SecurityID>
<Issuer/>
<SecurityDesc>

<xsl:value-of select="$SecLabel$"/>
</SecurityDesc>
</xsl:template>

Figure 4: Transforming Trades with XSLT

The figure shows two named templatesinsertSecurity

and insertSecurityDetails . The insertSecurity

template creates theSecurity element of a FixML Bond
Trade and then calls theinsertSecurityDetails tem-
plate. It passes two parametersWKNandSecLabel , whose
values it obtains from the input tree by following different
path expressions, depending on whether the security is a
bond or a repo (i.e. a bond loan). The second template then
inserts theSecurityID element, an emptyIssuer element
and aSecurityDesc element.

We have managed to express 80-90% of the transformation
concerns in XSLT. We, however, also found various needs for
using paradigms other than XSLT template-based tree trans-
formations. These were, for example complex computations
of attribute values for calculating accrued interest of a bond,

transforming one date representation into the other, or table-
based mappings of account identifications. The ability to ‘es-
cape’ to Java and Javascript for defining application-specific
XSLT extension functions proved very important.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:lxslt="http://xml.apache.org/xslt"
xmlns:TermsAndConditions="PriceParameter"
extension-element-prefixes="TermsAndConditions">

<lxslt:component prefix="TermsAndConditions"
functions="getAccruedInterestAmount ...">

<lxslt:script lang="javascript">
function getAccruedInterestAmount(nominal,rate){

accruedAmount = nominal * rate * 0.01;
return "" + (accruedAmount);

}
</lxslt:script>

</lxslt:component>

<xsl:template name="insertAccruedInterestAmount">
<xsl:param name="NominalAmount"/>
<xsl:param name="AccruedRate"/>

<xsl:value-of select="
TermsAndConditions:getAccruedInterestAmount(
$NominalAmount, $AccruedRate)"/>

</xsl:template>

Figure 5: XSLT Extension Function in JavaScript

Figure 5 shows as an example how Javascript is used in an
XSLT stylesheet in order to define and apply the extension
functiongetAccruedInterestAmount .

XML has originally been defined by the W3C as the
next generation Markup Language for the World-Wide-Web.
Hence, it is assumed that XML data is distributed using the
HTTP protocol. However, the HTTP protocol is very inflex-
ible as it supports only point-to-point connections and only
put and get operations between them. Also there are no relia-
bility guarantees for delivery of XML data over HTTP, which
renders the protocol unusable for reliable software architec-
tures, such as the one for the financial trading system. To
obtain the necessary qualities of service to meet our non-
functional requirements, TIGRA uses middleware rather than
HTTP for data transport.

Object Middleware for Data Transport
There are many different middleware approaches, such as
message queues, object request brokers and transaction mon-
itors. Most of them can be employed to achieve reliable
transfer between distributed system components. Message
queues temporarily buffer messages for temporarily unavail-
able system components. Object-oriented middleware, such
as OMG/CORBA implementations, Java/RMI or Microsoft’s
COM, transmit structured data within operation parameters
and notify requesters if a failures occur. Transaction moni-
tors use the two-phase commit protocol to achieve consensus
between distributed components about the success of a trans-
action.

This large number of available middleware approaches and
the even bigger number of vendors offering middleware
products leads to a package selection problem [1]. Our ap-
proach for selecting a middleware for this architecture is
based on the non-functional requirements for the architec-
ture that we discussed above.

In order to select a suitable middleware approach we com-
pared message-oriented middleware, transaction-oriented
middleware and object-oriented middleware first analytically
and then using prototypes. Several interesting results arose
from that comparison. The degree of standardization is
far higher for CORBA products than for message-oriented
and transaction-oriented middleware. Message-oriented and
transaction-oriented middleware is more difficult to use and
to administer than object-oriented middleware, mainly be-
cause of the need to hand-code marshalling. As a result, a hy-
brid approach was pursued and middleware that implements
the CORBA standard was selected with the constraint that
the middleware had to implement the Object Transaction ser-
vice in order to be able to execute sequences of operations in
an atomic manner [11]. Then transactions can be used to re-
liably forward trade data to the Router and also for the broad-
cast of Routing information to input adapters. To implement
the security requirements, we employ the CORBA Security
service Level 1, which is well supported by several CORBA
products. It provides us with primitives to define credentials
for principals and to authenticate principals in order to estab-
lish a security association. It also allows us to set up access
rights for principals so that we can prevent non-authorized
use in TIGRA instantiations. The most difficult issue with
CORBA was reliable trade delivery in a non-synchronous
fashion. We could not use CORBA’s synchronous object
request primitive as this would have delayed the execution
of front-office systems. Moreover, object request do not di-
rectly support the multicast representation that is needed in
TIGRA.

The Router of the TIGRA architectural style implements a
selective and reliable multicast of trade data represented in
XML. The Router can only determine the group of receiver
components dynamically based on the value of attributes and
entities in the XML trade data representation (e.g. theSe-

curity Type attribute). In principle, this would require the
Router to understand the XML representation, but this is un-
desirable for reasons of both maintenance and efficiency; the
Router should not have to be changed when a DTD changes
and also we should not waste time parsing the XML string
during routing. Fortunately, only a limited amount of trade
data information is needed for making routing decisions and
we hold these data redundantly in both the XML trade rep-
resentation and in a CORBA data type, that we refer to as
Routable .

Even with the selection of CORBA as the middleware and
the aim to use CORBAservices for transactions and security,
a number of design options remained open for the router.

These are:

• use of the CORBA Event Service as basis of the Router
implementation;

• use of the CORBA Messaging Service for asyn-
chronous Trade data delivery; and

• use of the CORBA Notification Service as basis of the
Router implementation.

The CORBA Event service is specified in Chapter 4 of [11]
and is available for most CORBA implementations. The
CORBA Event service supports asynchronous one-way mul-
ticast of event data from one supplier to multiple receivers.
Moreover, it achieves a de-coupling of event producers from
event consumers. The Event service is relevant to TIGRA, as
the trade data that needs to be multicast from one front office
system to multiple middle- and back-office systems can be
regarded as typed events. Furthermore, TIGRA aims at de-
coupling trade data senders and receivers and that could be
achieved with the Event service, too.

The Event service supports both push- and pull-type com-
munication. The communication pattern in the trading ar-
chitecture will use the push rather than the pull approach.
The Event service supports both typed and non-typed event
communications. In the trading architecture event communi-
cation will be typed (using theRoutable interface) and the
event types will express those parts of the trading data struc-
tures that are of concern for the routing of event data. The
Event service is, however, not suitable for the trading archi-
tecture as it does not support the specification of quality of
service attributes, such as reliability of data delivery. More-
over, it does not support event filtering, which is necessary
to charge the service with routing of trading data. TIGRA

therefore does not use the Event service.

The CORBA Messaging service is specified in [10] and
supports guaranteed delivery of asynchronous object re-
quests in CORBA. It will be incorporated into the CORBA
3.0 standard and is not yet available in any product.

Call back objects in the messaging service support asyn-
chronous object requests. Messaging capable IDL compilers
will generate these call back objects declarations for asyn-
chronous operations in IDL. CORBA implementations are
expected to invoke call back objects transparently for the ap-
plication programmer when the server object finishes the re-
quest to deliver results. The Messaging and Event Services
have in common that they support asynchronous delivery of
request parameters. They are different in that firstly, the Mes-
saging service supports peer-to-peer communication, while
the Event service supports multicasts and secondly the Event
service supports one-directional communication, while the
Messaging service supports bi-directional communication.

The Messaging service, however, is unsuitable for another

reason. The time between the creation of a trade at a front-
office and the back-office might well exceed several hours. It
could sometimes even exceed a night. The messaging service
would need to keep call-back objects for all those trades in
order to wait for acknowledgement of the receipt of the trade
objects in all middle and back-office systems. We would
expect that there will be a substantial overhead involved in
managing these call-back objects in a fault-tolerant and re-
liable way. Moreover, there are no stable implementations
of the messaging service as yet and implementing the Mes-
saging service is beyond what can reasonably be achieved
by a bank as it requires modifications of the core of an ob-
ject request broker, such as the IDL compiler. The trading
architecture therefore does not use the Messaging service.

The CORBA Notification service was adopted by the
OMG Telecommunication Task Force [12] and overcomes
the shortcomings of the Event Service. There are various
implementation of the Notification service available. The
Notification Service is based on the Event Service, and adds
capabilities to determine reliability of event communication,
event prioritization, event expiry and event filtering. This
makes the service very suitable for the implementation of
trade data transport. In particular, it is possible to treat all
Output Adapters as event suppliers, all Input Adapters as
event consumers and the Router as an Event Channel.

As shown in Figure 6, the trade data is processed and con-
verted by Output Adapters into the standardized XML rep-
resentation and then passed into an Event Channel for dis-
tribution. The Event Channel knows the input adapters and
applies filtering to each event so as to make sure that ev-
ery event is sent to that subset of Input Adapters that have
to receive the event. It is also shown that additional event
channels may be used to further de-couple the conversion
process performed by the Adapter from a receiving middle
or back office system. The Input Adapters may also contact
receiving back and middle office systems without involving
an Event Channel. This is appropriate if the legacy interface
to the middle or back office system already contains a queu-
ing mechanism.

Figure 7 shows in more detail how an output adapter uses
the interfaces of the Notification service. To initialize itself,
it obtains aTypedSupplierAdmin object for Routable

event types from aTypedEventChannel and it then estab-
lishes the qualities of service attribute for that channel, ask-
ing the channel to retain its connections upon failure and to
guarantee delivery of event data. Whenever event data needs
to be forwarded through the Notification service, the output
adapter converts the data into the standard XML represen-
tation and then invokespush structured events from
theTypedProxyPushConsumer object. This will guarantee
delivery of the event to allTypedPushConsumersObjects

that are currently registered with the event channel.

Thus, by determining persistent event and connection relia-

Input Adapter2

Input Adaptern

Output Adapter1

Output Adapter2

Output Adaptern

Front-
Office

System1

Front-
Office

System2

Front-
Office

Systemn

...

FO1ToXML

Event
Channel

Back-
Office

System1

Middle-
Office

System2

Back-
Office

Systemn

...

XMLToBO1

FO2ToXML XMLToMO2

FOnToXML XMLToBOn

Input Adapter1

Event
Channel

Figure 6: Use of CORBA Notification Service

: MurexOutput : TypedEventChannel : TypedSupplier
Admin

: QoSAdmin : XMLMapper: TypedProxyPu
shConsumer

1: get_supplier_admin

2: get_consumer(Routable)

3: set_qos()

5: push_structured_events()

EventReliability=Persistent &
ConnectionReliability=Persis
tent

4: murex2xml()

Figure 7: Output Adapter Interacting with Notification Service

bility, an implementation of the trading architecture can dele-
gate guaranteed delivery to a Notification service implemen-
tation. By using the filtering mechanism supported by the
Notification service, each input adapter can ensure that only
relevant events are passed on to the middle and back office
system. The Notification service supports the administration
of these filters with a constraint language.

5 Experience With TIGRA

Our experience with the TIGRA architectural style has been
largely positive. We stress tested the pilot implementation
before it went into production and we were easily able to
scale the system up to 25 trades per second (i.e. 2.5 times
the required peak throughput) by using replicated mapper
objects on a cluster of Sparc Ultra Enterprise Servers. Even
higher scalability could have been achieved by adding fur-
ther replicated mappers and router objects. We have achieved
an elapsed real-time for the multicast of a trade, i.e. the
time between an output adapter taking the trade and all in-
put adapters forwarding the trade to their receivers, of about
950 milliseconds. The time is actually an order of magnitude
faster than was required, which surprised us, as we initially
thought that XSL stylesheet transformations are rather inef-
ficient.

The TIGRA leitmotif of addressing data integration and re-
liable transport separately proved highly successful. Not
only has it enabled us to address semantic data integration
by transforming XML documents using XSL, but it also has
allowed us to keep the skill set down. XSL stylesheets that
perform the mapping are now happily written by business an-
alysts, who would have not been able to implement CORBA
objects.

We have managed to implement a pilot project using the
TIGRA style in about six months, both within budget and
on time. We have thus shown that the architecture has been
successful and can reduce cost of enterprise application inte-
gration. The pilot project further produced a re-usable sup-
port framework with common classes for Web-based user in-
terfaces, database access and for building input and output
adapters. Re-use of this framework and the general experi-
ence we made in this project will further decrease the effort
that future TIGRA instantiations will demand.

6 Research Directions
We now review the implications of our findings for the re-
search agenda on software architecture.

The combination of markup languages and middleware is

largely successful, though further work will be needed to
achieve tighter integration. The use of middleware enabled
us to isolate functional concerns in the mapping components.
In particular it would be desirable to be able to see XML
data structures through an IDL interface and vice versa. This
would have allowed us to avoid encoding data redundantly
in Routable .

Non-functional requirements determine most of the choices
during the selection and design of the architecture. The
strong demand for scalability, reliability and high availability
drove the development of the architecture and the selection
of packages that were deployed in the architecture. We need
to better understand the relationship between non-functional
requirements and software architectures. Moreover, we need
to find systematic ways to quantify non-functional require-
ments. The fact that scalability and performance require-
ments were largely estimates based on past experience put
the stability of the TIGRA architecture at risk if those esti-
mates are wrong.

7 Conclusion
We have now used the TIGRA style that we introduced in this
paper in the trading department of a different bank for a sim-
ilar enterprise application integration project. In this project,
we have exchanged the middleware but otherwise employed
the same architectural style. Instead of CORBA, we used
a Java Messaging Service (JMS) for reliable trade delivery
and Enterprise Java Beans (EJB) for scalable deployment of
mapping components. This leads to suggest that the style is
actually quite general and can be employed not only in one
but in many different institutions.

The strength of middleware and markup languages are com-
plementary. Based on the experience with this trading ar-
chitecture, we expect this combination to be used in future
distributed systems where complex data structures need to
be transmitted between distributed off-the-shelf components
and semantic transformations have to be performed. Such ar-
chitectures will use middleware for achieving reliable trans-
port of data between multiple distributed system compo-
nents. They will leverage markup languages to express the
structure of data so that semantic data transformations can be
expressed at appropriate levels of abstraction using standards
and performed using off-the-shelf technology.

Acknowledgements
We would like to thank all members of the TIGRA team.
Jürgen B̈uchler drove the initiative for a “new trading ar-
chitecture”, lead the initial research, obtained the funding
and provided the atmosphere in which our ideas could ma-
ture. Walter Schwarz evaluated CORBA Notifications and
developed the Router. Stefan Walther conducted the business
analysis and wrote most of the semantic transformations in
XSLT style sheets. Frank Wagner provided the environment
for testing many of the TIGRA components. Rolf K̈ohling
implemented a reusable set of classes to simplify the con-

struction of input and output adapters. Andreas Heyde and
Michael Koch implemented the Web-based user interfaces.

REFERENCES

[1] M. Ryan A. Finkelstein and G. Spanoudakis. Software
Package Requirements and Procurement. InProc. of
the 8th Int. Workshop on Software Specification and
Design, Schloss Velen, Germany, pages 141–146. IEEE
Computer Society Press, 1996.

[2] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language. Recommendation
http://www.w3.org/TR/1998/REC-xml-19980210,
World Wide Web Consortium, March 1998.

[3] J. Clark and S. Deach. Extensible Stylesheet
Language (XSL). Technical Report
http://www.w3.org/TR/1998/WD-xsl-19980818,
World Wide Web Consortium, August 1998.

[4] W. Emmerich.Engineering Distributed Objects. John
Wiley & Sons, April 2000.

[5] W. Emmerich. Software Engineering and Middleware:
A Roadmap. In A. Finkelstein, editor,Future of Soft-
ware Engineering, pages 117–129. ACM Press, June
2000.

[6] David C. Fallside. XML Schema. Technical
Report http://www.w3.org/TR/xmlschema-0/, World
Wide Web Consortium, April 2000.

[7] Fix Protocol. FIXML – A Markup Lan-
guage for the FIX Application Message Layer.
http://www.fixprotocol.org, 1999.

[8] FpML. Introducing FpML: A New Standard for e-
commerce. http://www.fpml.org, 1999.

[9] T. Mowbray and R. Zahavi.The Essential CORBA:
Systems Integration Using Distributed Objects. Wiley,
1995.

[10] Object Management Group. CORBA
Messaging – Revised Joint Submission.
ftp://ftp.omg.org/pub/docs/orbos/98-03-11.pdf, MAR
1998.

[11] Object Management Group.CORBAservices: Com-
mon Object Services Specification, Revised Edition.
492 Old Connecticut Path, Framingham, MA 01701,
USA, December 1998.

[12] Object Management Group.Notification Service. 492
Old Connecticut Path, Framingham, MA 01701, USA,
January 1998.

[13] Object Management Group.The Common Object Re-
quest Broker: Architecture and Specification Revision
2.2. 492 Old Connecticut Path, Framingham, MA
01701, USA, February 1998.

